
The Annals of Probability
2004, Vol. 32, No. 1A, 216–242
© Institute of Mathematical Statistics, 2004

LOWER TAIL PROBABILITIES FOR GAUSSIAN PROCESSES

BY WENBO V. LI1 AND QI-MAN SHAO2

University of Delaware and University of Oregon

Let X = (Xt )t∈S be a real-valued Gaussian random process indexed by S

with mean zero. General upper and lower estimates are given for the lower
tail probability P(supt∈S(Xt − Xt0) ≤ x) as x → 0, with t0 ∈ S fixed. In
particular, sharp rates are given for fractional Brownian sheet. Furthermore,
connections between lower tail probabilities for Gaussian processes with
stationary increments and level crossing probabilities for stationary Gaussian
processes are studied. Our methods also provide useful information on a
random pursuit problem for fractional Brownian particles.

1. Introduction. Let X = (Xt )t∈S be a real-valued Gaussian random process
indexed by S with mean zero. The main aim of this paper is to determine the rate
of lower tail probability

P

(
sup
t∈S

(
Xt − Xt0

) ≤ x

)
as x → 0(1.1)

with t0 ∈ S fixed. There are various motivation for the study of (1.1) other than
its own importance. Let us mention five concrete examples and their related
applications, along with some consequences of our general results.

Our first example comes from the most visited sites of symmetric stable
processes. In their deep study of the most visited sites of symmetric
stable processes, based on a remarkable connection between the local time of a sta-
ble process and the fractional Brownian motion, Bass, Eisenbaum and Shi (2000)
used the key probability estimate

P

(
sup

0≤t≤2

(
Bα(t) − Bα(1)

) ≤ x

)
≤ cx3/2(1.2)

for 0 < α ≤ 1 and x > 0 small, where {Bα(t), t ≥ 0} is the fractional Brownian
motion of order α, that is, E(Bα(t) − Bα(t))2 = |t − s|α for s, t ≥ 0. The
arguments for the proof of (1.2) in Bass, Eisenbaum and Shi (2000) involve a clever
application of Slepian’s lemma which reduces the problem to the consideration of
the probability that planar Brownian motion spends a unit of time in a certain
cone. Recently, (1.2) is generalized in Marcus (2000) to a larger class of Gaussian
processes with stationary increments. Our Corollary 2.1 with proper modification
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implies that the probability in (1.2) decays at polynomial rate. After submision
of this paper, we learned the works of Molchan (1999, 2000) which give exact
polynomial decay rate in (1.2). The motivation comes from an analysis of the
fractal nature of solutions of Berger’s equation with random initial data.

Our second example comes from the study of Brownian sheet in R
2. In Csaki,

Khoshnevisan and Shi (2000), the following result for two-dimensional Brownian
sheet W(s, t) is proved: for x > 0 small

−c2 log2(1/x) ≤ logP

(
sup

0≤s,t≤1
W(s, t) ≤ x

)
≤ −c1

log2(1/x)

log log(1/x)
(1.3)

for some positive constants c1 and c2. Various connections and applications of the
estimate (1.3) are also discussed in the paper. Obtaining a sharp correct bound by
removing the log log term in (1.3) is actually our original motivation of this paper.
See (1.9) for the statement for d-dimensional Brownian sheet.

Our third example comes from Brownian pursuits. Let W0,W1, . . . ,Wn be
independent standard Brownian motion, starting at 0, and define the stopping time

τn = inf
{
t > 0 :Wi(t) − 1 = W0(t) for some 1 ≤ i ≤ n

}
.

Then τn can be viewed as a capture time in a random pursuit setting. Assume
that a Brownian prisoner escapes, running along the path of W0. In his pursuit,
there are n independent Brownian policemen. These policemen run along the
paths of W1, . . . ,Wn, respectively. At the outset, the prisoner is ahead of
the policemen by 1 unit of distance. Then, τn represents the capture time when the
fastest of the policemen catches the prisoner. In their studies on coupling various
stochastic processes, Bramson and Griffeath (1991) raised the question: for which
n is Eτn < ∞. It is known that

P{τn > t} ∼ ct−γn as t → ∞,(1.4)

where γn is determined by the first eigenvalue of the Dirichlet problem for the
Laplace–Beltrami operator on a subset of the unit sphere S

n in R
n+1. Of course,

γ1 = 1/2 by the reflection principle, and the analysis in Bramson and Griffeath
(1991) shows that γ2 = 3/4, γ3 < 1. Further, they conjecture that γ4 > 1 as their
simulation suggests that γ4 ≈ 1.032. Very recently, Li and Shao (2001b) show that
γ5 > 1 by using some distribution identities and the Faber–Krahn isoperimetric
inequality. Early, using closely related independent stationary Ornstein–Uhlenbeck
processes and the theory of large deviations, Kesten (1991) showed that

0 < lim inf
n→∞ γn/ logn ≤ lim sup

n→∞
γn/ logn ≤ 1/4(1.5)

and conjectured the existence of limn→∞ γn/ logn. It is shown by develop-
ing a new normal comparison inequality in Li and Shao (2002) that in fact
limn→∞ γn/ logn = 1/4. To see the connection with (1.1) from the point of view
of the theory of Gaussian processes, we note that estimating the tail of τn, that is,
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P (τn > t) as t → ∞, is the same as estimating the lower tail probability for the
Gaussian process X(k, s) = Wk(s)−W0(s) indexed by (k, s) ∈ {1, . . . , n}×[0,1],
that is, P(max1≤k≤n sup0≤s≤1(Wk(s) − W0(s)) ≤ x) as x → 0. In fact, for any
t > 0, by the Brownian scaling

P(τn > t) = P

(
max

1≤k≤n
sup

0≤s≤t

(
Wk(s) − W0(s)

)
< 1

)

= P

(
max

1≤k≤n
sup

0≤s≤1

(
Wk(s) − W0(s)

)
< t−1/2

)
.

We prove in Theorem 4.1 a lower bound for the above probability for the analogy
fractional Brownian motion pursuit problem and the proof is based on pure
Gaussian techniques developed in Theorem 2.1.

Our fourth example comes from the study of real zeros of random polynomials.
Let {Zi, i ≥ 0} be independent standard normal random variables. In their study
on the probability that the random polynomial

∑n
i=0 Zix

i does not have real root
in R, Dembo, Poonen, Shao and Zeitouni (2002) obtain

P

(
n∑

i=0

Zix
i ≤ 0 ∀x ∈ R

1

)
= n−b+o(1)

as n → ∞ through even integers, where

b = −4 lim
T →∞

1

T
log P

(
sup

0≤t≤T

Xt ≤ 0
)

(1.6)

and Xt is a centered stationary Gaussian process with

EXsXt = 2e−|t−s|/2

1 + e−|t−s| for s, t ≥ 0.(1.7)

Furthermore, they proved that 0.4 < b ≤ 2. Here we find a very closed relation
between (1.6) and the lower tail probability for a connected dual Gaussian process.
See Proposition 3.3, which also contains the improvement b < 1.29.

Our fifth example comes from an old problem of the first passage time for
the so-called Slepian process. Let S(t), t ≥ 0, be the Slepian process, which
is the Gaussian process with mean zero and covariance ES(t)S(s) = (1 −
|t − s|)1{|t−s|≤1}. It is easy to see that S(t) can be represented in terms of the
standard Wiener process W(t) by

S(t) = W(t) − W(t + 1), t ≥ 0.

