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We investigate a scaling limit of gradient stochastic dynamics associated
with Gibbs states in classical continuous systems on ]Rd, d > 1. The aim is
to derive macroscopic quantities from a given microscopic or mesoscopic
system. The scaling we consider has been investigated by Brox (in 1980),
Rost (in 1981), Spohn (in 1986) and Guo and Papanicolaou (in 1985),
under the assumption that the underlying potential is in Cg and positive. We
prove that the Dirichlet forms of the scaled stochastic dynamics converge
on a core of functions to the Dirichlet form of a generalized Ornstein—
Uhlenbeck process. The proof is based on the analysis and geometry on
the configuration space which was developed by Albeverio, Kondratiev and
Rockner (in 1998), and works for general Gibbs measures of Ruelle type.
Hence, the underlying potential may have a singularity at the origin, only has
to be bounded from below and may not be compactly supported. Therefore,
singular interactions of physical interest are covered, as, for example, the
one given by the Lennard—Jones potential, which is studied in the theory
of fluids. Furthermore, using the Lyons—Zheng decomposition we give a
simple proof for the tightness of the scaled processes. We also prove that the
corresponding generators, however, do not converge in the L2%-sense. This
settles a conjecture formulated by Brox, by Rost and by Spohn.

1. Introduction. The stochastic dynamics (X(#));>¢ of a classical continuous
system is an infinite dimensional diffusion process having a Gibbs measure u
(e.g., of the type studied by Ruelle [31]), as an invariant measure. Physically,
it describes the stochastic dynamics of Brownian particles which are interacting
via the gradient of a pair potential ¢. Since each particle can move through
each position in space, the system is called continuous and is used for modelling
gases and fluids. For realistic models which can be described by these stochastic
dynamics (e.g., suspensions), we refer to [34].

Since these dynamics are stochastic, they have to be interpreted as mesoscopic
processes. The aim of analyzing scaling limits, in general, is to derive from
microscopic or mesoscopic systems macroscopic statements and quantities. The
type of scaling to study depends on which features of a given system one is
interested in (see, e.g., [4, 11, 35]).
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The scaling we consider in this paper has been investigated in [4, 29].
In his doctoral dissertation Brox [4] has given some heuristic arguments for
nonconvergence in law of the scaled process and has conjectured that there
is no limiting Markov process. However, assuming the convergence of the
generators of the scaled stochastic dynamics averaged over time (cf. Conjecture 6.5
below), Rost [29] has given some heuristic arguments for the existence of a
limiting generalized Ornstein—Uhlenbeck process, which, of course, contradicts
the statement of Brox. A fundamental and celebrated paper on this problem is
due to Spohn [34]. Assuming that the underlying potential is smooth, compactly
supported and positive, the author describes a proof of Conjecture 6.5 within
the proof of his main theorem (see, however, the remark on page 4 of [34],
and Proposition 2 therein, concerning the restriction d < 3). Another approach
has been proposed in [8]. The idea of Guo and Papanicolaou has been to prove
convergence of the corresponding resolvent. As remarked by themselves, at that
time the authors did not have an appropriate infinite dimensional analysis and
geometry at their disposal, and therefore their considerations have been on a
nonrigorous level.

After these contributions, for a long time there was no progress in this problem.
Recently, however, some new techniques have been introduced. In [1, 2] an infinite
dimensional analysis and geometry on the configuration space was developed. In
this paper we shall make use of these concepts to tackle once more the problem
described above.

The stochastic dynamics (X(¢));>0 of a classical continuous system takes values
in the configuration space

F:={yCRd||yﬂK|<oof0ranycompactKC}Rd}

and informally solves the following infinite system of stochastic differential
equations:

dx(y=—B Y Vo) —y®))dt+~v2dB (1),  x(t)eX(),
(1) y(OHeX(),
y(0)F#x(t)
X0 =v, y €T,

where (B") ¢, is a sequence of independent Brownian motions. The study of such
diffusions has been initiated by Lang [14] (see also [33]), who considered the case
¢ € CS (R?) using finite-dimensional approximations and stochastic differential
equations. More singular ¢, which are of particular interest in physics (as, e.g.,
the Lennard—Jones potential), have been treated by Osada [25] and Yoshida [37]
(see also [5, 36] for the hard core case). Osada and Yoshida were the first to use
Dirichlet forms for the construction of such processes. However, they could not
write down the corresponding generators or martingale problems explicitly; hence
they could not prove that their processes actually solve (1) weakly. This, however,
was proved in [2] by showing an integration-by-parts formula for the respective
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Gibbs measures. Thus the latter work became the starting point of this paper.
In [2], Dirichlet forms also were used and all constructions were designed to work
particularly for singular potentials of the above-mentioned type; see Theorem 3.2.
Additionally, and this is essential for our considerations, an explicit expression for
the corresponding generator and martingale problem was provided, which shows
that the process in [2] indeed solves (1) in the weak sense.