The first passage probability

Qa(T ) = P

(
sup

0≤t≤T

S(t) ≤ a

)
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was studied by many authors. In particular, Slepian (1961) found a simple
expression when T ≤ 1 and Shepp (1971) gave an explicit but very hard to evaluate
formula in terms of a T -fold integral for an integer T and a (2[T ]+2)-fold integral
for a noninteger T . The question of finding bounds on

lim
n→∞n−1 log P

(
sup

0≤t≤n

S(t) ≤ a

)
(1.8)

(assuming the limit exists) was asked in Shepp (1971) since the formula of Qa(T )

is apparently not suited for either numerical calculation or asymptotic estimation.
As a simple consequence of Proposition 3.1, we have the limit in (1.8) exists.

From all these examples, we find that it is of sufficient interest to have estimates
of lower tail probabilities for general Gaussian processes. The paper is organized as
follows. Section 2 presents general upper and lower bounds of (1.1). The bounds
are sharp for many well-known Gaussian processes. Probably the most amazing
consequence of our general estimates is that for x > 0 small

−c2 logd(1/x) ≤ logP

(
sup

t∈[0,1]d
W(t) ≤ x

)
≤ −c1 logd(1/x)(1.9)

for the d-dimensional Brownian sheet W(t), and

−c2 log(1/x) ≤ log P

(
sup

t∈[0,1]d
L(t) ≤ x

)
≤ −c1 log(1/x)

for the d-dimensional Lévy Brownian sheet L(t). Motivated by the fourth and
the fifth examples, we consider in Section 3 the level crossing probability for
stationary Gaussian process with positive correlation function

P

(
sup

0≤t≤T

Xt ≤ a

)

as T → ∞ for fixed a ∈ R. Connections are made with the lower tail probability.
In particular, we show that for the fractional Brownian motion {Bα(t), t ≥ 0} of
order α, 0 < α < 2, the limit

cα := − lim
T →∞

1

T
logP

(
sup

0≤t≤T

Bα(et )

etα/2 ≤ 0
)

exists and moreover, as x → 0,

P

(
sup

0≤t≤1
Bα(t) ≤ x

)
= x2cα/α+o(1).

It then follows from Molchan (1999, 2000) that cα = 1 − α/2.
To see how far our approach to the estimate of (1.1) can go, we discuss the

fractional Brownian motion pursuit problem in Section 4. All proofs are given in
Section 5.
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Finally, we note the obvious fact that the bounds obtained on a specific
process are of interest not merely because of the information they provide about
the individual processes, but because by virtue of Slepian’s inequality and a
companion inequality in Li and Shao (2002), they lead to bounds for probabilities
of Gaussian processes whose covariance functions are either dominated by, or
dominate, the ones we know.

Throughout this paper, we use letter c and their modifications C, c1, c2, and so
on, for various positive constants which may be different from a line to another,
use f ≈ g to denote

c1g ≤ f ≤ c2g

for some positive constants c1 and c2, and log x for the natural logarithm.

2. Main results. Let X = (Xt )t∈S be a real-valued Gaussian random process
indexed by S with mean zero. Define an L2-metric induced by the process X as

d(s, t) = (E|Xs − Xt |2)1/2, s, t ∈ S.

For every ε > 0 and a subset A of S, let N(A,ε) denote the minimal number of
open balls of radius ε for the metric d that are necessary to cover A. For t ∈ S

and h > 0, let B(t, h) = {s ∈ S :d(t, s) ≤ h}, and define a locally and uniformly
Dudley type entropy (LUDE) integral

Q = sup
h>0

sup
t∈S

∫ ∞
0

(
logN(B(t, h), εh)

)1/2
dε.(2.1)

This notion of entropy integral is finer than that usually employed and specially
suited to the framework here. When Dudley type entropy (LUDE) condition
Q < ∞ holds, it is clear that

D−1
∫ D

0

(
logN(S, ε)

)1/2
dε = sup

h>D

sup
t∈S

∫ ∞
0

(
log N(B(t, h), εh)

)1/2
dε

≤ Q < ∞,

where D = sups,t∈S d(t, s) is the diameter of the set S, and hence Xt is sample
bounded by the result of Dudley (1967) and Fernique (1964). Furthermore, for any
h0 > 0 fixed,

sup
h>h0

sup
t∈S

∫ ∞
0

(
logN(B(t, h), εh)

)1/2
dε

≤ sup
h>h0

∫ ∞
0

(
logN(S, εh)

)1/2
dε

= h−1
0

∫ ∞
0

(
logN(S, ε)

)1/2
dε.
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Thus what really matters in the condition Q < ∞ is the situation for h > 0 small
when Dudley’s condition

∫ ∞
0 (log N(S, ε))1/2 dε < ∞ is satisfied.

For θ = 1000(1 + Q), define

A−1 = {
t ∈ S :d(t, t0) ≤ θ−1x

}
,

Ak = {
t ∈ S : θk−1x < d(t, t0) ≤ θkx

}
, k = 0,1,2, . . . ,L,

where L = 1 + [logθ (D/x)]. Let Nk(x) := N(Ak, θ
k−2x) denote the minimal

number of open balls of radius θk−2x for the metric d that are necessary to
cover Ak , k = 0,1, . . . ,L, and let

N(x) = 1 + ∑
0≤k≤L

Nk(x).

We first present a general lower bound.

THEOREM 2.1. Assume that Q < ∞ and

E
((

Xs − Xt0

)(
Xt − Xt0

)) ≥ 0 for s, t ∈ S.(2.2)

Then we have

P

(
sup
t∈S

(
Xt − Xt0

) ≤ x

)
≥ e−N(x).(2.3)

It should be pointed out that the formulation given above are not the most
general, but it is the best to show the idea of obtaining lower bounds in an abstract
setting. Various modification of the proof of Theorem 2.1 allows one to handle the
cases that Q = ∞ or N(x) is difficult to estimate.

Our next theorem gives an upper bound for the probability under a different set
of conditions.

THEOREM 2.2. For x > 0, let si ∈ S, i = 1, . . . ,M , be a sequence such that
for every i,

M∑
j=1

∣∣Corr
(
Xsi − Xt0 ,Xsj − Xt0

)∣∣ ≤ 5/4(2.4)

and

d(si, t0) = (
E

∣∣Xsi − Xt0

∣∣2)1/2 ≥ x/2.(2.5)

Then

P

(
sup
t∈S

(
X(t) − X(t0)

) ≤ x

)
≤ e−M/10.(2.6)
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To match the lower bound given in Theorem 2.1, we provide the following
guide line of selecting the sequence {si} in Theorem 2.2. Let q > 1. For k =
1,2, . . . ,L − 1, choose sk,j , j = 1, . . . ,Mk , such that

(1/2)qkx ≤ d(sk,j , t0) ≤ qkx.

Hopefully, when q is large, {sk,j ,1 ≤ j ≤ Mk,1 ≤ k < L} satisfies (2.4).
Our next two theorems show that the bounds provided by Theorems 2.1 and 2.2

are sharp under certain regular conditions.

THEOREM 2.3. Let {X(t), t ∈ [0,1]d} be a centered Gaussian process with
X(0) = 0 and stationary increments, that is,

∀ t, s ∈ [0,1]d, σ 2(|t − s|) = E(Xt − Xs)
2

where | · | is the Euclidean norm on R
d . If there are 0 < α ≤ β < 1 such that

σ(h)/hα is nondecreasing and σ(h)/hβ nonincreasing. Then there exist 0 < c1 ≤
c2 < ∞ depending only on α, β and d such that for 0 < x < 1/2,

exp
(−c2 log(1/x)

) ≤ P

(
sup

t∈[0,1]d
X(t) ≤ σ(x)

)
≤ exp

(−c1 log(1/x)
)
.(2.7)

THEOREM 2.4. Let {X(t), t ∈ [0,1]d} be a centered Gaussian process with
X(0) = 0 and

E(XtXs) =
d∏

i=1

1
2

(
σ 2(ti) + σ 2(si) − σ 2(|ti − si|))(2.8)

for t = (t1, . . . , td) and s = (s1, . . . , sd). If there are 0 < α ≤ β < 1 such that
σ(h)/hα is nondecreasing and σ(h)/hβ nonincreasing. Then there exist 0 < c3 ≤
c4 < ∞ depending only on α, β and d such that for 0 < x < 1/2,

exp
(−c4 logd(1/x)

) ≤ P

(
sup

t∈[0,1]d
X(t) ≤ σd(x)

)
≤ exp

(−c3 logd(1/x)
)
.(2.9)

Next we state a few corollaries of Theorems 2.3 and 2.4.

COROLLARY 2.1. Let {Lα(t), t ∈ [0,1]d} be the fractional Lévy’s Brownian
motion of order α, 0 < α < 2, that is, Lα(0) = 0, ELα(t) = 0 and E(Lα(t) −
Lα(s))2 = |t − s|γ , 0 < γ < 2,

exp
(−c2 log(1/x)

) ≤ P

(
sup

t∈[0,1]d
Lγ (t) ≤ x

)
≤ exp

(−c1 log(1/x)
)
.(2.10)
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COROLLARY 2.2. Let {Bα(t), t ∈ [0,1]d} be the fractional Brownian sheet of
order α, 0 < α < 2, that is, Bα(0) = 0, EBα(t) = 0 and

E
(
Bα(t)Bα(s)

) =
d∏

i=1

1
2 (tαi + sα

i − |ti − si|α)

for t = (t1, . . . , td) and s = (s1, . . . , sd). Then there exist 0 < c3 ≤ c4 < ∞
depending only on α and d such that for 0 < x < 1/2,

exp
(−c4 logd(1/x)

) ≤ P

(
sup

t∈[0,1]d
Bα(t) ≤ x

)
≤ exp

(−c3 logd(1/x)
)
.

Since the lower tail probability of a Gaussian process determines the lim inf
behavior of related sample path property, comparing Corollaries 2.1 and 2.2, we
see that the Lévy fractional Brownian motion and the fractional Brownian sheet
on R

d , d ≥ 2, have very different lower bound of sample path properties, though
they share very similar upper bound of sample path properties. As an interesting
application of Corollary 2.2, we mention the following boundary crossing result
for the sample paths of Brownian sheet. The proof follows from the 0–1 law
and the subsequence method [see the argument given in Csáki, Khoshnevisan and
Shi (2000)].

COROLLARY 2.3. There exists positive and finite constant κ such that

lim inf
T →∞ (log log T )−1/d log

(
T −d/2 sup

t∈[0,T ]d
W(t)

)
= −κ.

Based on the results given in Theorems 2.1 and 2.2, we would like to point out
that the lower tail probability is very different from the small ball probability under
the sup-norm, which considers the absolute value of the supremum of a Gaussian
process. In particular, the small ball problem for Brownian sheet W(t) on R

d (or
B1 in Corollary 2.2) under the sup-norm is still open for d ≥ 3. The best-known
results are

log P

(
sup

t∈[0,1]2
|W(t)| ≤ x

)
≈ −x−2 log3(1/x)

and

−c2x
−2 log2d−1(1/x) ≤ logP

(
sup

t∈[0,1]d
|W(t)| ≤ x

)
≤ −c1x

−2 log2d−2(1/x)

for d ≥ 3 as x → 0. We refer to a recent survey paper of Li and Shao (2001a) for
more information on the small ball probability and its applications.
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3. Stationary Gaussian processes. Motivated by Example 4 on the probabil-
ity that a random polynomial does not have a real zero and Example 5 on the first
passage probability for Slepian process, we discuss the level crossing probability
for stationary Gaussian processes in this section. It turns out the situation becomes
much nicer.

PROPOSITION 3.1. Let {Xt, t ≥ 0} be an almost surely continuous stationary
Gaussian process with zero mean. Assume that

EX0Xt ≥ 0 for t ≥ 0.(3.1)

Then the limit

p(x) := lim
T →∞

1

T
logP

(
sup

0≤t≤T

Xt ≤ x

)
(3.2)

exists for every x ∈ R
1. Moreover, p(x) is left continuous and

p(x) = sup
T >0

T −1 logP

(
sup

0≤t≤T

Xt ≤ x

)
.

The existence of the limit p(x) is ensured by subadditivity: since EX0Xt ≥ 0,
Slepian’s lemma and the stationarity of X imply

P

(
sup

0≤t≤T +S

Xt ≤ x

)
≥ P

(
sup

0≤t≤T

Xt ≤ x

)
P

(
sup

T ≤t≤T +S

Xt ≤ x

)

= P

(
sup

0≤t≤T

Xt ≤ x

)
P

(
sup

0≤t≤S

Xt ≤ x

)
.

(3.3)

The left continuity of p(x) follows from the fact that p(x) is nondecreasing and
P(sup0≤t≤T Xt ≤ x) is continuous of x for each fixed T . The sup representation
for p(x) follows from the subadditivity relation (3.3).

For the question of Shepp (1971) mentioned in (1.8) on the Slepian process, we
have the following.

PROPOSITION 3.2. The limit

Qa := lim
T →∞T −1 logP

(
sup

0≤t≤T

S(t) ≤ a

)
= sup

T >0
T −1 logP

(
sup

0≤t≤T

S(t) ≤ a

)
(3.4)

exists for every a ∈ R and for any T0 > 0,

T −1
0 logP

(
sup

0≤t≤T0

S(t) ≤ a

)
≤ Q(a) ≤ (T0 + 1)−1 logP

(
sup

0≤t≤T0

S(t) ≤ a

)
.(3.5)
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The upper estimate follows from

P

(
sup

0≤t≤T

S(t) ≤ a

)

≤ P

(
sup

k(T0+1)≤t≤(k+1)(T0+1)−1
S(t) ≤ a,0 ≤ k ≤ [T/(T0 + 1)] − 1

)

=
[T/(T0+1)]−1∏

k=0

P

(
sup

k(T0+1)≤t≤(k+1)(T0+1)−1
S(t) ≤ a

)

=
(

P

(
sup

0≤t≤T0

S(t) ≤ a

))[T/(T0+1)]

for T large. Explicit and simple formula for P(sup0≤t≤T0
S(t) ≤ a) for 0 < T0 ≤ 1

is given in Slepian (1961).
Next, we make connections between lower tail probabilities and level crossing

probabilities for stationary Gaussian processes. For the fractional Brownian
motion Bα on R

1 of order α, 0 < α < 2, let

Xα(t) = e−tα/2Bα(et ).