The scaled process (X, (¢));>0 studied in this paper is defined by

X (1) = Soute (Sine (X(e721))), >0, £>0,

and we are interested in the scaling limit for ¢ — 0. The first scaling Si, . scales
the position of the particles inside the configuration space as follows:

sy Sine(y) ={ex|xey}el, e>0.

Hence, for small ¢ > 0, this scaling concentrates the particles toward the origin.
The second scaling Soyt,. leads us out of the configuration space and is given by

1
I'sy > Soue(y) = 8d/2()’ - P,gg) dx) €D,

where D’ is the dual space of D := Cg° (RY). In the second scaling we first
center the configuration y by subtracting the first correlation measure ,0/%15) dx of
the Gibbs measure i, := Sf;, 1. Furthermore, we scale the mass of the particles
by £4/2 to avoid divergence of the total mass at the origin as & — 0.

We start with constructing the Dirichlet form &, the generator H, and the
semigroup (7 ;);>0 associated with (X, (¢));>0. These objects are images of the
Dirichlet form, generator and semigroup, respectively, which are associated with
the original stochastic dynamics (X(#));>0; see Theorem 4.1.

The first convergence we show is the following (see Theorem 5.3). We prove
that

(2) lim &.(F,G) = &y, (F, G),
e—>0

for all smooth cylinder functions F,G € ¥ C°(D, D’). The limit Dirichlet
form &y, is defined on L2(D’, v,) with v, being white noise, and associated
with a generalized Ornstein—Uhlenbeck process (X(#));>0 solving the stochastic
differential equation

ps (B, 1)
3) dX(t,x) = = AX(t, ) dt +,/2p{" (B. 1) dW (2, x),
Xo(B)

where (W(t)),>0 is a Brownian motion in £’ with covariance operator —A. The

coefficient pg (B, 1)/ x(B) is called the bulk diffusion coefficient and § is the
inverse temperature. The convergence (2) determines the limit process uniquely
[see Remark 5.4(i)] and requires only very weak assumptions. The interaction
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potential ¢ only has to be stable (S) and we have to assume the low activity high
temperature regime (see below for precise definitions). A basic ingredient in the
proof is the convergence of the image measures . := g .S, 14 to the Gaussian
white noise measure v, as ¢ — 0; see Theorem 5.1. The latter fact has been proved
by Brox [4].

The convergence in terms of the Dirichlet forms, however, up to this point has no
probabilistic interpretation. Hence, we also study convergence in law of the scaled
processes. By P? we denote the law of the scaled equilibrium processes, that is,
the law of the scaled process starting with a distribution equal to the equilibrium
measure .. Then, in Theorem 6.1, we prove that the family (P?)..¢ is tight.
This has been shown before by Brox [4] and Spohn [34], for smooth compactly
supported potentials. Our proof, again, works under quite weak assumptions on
the potential. We only need conditions which ensure the existence of the original
stochastic process and have to assume the low activity high temperature regime.
In the proof we use the well-known Lyons—Zheng decomposition [18, 19] of the
scaled process and the Burkholder—Davies—Gundy inequalities to establish the
required estimate of the increments. Since the state space of the scaled process
is a space of distributions, we first prove tightness in a weak sense. Then, via some
Hilbert—Schmidt embeddings, we find a negative, weighted Sobolev spaces #_;,
as state space such that the family (P?).-¢ is tight on C([0, 00), #_,,).

It remains to prove that all accumulation points coincide with the generalized
Ornstein—Uhlenbeck process (X());>0 above. A well-known method to identify
the limit is based on considering the associated martingale problem. More
precisely, if we could prove that all accumulation points of (P?)..q satisfy
the martingale problem for the generator H associated with (3) with initial
condition v, then a (slight modification of a) uniqueness result of Holley and
Stroock [9] implies that all these accumulation points coincide.

The obvious first idea to prove that all limit points solve the martingale problem
for H is to try to prove strong convergence of H, — H as ¢ — 0. In [4, 29, 34] it
has, however, been conjectured that, in general, the difference

I(H = HOF 2., F e FCE(D, D,

does not tend to zero as ¢ — 0. In Theorem 6.3 we prove that this conjecture is
indeed true. The proof is quite an elaborate task and is done via a (mathematically
rigorous) high temperature expansion. A basic tool for this is provided by
Theorem A.4, where we derive explicit formulas for the derivative of the
correlation functions with respect to the inverse temperature 8 using the so-called
K -transform from [12], and by Theorem B.1, where we prove a coercivity identity
for Gibbs measures.