It is easy to see that Xα is a centered stationary Gaussian process satisfying (3.1).
Hence, by Proposition 3.1,

cα := − lim
T →∞

1

T
logP

(
sup

0≤t≤T

Xα(t) ≤ 0
)

= sup
T >0

1

T
logP

(
sup

0≤t≤T

Xα(t) ≤ 0
)(3.6)

exists. On the other hand, by Corollary 2.1,

−∞ < lim inf
x↓0

log P(sup0≤t≤1 Bα(t) ≤ x)

log(1/x)

≤ lim sup
x↓0

logP(sup0≤t≤1 Bα(t) ≤ x)

log(1/x)
< 0.

Our next theorem confirms that the limit of logP(sup0≤t≤1 Bα(t) ≤ x)/ log(1/x)

as x → 0 not only exists but also has a close relation with the constant cα .

THEOREM 3.1. We have, as x → 0,

P

(
sup

0≤t≤1
Bα(t) ≤ x

)
= x2cα/α+o(1)(3.7)

and hence cα = 1 − α/2.
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It is well known by the reflection principle that for the Brownian motion, that
is, α = 1,

P

(
sup

0≤t≤1
W(t) ≤ x

)
= P

(|W(1)| ≤ x
) ∼ (2/π)1/2x

as x → 0. Thus, Theorem 3.1 recovers the following well-known result:

P

(
sup

0≤t≤T

U(t) ≤ 0
)

= exp
(−T/2 + o(T )

)
as T → ∞, where U is the Ornstein–Uhlenbeck process.

Similarly, one can verify that condition in Proposition 3.1 is satisfied for the
stationary Gaussian process Xt in Example 4. Furthermore, we introduce a dual
Gaussian process {Y (t), t ≥ 0} as follows. Let Y (0) = 0 and

Y (t) = √
2t2

∫ ∞
0

W(u)e−ut du

for t > 0, where W is the Brownian motion. It is easy to see that EY (t) = 0 and

EY (t)Y (s) = 2st

s + t
for s, t > 0.

Hence, {Xt, t ≥ 0} in (1.7) and {Y (et )/et/2, t ≥ 0} have the same distribution.
The Gaussian process Y (t) given above has many amazing properties. Its sample
path is infinite differentiable for t > 0 and it has the same scaling properties as
Brownian motion, that is, {Y (ct), t ≥ 0} = {c1/2Y (t), t ≥ 0} in distribution for any
c > 0 and {tY (t−1), t ≥ 0} = {Y (t), t ≥ 0} in distribution. Analogously to (3.7),
we have an alternative formula for b in (1.6).

PROPOSITION 3.3. Let b be the constant in (1.6). Then

P

(
sup

0≤t≤1
Y (t) ≤ x

)
= xb/2+o(1)

as x → 0. Furthermore, 0.4 < b < 1.29.

The bound for b given in Dembo, Poonen, Shao and Zeitouni (2002) is 0.4 <

b ≤ 2. The improvement b < 1.29 here follows from (3.3) and an estimate in
Slepian (1962) for short interval. Other related estimates can be found in Newell
and Rosenblatt (1962) and Strakhov and Kurz (1968). Since then, there appears
to be little in the literature concerning the asymptotic behavior for large time T

or lower level x. Closed formula for the distribution of the maximum of Gaussian
processes is known only for a handful cases (six for stationary Gaussian processes)
to the best of our knowledge. And some of them do not allow the asymptotic
evaluation discussed here as our Example 5 shows.
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On the other hand, large deviation results or probabilities of extreme values
for stationary Gaussian processes are well explored [see, e.g., Pickands (1969)
and Leadbetter, Lindgren and Rootzen (1983)]. In particular, for almost surely
differentiable centered stationary Gaussian process with EX0Xt = 1 − Ct2 +
o(t2) as t → 0, one has

P

(
sup

0≤t≤1
Xt > x

)
∼ (C/2)1/2

π
e−x2/2

as x → ∞. Therefore, we would like to pose the following open questions:

1. If {Xt, t ≥ 0} is a centered differentiable stationary Gaussian process with
positive correlation, what is the limit

lim
T →∞

1

T
logP

(
sup

0≤t≤T

Xt ≤ 0
)

?

2. As mentioned in Proposition 3.3, 0.4 < b < 1.29. What is the exact value
of b? Note that the Gaussian process X(t) in our fourth example is differen-
tiable.

3. What is the exact value of the limit in (3.4) for the Slepian process?
4. Using the scaling property of the d-dimensional Brownian sheet W(t), we see

that (1.9) is equivalent to

−c2 ≤ (log T )−d log P

(
sup

t∈[0,T ]d
W(t) ≤ 1

)
≤ −c1(3.8)

for large T . It seems hard to show the existence of a limit as T → ∞. The
possible connection similar to the one in Theorem 3.1 is not clear for the dual
stationary sheet X(t) = exp{−∑d

i=1 ti/2}W(et1, . . . , etd ).

Before the end of this section, we want to point out two well-known general
approaches to P (T ) = P(sup0≤t≤T X(t) ≤ 0) discussed in details in Slepian
(1962). Unfortunately, none of them works well for problems we considered in
this paper. First, P (T ) can be approached (and upper bounded) by

Pn(r) = P

(
max

1≤i≤n
X(ti ) ≤ 0

)
, 0 = t1 < t2 < · · · < tn = T,

where r = (rij ) is the covariance matrix with rij = EX(ti )X(tj ). Then Pn(r)
admits a simple geometric interpretation and is the fraction of the unit sphere in
Euclidean n-space cut out by n-hyperplanes through the center of the sphere. The
angle θij between the normals to the ith and j th hyperplanes directed into the
cutout region is given by cosθij = rij , 1 ≤ i, j ≤ n. Second, we have Rice’s series
representation under suitable smooth condition, namely

P (T ) = 1

2
+ 1

2

∞∑
n=1

(−1)n

n!
∫ T

0
· · ·

∫ T

0
qn(t1, . . . , tn) dt1 · · · dtn
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where

qn(t1, . . . , tn) =
∫ ∞
−∞

· · ·
∫ ∞
−∞

|y1 · · ·yn|p(0, . . . ,0, y1, . . . , yn) dy1 · · · dyn

and p(x1, . . . , xn, y1, . . . , yn) is the joint density for X(t1), . . . ,X(tn),X
′(t1), . . . ,

X′(tn). Since the proof follows from the method of inclusion and exclusion, vari-
ous bounds are available. Similar formulae also hold for P(sup0≤t≤T X(t) ≤ x).

4. Capture time of the fractional Brownian motion pursuit. Throughout
this section, {Bk,α(t); t ≥ 0} (k = 0,1,2, . . . , n) denote independent fractional
Brownian motions of order α ∈ (0,2) all starting from 0. Let

τn := τn,α = inf
{
t > 0 : max

1≤k≤n
Bk,α(t) = B0,α(t) + 1

}
.

Then, when is E(τn) finite? As we have seen in Example 3, the question is the same
as estimating the lower tail probabilities of max1≤k≤n sup0≤t≤1(Bk,α(t)−B0,α(t)).
In fact, for any s > 0, by the fractional Brownian scaling,

P(τn > s) = P

(
max

1≤k≤n
sup

0≤t≤s

(
Bk,α(t) − B0,α(t)

)
< 1

)

= P

(
max

1≤k≤n
sup

0≤t≤1

(
Bk,α(t) − B0,α(t)

)
< s−α/2

)
.

A direct application of Theorem 2.1 gives a lower bound of −c n log(1/x)

for the probability logP(max1≤k≤n sup0≤t≤1 (Bk,α(t) − B0,α(t)) < x) as x → 0,
where c is a positive and finite constant depending only on α. However, according
to the bound of (1.5) due to Kesten (1991) for the Brownian motion case, the above
lower bound is far from sharp when n is large. Kesten’s method is based on large
deviation results for independent stationary Ornstein–Uhlenbeck processes, which
is hardly applicable for the fractional Brownian motion. Fortunately, the methods
developed for proving the results in previous sections do give us a sharp lower
bound even for this fractional Brownian motion pursuit problem.

Let

Xk,α(t) = e−tα/2Bk,α(t) for k = 0,1, . . . , n.

Analogously to Proposition 3.1, the limit

cn,α := − lim
T →∞

1

T
logP

(
sup

0≤t≤T

max
1≤k≤n

(
Xk,α(t) − X0,α(t)

) ≤ 0
)

(4.1)

exists.

THEOREM 4.1. We have

P

(
max

1≤k≤n
sup

0≤t≤1

(
Bk,α(t) − B0,α(t)

)
< x

)
= x2cn,α/α+o(1)(4.2)
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as x → 0. Moreover,

0 < lim inf
n→∞

cn,α

logn
≤ lim sup

n→∞
cn,α

logn
< ∞.(4.3)

We will only prove the right-hand side of (4.3) here. The left-hand side of (4.3)

requires new techniques and is given in Li and Shao (2002) together with a proof
of Kesten’s conjecture mentioned in Example 3 in the Introduction.

5. Proofs. The proof of lower bound relies on the Slepian lemma and large
deviation results for Gaussian processes. The following comparison inequality
[Lemma 3.1 in Shao (1999)] plays a key role in the proof of upper bounds. We
present its simple proof for completeness.

LEMMA 5.1. Let X = (X1, . . . ,Xn) be distributed according to N(0,
1) and
Y = (Y1, . . . , Yn) according to N(0,
2). If 
2 − 
1 is positive semidefinite, then

∀C ⊂ R
n, P(Y ∈ C) ≥ (|
1|/|
2|)1/2

P(X ∈ C).(5.1)

PROOF. Let fX and fY be the joint density functions of X and Y , respectively.
Since 
2 − 
1 is positive semidefinite, 
−1

1 − 
−1
2 is positive semidefinite too

[see, e.g., Bellman (1970), page 59]. Hence

fY (x) = 1

(2π)n/2|
2|1/2 exp
(
−1

2
x′
−1

2 x

)

≥ 1

(2π)n/2|
2|1/2 exp
(
−1

2
x′
−1

1 x

)

=
( |
1|

|
2|
)1/2

fX(x),

which yields (5.1) immediately. �

PROOF OF THEOREM 2.1. Without loss of generality, assume that Xt0 = 0.
Let Ak,j , j = 1, . . . ,Nk(x), be the open balls of radius θk−2x for the metric d that
cover Ak , k = 0,1, . . . ,L. Then, by assumption (1.1) and the Slepian lemma,

P

(
sup
t∈S

(Xt − Xt0) ≤ x

)

≥ P

(
sup

t∈A−1

Xt ≤ x

) L∏
k=0

Nk(x)∏
j=1

P

(
sup

t∈Ak,j

Xt ≤ x

)
.
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By Dudley (1967) [see Theorem 6.1 of Ludoux (1996)], we have

E sup
t∈A−1

X(t) ≤ 42
∫ θ−1x

0

(
logN(A−1, ε)

)1/2
dε

≤ 42
∫ θ−1x

0

(
logN

(
B(t0, θ

−1x), ε
))1/2

dε

= 42θ−1x

∫ 1

0

(
logN

(
B(t0, θ

−1x), εθ−1x
))1/2

dε

≤ 42Qθ−1x ≤ x/2.

(5.2)

Hence

P

(
sup

t∈A−1

Xt ≤ x

)
= 1 − P

(
sup

t∈A−1

Xt > x

)
≥ 1/2.

It suffices to show that

P

(
sup

t∈Ak,j

Xt ≤ 0
)

≥ e−1(5.3)

for every 1 ≤ j ≤ Nk(x),0 ≤ k ≤ L. Let sk,j be the center of Ak,j . Then
d(sk,j , t0) ≥ θk−1x. Observe that

P

(
sup

t∈Ak,j

Xt ≤ 0
)

≥ P
(
Xsk,j ≤ −θk−1x/4

) − P

(
sup

t∈Ak,j

(
Xt − Xsk,j

)
> θk−1x/4

)

≥ P(Z ≥ 1/4) − P

(
sup

t∈Ak,j

(
Xt − Xsk,j

)
> θk−1x/4

)

≥ e−1 + 10−2 − P

(
sup

t∈Ak,j

(
Xt − Xsk,j

)
> θk−1x/4

)
,

(5.4)

where Z is the standard normal random variable. By the definition of Ak,j and
similarly to (5.2), we have

sup
t∈Ak,j

d(t, sk,j ) ≤ θk−2x

and
E sup

t∈Ak,j

(
Xt − Xsk,j

) ≤ 42Qθk−2x.
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Hence, it follows from the deviation estimate for Gaussian process [see Ledoux
and Talagrand (1991)] that

P

(
sup

t∈Ak,j

(
Xt − Xsk,j

)
> θk−1x/4

)

≤ P

(
sup

t∈Ak,j

(
Xt − Xsk,j

)
> E sup

t∈Ak,j

(
Xt − Xsk,j

)

+ θk−1x/4 − 42Qθk−2x

)

≤ P

(
sup

t∈Ak,j

(
Xt − Xsk,j

)
> E sup

t∈Ak,j

(
Xt − Xsk,j

) + θk−1x/5
)

≤ 2 exp
(−(θ/5)2/2

) ≤ 10−2.