It turns out that for the above-described identification of the accumulation
points of (P?).-, however, a weaker convergence of the generators is sufficient.
In Theorem 6.7 we prove convergence in law under the assumption that
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Conjecture 6.5 is true, that is, under the assumption that the generators converge
in time average.

To complete the program also from a purely probabilistic point of view, it
remains to prove Conjecture 6.5 in physically relevant models. This will be the
subject of future work.

The progress achieved in this paper may be summarized by the following core
results:

1. Convergence of Dirichlet forms is shown; see Remark 5.4.

2. The tightness result as in [4, 34] is generalized; see Remark 6.2.

3. Conjecture on nonconvergence of generators is proved.

4. A mathematically rigorous high temperature expansion of all correlation
functionals is developed (up to second orderin 8 =1/T).

5. All above results apply to physically relevant potentials; in particular, singular-
ities at the origin, nontrivial negative part and infinite range are allowed.

Hypotheses on the potential are weakened not for the sake of generality, but in
order to cover the physically relevant potentials (as, e.g., Lennard—Jones potential).

2. Gibbs states of classical continuous systems.

2.1. Configuration space and Poisson measure. Let RY, d > 1, be equipped
with the norm | - |[ga given by the Euclidean scalar product (-, -)ge. By BRY) we
denote the corresponding Borel o -algebra. O.(R?) denotes the system of all open
sets in R?, which have compact closure. The Lebesgue measure on the measurable
space (R, B(R?)) we denote by dx.

The configuration space T’ over R? is defined by

I={yc RY | |y N K| < oo for any compact K C ]Rd}.
Here |A| denotes the cardinality of a set A. Via the identification of y € I" with
ery Ex €M p(Rd), where &, denotes the Dirac measure in x € R, " can be

considered as a subset of the set M, (R%) of all positive Radon measures on R4,
Hence I' can be topologized by the vague topology, that is, the topology generated
by maps

yi (fyhi= [ F@dye =Y £,
R4 xXey
where f € Co(RY), the set of continuous functions on RY with compact support.
We denote by B(I") the corresponding Borel o -algebra.
For a given z > 0 (activity parameter), let 7, denote the Poisson measure
on (I', B(I')) with intensity measure zdx. This measure is characterized via its
Fourier transform

[ expiits.dmn =exp(z [ (expifcen ~dx).  feo.

where D := C{° (RY), the set of smooth functions on R¢ with compact support.
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2.2. Gibbs measures in the low activity high temperature regime. Let ¢ be a
symmetric pair potential, that is, a measurable function ¢ :R? — R U {oo} such

that ¢ (x) = ¢(—x). For A € 0. (R?) the conditional energy Eﬁ I - R U {o0}
with empty boundary condition is defined by

E )= Y ¢x—»=ESm),
{x,y}Cya

where yA :=y N A and the sum over the empty set is defined to be zero.
Foreveryr = (ry,...,rg) € 74 we define a cube

Or={xeR!|r—1/2<x; <ri+1/2}.

These cubes form a partition of R?. For any y € I' we set y, := Y0,, I € 74,
Additionally, we introduce for n € N a cube A, with side length 2n — 1 centered
at the origin in R9,

Let us recall some standard assumptions from statistical mechanics. For our
results we have to require some of the following conditions:

(SS) (Superstability). There exist A(¢) > 0, B(¢) > 0 such that, if y = y,,
for some n € N, then

ES )= Y (ADIwl* = B@)Iwl).

rezd
(SS) obviously implies:
(S) (Stability). For any A € COC(Rd) and for all y € I', we have
E{(y) = —B@)lyal

A consequence of (S), in turn, is, of course, that ¢ is bounded from below. For
B >0,z >0, let us define

C(B¢,2) :=exp(2BB(¢)) /Rd |exp(—Be(x)) — 1|zdx.

We also need the following:

(UI) (Uniform integrability). We have
C(Bp,z) <exp(—1).

For a given potential ¢ the set of pairs (8, z) such that condition (UI) holds
is called the low activity high temperature (LA-HT) regime; see [23, 30]; (UI) is
stronger than integrability (1) [i.e., C(B¢, z) < oo], which is also called regularity;
see, for example, [31].
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(LR) (Lower regularity). There exists a decreasing positive function ¢ : N —
R4 such that

S a(lirl) < oo
rezd
and, for any A’, A” which are finite unions of cubes of the form Q, and disjoint,

Wey 1y == > adlr =" Dy v

rr’ezd

’

provided y" =y, y" = y,,. Here
Wl ly= Y =)
xey/’yey//

is the interaction energy and || - || denotes the maximum norm on R4,

On (T, B(I")) we consider the finite volume Gibbs measures i in A € O, (RY)
with empty boundary condition:

1
dua(y) = Zr exp(—BES (ya)) dm (y),

where 8 > 0 is the inverse temperature and

Zn = /F exp(—BE? (yn)) d.(y)

is the partition function. Using (S) one easily proves that it is finite. In, for example,
[22, 23] it has been proved that in the LA-HT regime the weak limit
4) lim pp=p

A JRd

exists. Furthermore, it can be shown that u is a Gibbs measure; see [13, 32]. The
measure u in (4) we call the Gibbs measure corresponding to (¢, 8, z) and the
construction with empty boundary condition.