(5.5)

This proves (5.3). �

PROOF OF THEOREM 2.2. Without loss of generality, assume again that
Xt0 = 0. Let Zi,1 ≤ i ≤ M , be i.i.d. standard normal random variables, 
1 be
the covariance matrix of {Xsi /(E|Xsi |2)1/2,1 ≤ i ≤ M} and 
2 be the covariance
matrix of {3Zi/2,1 ≤ i ≤ M}. By (2.4), 
1 is a dominant principal diagonal
matrix. Moreover, by Price (1951),

det(
1) ≥ (1 − 1/4)M.(5.6)

It follows from assumption (2.4) again that 
2 − 
1 is also a dominant principal
diagonal matrix and hence is positive semidefinite. Thus, by Lemma 5.1,

P

((
Xsi /

(
EX2

si

)1/2
, i ≤ M

) ∈ G
)

≤ (
det(
2)/det(
1)

)1/2
P

(
(3Zi/2, i ≤ M) ∈ G

)
(5.7)

≤ 2M/2
P

(
(3Zi/2, i ≤ M) ∈ G

)
for all G ⊂ R

M . In particular, we have

P

(
max
i≤M

Xsi ≤ x

)
= P

( ⋂
i≤M

{
Xsi/

(
EX2

si

)1/2 ≤ x/
(
EX2

si

)1/2})

≤ P

( ⋂
i≤M

{
Xsi/

(
EX2

si

)1/2 ≤ 1/2
})

≤ 2M/2
P

(
max
i≤M

3Zi/2 ≤ 1/2

)

= (
21/2

P(Z ≤ 1/3)
)M

≤ e−M/10,
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as desired. �

PROOF OF THEOREM 2.3. First note that (2.2) is satisfied. This can be
verified as follows. If |t − s| ≤ max(|t|, |s|), then clearly (2.2) holds. If |t − s| >

max(|t|, |s|), we have

2E(XtXs) = EX2
t + EX2

s − E(Xt − Xs)
2

= σ 2(|t|) + σ 2(|s|) − σ 2(|t − s|)
= σ 2(|t − s|)(σ 2(|t|)/σ 2(|t − s|) + σ 2(|s|)/σ 2(|t − s|) − 1

)
≥ σ 2(|t − s|)(|t|2/|t − s|2 + |s|2/|t − s|2 − 1

)
= σ 2(|t − s|)(|t|2 + |s|2 − |t − s|2)/|t − s|2 ≥ 0

by the assumption that σ(t)/t is nonincreasing and σ(h) is nondecreasing. For
t ∈ [0,1]d and 0 < h ≤ σ(1), we have

B(t, h) = {
s ∈ [0,1]d :σ(|s − t|) ≤ h

} = {
s ∈ [0,1]d : |s − t| ≤ σ−1(h)

}
,

where σ−1 is the inverse of σ . It is easy to see that there is a constant K such that

N
(
B(t, h), εh

) ≤ K
(
σ−1(h)/σ−1(εh)

)d ≤ Kε−d/α(5.8)

where we use the assumption that σ(h)/hα is nondecreasing. Hence Q is finite.
Similarly to the establishment of (5.8), it is easy to see that Nk(x) ≤ Kθ2d/α for
k = 0,1, . . . ,L. Note that L ≤ 1+ logθ (σ (1)/σ (x)) ≤ 1+ logθ (1/xβ). This proves
the lower bound of (2.7) by Theorem 2.1.

We next prove the right-hand side of (2.7). Without loss of generality, we can
assume d = 1. In fact, we have

P

(
sup

t∈[0,1]d
Xt ≤ σ(x)

)
≤ P

(
sup

t∈[0,1]
Xt,0,...,0 ≤ σ(x)

)

and σ 2(|t − s|) = E(Xt,0,...,0 −Xs,0,...,0)
2 for s, t ∈ [0,1]. Let θ > 1, which will be

specified later. Put si = θix for i = 1,2, . . . ,L where L := [logθ (1/x)]. We need
to verify that (2.4) is satisfied when θ is large. For every 1 ≤ i < j ≤ L, we have∣∣Corr

(
Xsi ,Xsj

)∣∣ = (1/2)
∣∣σ 2(si) + σ 2(sj ) − σ 2(sj − si)

∣∣/(
σ(si)σ (sj )

)
≤ σ(si)/σ (sj ) + 2

(
σ(sj) − σ(sj − si)

)
/σ (si)

≤ (si/sj )
α + 2σ(sj )

(
1 − (

(sj − si)/sj
)β)

/σ (si)

≤ θ(i−j)α + 2σ(sj)(si/sj )/σ (si)

≤ θ(i−j)α + 2(sj/si)
β(si/sj )

= θ(i−j)α + 2θ(i−j)(1−β),

(5.9)

which follows immediately that (2.4) is satisfied when θ is large. Therefore, the
right-hand side of (2.7) holds. �
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5.1. Proof of Theorem 2.4. We first prove the left-hand side of (2.9). Although
it is possible to apply Theorem 2.1 directly, we would like to present an alternative
proof, which may be of independent interest when it is difficult to estimate
N(B(t, h), εh). Let θ > 1 and m ≥ 2 which will be specified later, and a = a(x) =
1 + [m logθ (1/x)], b = b(x) = 1 + [logθ (1/x)]. Write k = (k1, . . . , kd) and use

the notation θk = (θk1, . . . , θkd ) and θk−1 = (θk1−1, . . . , θkd−1).
By using the Slepian lemma, we have

P

(
sup

t∈[0,1]d
Xt ≤ σd(x)

)

≥ P

(
sup

t∈[xθ−a,1]d
Xt ≤ σd(x)

) d∏
i=1

P

(
sup

t∈[0,1]d ,0≤ti<xθ−a

Xt ≤ σd(x)

)(5.10)

and

P

(
sup

t∈[xθ−a,1]d
Xt ≤ σd(x)

)

≥ P

(
max−a≤ki≤b,1≤i≤d

sup
θk−1x≤t≤θkx

Xt ≤ σd(x)

)

≥
db∏

l=−da

∏
k1+···+kd=l,−a≤ki≤b

P

(
sup

θk−1x≤t≤θkx

Xt ≤ σd(x)

)
.

Writing Xt − Xs = ∑d
i=1(Xt(i) − Xt(i−1) ), where t(i) = (t1, . . . , ti , si+1, . . . , sd),

we have

E(Xt − Xs)
2 ≤ d

d∑
i=1

E
(
Xt(i) − Xt(i−1)

)2

= d

d∑
i=1

σ 2(|ti − si|)
{ ∏

1≤j<i

σ 2(tj )

}{ ∏
i<j≤n

σ 2(sj )

}

≤ d2 max
i≤d

(
σ 2(|ti − si |)/(

σ 2(ti ) ∨ σ 2(si)
)) d∏

i=1

(
σ 2(ti) ∨ σ 2(si)

)
.

(5.11)

Since σ(h)/hα is nondecreasing and σ(h)/hβ is nonincreasing, σ(δh) ≤ δασ (h),
σ(�h) ≤ δβσ (h) for 0 < δ ≤ 1 ≤ �. Hence for 1 ≤ i ≤ d ,

sup
t∈[0,1]d ,0≤ti≤xθ−a

EX2
t ≤ σ 2(xθ−a)σ 2(d−1)(1)

≤ θ−2aαx−2dσ 2d(x) ≤ (1/4)σ 2d(x)
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for sufficient large m. Thus, by the Fernique (1964) inequality,

P

(
sup

t∈[0,1]d ,0≤ti≤xθ−a

Xt ≤ σd(x)

)
≥ e−1.(5.12)

It remains to show that

P

(
sup

θk−1x≤t≤θkx

Xt ≤ σd(x)

)
≥ e−1(5.13)

for all −da ≤ l ≤ db, −a ≤ ki ≤ b and k1 + · · · + kd = l.
Let sk = θkx. Following the proof of (5.4), we see that

P

(
sup

θk−1x≤t≤θkx

Xt ≤ 0
)

≥ P

(
Xsk < −1

4

d∏
i=1

σ
(
θki x

)) − P

(
sup

θk−1x≤t≤θkx

(
Xt − Xsk

) ≥ 1
4

d∏
i=1

σ(θki x)

)

≥ e−1 + 10−2 − P

(
sup

θk−1x≤t≤θkx

(
Xt − Xsk

) ≥ 1
4

d∏
i=1

σ(θki x)

)
.

By (5.11) and the Fernique inequality again, along the same line of proving (5.5),
we have

P

(
sup

θk−1x≤t≤θkx

(
Xt − Xsk

) ≥ 1
4

d∏
i=1

σ
(
θki x

))
< 10−2(5.14)

when θ > 1 is close to 1. This proves the left-hand side of (2.9).
To prove the right-hand side of (2.9), put

γ = min(α,1 − β), θ0 = 21/γ .

Let θ > θ0, L = [logθ (1/x)] and

sk = θkx1/d, k = (k1, . . . , kd), 1 ≤ ki ≤ L,

so that d(sk,0) ≥ θk1+···+kd x ≥ x/2. Similar to the arguments in (5.9), we have

∣∣Corr
(
Xsk ,Xsj

)∣∣ =
d∏

i=1

σ 2(θki x1/d) + σ 2(θji x1/d) − σ 2(|θki − θji |x1/d)

2σ(θki x1/d)σ (θji x1/d)

≤
d∏

i=1

min
(
1,2θ−|ki−ji |γ )

≤
d∏

i=1

(θ/θ0)
−|ki−ji |γ

= (θ/θ0)
−γ

∑d
i=1 |ki−ji |.

(5.15)
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Therefore, for any given k,

∑
1≤ j≤L

|Corr(Xk,Xj)| ≤ ∑
1≤ j≤L

(θ/θ0)
−γ

∑d
i=1 |ki−ji |

≤ 1 + d2d(θ0/θ)

(1 − θ0/θ)d
≤ 5/4

(5.16)

when θ is sufficiently large. Now the right-hand side of (2.9) follows from
Theorem 2.2.

PROOF OF THEOREM 3.1. It suffices to show that

lim inf
x↓0

logP(sup0≤t≤1 Bα(t) ≤ x)

log(1/x)
≥ −2cα/α(5.17)

and

lim sup
x↓0

logP(sup0≤t≤1 Bα(t) ≤ x)

log(1/x)
≤ −2cα/α.(5.18)

By the scaling property of the fractional Brownian motion, for any 0 < x < 1/2,

P

(
sup

0≤t≤(2/α) log(1/x)

Xα(t) ≤ 0
)

= P

(
sup

x2/α≤t≤1
Bα(t) ≤ 0

)

≤ P

(
sup

x2/α≤t≤1
Bα(t) ≤ x

)

≤ P(sup0<t≤1 Bα(t) ≤ x)

P(sup0<t≤x2/α Bα(t) ≤ x)

= P(sup0<t≤1 Bα(t) ≤ x)

P(sup0<t≤1 Bα(t) ≤ 1)
,

(5.19)

where we have used the Slepian lemma in the last inequality. Now (5.17) follows
from (3.6) and (5.19).

To prove (5.18), we consider two cases.
Case I. 1 ≤ α < 2. It is easy to see that, for t ≥ a,

E
(
Bα(t) − Bα(a)

)
Bα(a) ≥ 0.(5.20)
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Therefore, by the Slepian lemma,

P

(
sup

0≤t≤(2/α) log(1/x)

Xα(t) ≤ 0
)

=
(

sup
x2/α≤t≤1

Bα(t) ≤ 0
)

≥ P

(
sup

x2/α≤t≤1

(
Bα(t) − Bα(x2/α)

) ≤ x,Bα(x2/α) ≤ −x

)

≥ P

(
sup

x2/α≤t≤1

(
Bα(t) − Bα(x2/α)

) ≤ x

)
P

(
Bα(x2/α) ≤ −x

)

≥ P

(
sup

0<t≤1
Bα(t) ≤ x

)
P

(
Bα(1) ≤ −1

)
.

(5.21)

Hence (5.18) holds by (3.6).
Case II. 0 < α < 1. Let 0 < θ < 1 − α, and choose m = m(α, θ) > 2α/(2θ) such

that, for 0 ≤ y ≤ (1/m)2/α,

θ + α + θyα − θ(1 − y)α − α(1 − y)α−1 ≥ 0,(5.22)

(2θ + α) − (θ + α)yθ − θyθ+α + θyθ (1 − y)α + αyθ (1 − y)α−1 ≥ 0(5.23)

and

θ + α − θ(1 − y)α − α(1 − y)α−1 ≤ 0.(5.24)

The existence of m can be verified with the Taylor expansion.
For 0 < x < 1/m, put

b = x2/α, Y (t) = tθBα(t) − bθBα(b)

for t ≥ m2/αb. Then we have, for t ≥ m2/αb,

h(t) := 2tθEBα(t)Bα(b) = tθ
(
tα + bα − (t − b)α

)
and

h′(t) = (θ + α)tθ+α−1 + θbαtθ−1 − θtθ−1(t − b)α − αtθ (t − b)α−1

= tθ+α−1(θ + α + θ(b/t)α − θ(1 − b/t)α − α(1 − b/t)α−1)
≥ 0

by using (5.22). Thus, for t ≥ m2/αb and m > 2α/(2θ),

E
(
tθBα(t) − bθBα(b)

)
Bα(b)

≥ E
(
m2θ/αbθBα(m2/αb) − bθBα(b)

)
Bα(b) ≥ 0.

(5.25)
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Next, for t ≥ m2/αb, let

t∗ = (
EY 2(t)

)1/α = (
t2θ+α + b2θ+α − tθ bθ (

tα + bα − (t − b)α
))1/α

.

Then for t ≥ s ≥ m2/αb, we have t∗ ≥ s∗ by using (5.23) to show dt∗/dt ≥ 0. And
furthermore, for t ≥ s ≥ m2/αb,

E
(
Y (t)Y (s)

) = 1
2

(
EY 2(t) + EY 2(s) − E

(
Y (t) − Y (s)

)2)
= 1

2 (t∗α + s∗α − |t∗ − s∗|α)

+ 1
2

(|t∗ − s∗|α − t2θ+α − s2θ+α + tθ sθ
(
tα + sα − (t − s)α

))
= EBα(t∗)Bα(s∗) + g(t, s)/2,

where

g(t, s) := |t∗ − s∗|α − t2θ+α − s2θ+α + tθ sθ
(
tα + sα − (t − s)α

)
≥ t∗α − s∗α − t2θ+α − s2θ+α + tθ sθ sα

= sθbθ (
sα + bα − (s − b)α

) − tθ bθ (
tα + bα − (t − b)α

) + tθ sθ+α

≥ sθbθ (
sα − (s − b)α

) − tθ bθ (
tα − (t − b)α

) − tθ bθbα + tθ sθ+α

≥ sθbθ (
sα − (s − b)α

) − tθ bθ (
tα − (t − b)α

)
≥ 0

since the function tθ (tα −(t −b)α) is decreasing by (5.24). Consequently, we have

E
(
Y (t)Y (s)

) ≥ EBα(t∗)Bα(s∗) for t ≥ s ≥ m2/αb.(5.26)

Following the proof of Case I and by using (5.25), (5.26) and the Slepian lemma
again, we obtain

P

(
sup

0≤t≤(2/α) log(1/(mx))

Xα(t) ≤ 0
)

= P

(
sup

(mx)2/α≤t≤1
tθBα(t) ≤ 0

)

≥ P

(
sup

m2/αb≤t≤1
Y (t) ≤ xbθ , bθBα(b) ≤ −xbθ

)

≥ P

(
sup

m2/αb≤t≤1
Y (t) ≤ xbθ

PBα(b) ≤ −x

)

≥ P

(
sup

m2/αb≤t≤1
Bα(t∗) ≤ xbθ

)
P

(
Bα(x2/α) ≤ −x

)

≥ P

(
sup

0≤t≤1
Bα(t) ≤ xbθ

)
P

(
Bα(1) ≤ −1

)
,
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where we used the fact that 1∗ ≤ 1 in the last inequality. Hence

lim sup
x↓0

log P(sup0≤t≤1 Bα(t) ≤ x)

log(1/x)

= lim sup
x↓0

log P(sup0≤t≤1 Bα(t) ≤ xbθ)

log(1/(xbθ))

≤ lim sup
x↓0

logP(sup0≤t≤(2/α) log(1/(mx)) Xα(t) ≤ 0)

log(1/(xbθ))

= 2cα

α + 2θ
.

Letting θ → 0 yields (5.18), as desired. Finally, we have cα = 1 − α/2 based on
the main results in Molchan (1999, 2000). �

PROOF OF PROPOSITION 3.3. Recall that Y (t) has a scaling property, that is,
{Y (at), t > 0} and {a1/2Y (t), t > 0} have the same distribution. Thus, following
the proof of (5.17),

lim inf
x↓0

log P(sup0≤t≤1 Y (t) ≤ x)

log(1/x)
≥ −b/2.

We see that

E
(
Y (t) − Y (a)

)
Y (a) = (t − a)a

t + a
≥ 0

for t ≥ a. Similar to the proof of (5.18) in Case I, we have

lim sup
x↓0

logP(sup0≤t≤1 Y (t) ≤ x)

log(1/x)
≤ −b/2.

To show b < 1.29, we need the following result of Slepian (1962). For any
stationary Gaussian process Zt with continuous covariance r(τ ) = EZtZt+τ ∼
1 − τ 2/2 + o(τ 2) as τ → 0,

P

(
sup

0≤t≤T

Zt ≤ 0
)

≥ 3

8
− T

4π
+ 1

4π
arcsin(r(T )).(5.27)

This bound goes negative for relatively small values of T (at least before T = 2π ).
So we have to use (3.3) to handle large T . Now for Xt given in (1.7), the
process X2t satisfies the condition for (5.27) with r(T ) = 1/ cosh(T ) ≥ 0. Hence
for T0 = 3.1 and T = 2nT0 large, we have from (3.3)

P

(
sup

0≤t≤2nT0

Xt ≤ 0
)

= P

(
sup

0≤t≤nT0

X2t ≤ 0

)
≥ P

(
sup

0≤t≤T0

X2t ≤ 0
)n

.
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Thus from (1.6) and (5.27),

b = −4 lim
n→∞

1

2nT0
log P

(
sup

0≤t≤2nT0

Xt ≤ 0
)

≤ − 2

T0
logP

(
sup

0≤t≤T0

X2t ≤ 0
)

≤ − 2

T0
log

(
3

8
− T0

4π
+ 1

4π
arcsin

(
1/ cosh(T0)

))

< 1.29.

This completes the proof of Proposition 3.3. �

PROOF OF THEOREM 4.1. Equation (4.2) follows directly from the proof of
Theorem 3.1 with minor modification. To prove the right-hand side of (4.3), it
suffices to show that

P

(
sup

0≤t≤1
max

1≤k≤n

(
Bk(t) + B0(t)

) ≤ x

)
≥ rn,αxrα logn,(5.28)

where rn,α and rα are some positive constants, and Bi = Bi,α for 0 ≤ i ≤ k for the
sake of statement simplicity.

Let m be an integer such that

1 ≤ xemα/2 ≤ eα/2.(5.29)

Then, by the Slepian lemma,

P

(
max

1≤k≤n
sup

0≤t≤1

(
Bk(t) + B0(t)

)
< x

)

≥ P

(
sup

0≤t≤e−m

max
1≤k≤n

(
Bk(t) + B0(t)

)
< x

)

×
m∏

i=1

P

(
sup

e−i≤t≤e−i+1
max

1≤k≤n

(
Bk(t) + B0(t)

)
< x

)

≥ P

(
sup

0≤t≤1
max

1≤k≤n

(
Bk(t) + B0(t)

)
< xemα/2

)

×
m∏

i=1

P

(
sup

e−i≤t≤e−i+1
max

1≤k≤n

(
Bk(t) + B0(t)

)
< 0

)

≥ P

(
sup

0≤t≤1
max

1≤k≤n

(
Bk(t) + B0(t)

)
< 1

)

×
{
P

(
sup

1≤t≤e

max
1≤k≤n

(
Bk(t) + B0(t)

)
< 0

)}m

.

(5.30)
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Observe that, for a > 0,

P

(
sup

1≤t≤e

max
1≤k≤n

(
Bk(t) + B0(t)

)
< 0

)

≥ P

(
sup

1≤t≤e

B0(t) ≤ −a, max
1≤k≤n

sup
1≤t≤e

Bk(t) < a

)

= P

(
sup

1≤t≤e

B0(t) ≤ −a

)
P

(
sup

1≤t≤e

B0(t) < a

)n

.

It is easy to see that

E
((

B0(t) − (1/2)B0(1)
)
B0(1)

) ≥ 0

for 1 ≤ t ≤ e. Hence, by the Slepian lemma,

P

(
sup

1≤t≤e

B0(t) ≤ −a

)

≥ P

(
sup

1≤t≤e

B0(t) − (1/2)B0(1) ≤ a,B0(1) ≤ −4a

)

≥ P

(
sup

1≤t≤e

B0(t) − (1/2)B0(1) ≤ a

)
P

(
B0(1) ≤ −4a

)
.

By the Fernique inequality, there exists Kα > 0 such that

P

(
sup

1≤t≤e

B0(t) − (1/2)B0(1) ≤ a

)
≥ 1 − Kα exp

(−a2/(2eα)
)
,

P

(
sup

1≤t≤e

B0(t) ≤ a

)
≥ 1 − Kα exp

(−a2/(2eα)
)

and

P
(
Bα(1) ≤ −4a

) ≥ exp(−16a2).

Now letting a2 = 2eα log(Kαn) yields

P

(
sup

1≤t≤e

max
1≤k≤n

(
Bk(t) + B0(t)

)
< 0

)
≥ exp

(−2eα log(Kαn)
)

and hence(
P

(
sup

1≤t≤e

max
1≤k≤n

(
Bk(t) + B0(t)

)
< 0

))m

≥ exp
(−m2eα log(Kαn)

) ≥ xrα logn

for some rα > 0 and for all 0 < x < 1/2. This proves (5.28). �
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