2.3. K-transform and correlation functions. Next, we recall the definition of
correlation functions using the concept of the so-called K -transform (see, e.g., [12,
15-17])).

Denote by Iy the space of finite configurations over R?:

o0
Fo:=| |y, r1Q:={2), T :={ncR|m=n}, neN
n=0

Let R = {(xq, ..., x,) € R&" | x; # x;j fori # j} and let $" denote the group
of all permutations of {1, ..., n}. Through the natural bijection

(5) RExn /8" o T



SCALING LIMIT OF STOCHASTIC DYNAMICS 1501

one defines a topology on F(()"). The space I'g is equipped then with the topology
of disjoint union. Let 8B (I'g) denote the Borel o -algebra on I'g.

A B(I'p)-measurable function G:I'g — R is said to have bounded support
if there exist A € O.(R?) and N € N such that supp(G) C |_|,],V:0 F(()fll)\, where
o' ={n C Al Inl=n}.

Forany y € I'let }, ¢, denote the summation overall n C y such that || < oco.
For a function G :I'g — R, the K -transform of G is defined by

(6) (KG)(y):=)_ G(n)

ney

for each y € I such that at least one of the series }, <, Gt (n) or > ey G~ ()
converges, where G* := max{0, G} and G~ := — min{0, G}.

Let u be a probability measure on (I', B(I')). The correlation measure
corresponding to w is defined by

pu(A) = /F (K1) du(y),  AeBTo):

Py is a measure on (I'g, B(I'p)) (see [12] for details, in particular, measurability
issues).
Let G € L' (T, B(T'o), p). Then [KGll11¢ < IKIGIL1 (0 = GllL1 (s,

hence KG € LY(T", B(I), w) and KG(y) is for p-a.e. y € I' absolutely conver-
gent. Moreover, then obviously

) /F G dpu(n) = /F (KG)(y)du(y);

see [12, 16, 17].
The Lebesgue—Poisson measure A on (I'g, 8(I"g)) with activity parameter z > 0
is defined by

o0 Zn
Ay =8y + Z ;dx(@”,
n=1""

where dx®" is defined via the bijection (5).

For the Gibbs measure 1 in the LA-HT regime corresponding to ¢ satisfy-
ing (S) and the construction with empty boundary condition, the correlation mea-
sure p, is absolutely continuous with respect to the Lebesgue—Poisson measure
(see, e.g., [23, 30]). Its Radon—-Nikodym derivative

dpy
=—(), ey,
P () dx. () nelo
w.r.t. A, we denote by the same symbol, and the functions

®) @) = pp((xn ), X €RY i i #£
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are called the nth order correlation functions of the measure . Furthermore, the
correlation functions can be expressed as functions of the underlying potential ¢,
inverse temperature B and activity z, that is, p,, = pg (B, z) (see, e.g., [23, 30]).
Hence, due to the translation invariance of the pair interaction, the correlation
functions as well as the Gibbs measure p are translation invariant. In particular,
,Oq(bl)(ﬁ, z) does not depend on x| € R4,

Additionally, for these functions the so-called Ruelle bound holds: for fixed

B =0, z > 0, there exists a constant £ > 0 such that for all » and xq, ..., x, € R4,
x; # x;j fori # j, we have
) S (Boz.x1, . ) < E"

(see [30]). Using this bound one gets, in particular, that all local moments of u are
finite:

(10) /lyAlnd,u,(y) <00  VneN, Ae0O.(RY.
r

3. Dirichlet forms, their generators and corresponding stochastic dynam-
ics. Here we recall the analysis and geometry on configuration space developed
in[1, 2].

Let T, (R?) = R? denote the tangent space to R? at a point x € R?. The tangent
space to I" at a point y € I' is defined as the Hilbert space

T,(I):= LR - TR, y) = P I (RY).
X€y
Thus, each V(y) € T),(I') has the form V(y) = (V(y, x))xey, Where V(y,x) €
T, (R%), and

IV OOF, @ = D IV O, @ay = 2 IV @0 -

xey Xey

Let y € T" and x € y. We denote by O, , an arbitrary open neighborhood of x
in X such that 9, , N (y \ {x}) = &. Now, for a function F:I' — R, y € I" and
x € y, we define a function Fy(y,-): 0, » — R by

Oy 3y F(y,y) =F(y —&+¢) eR

We say that a function F:I" — R is differentiable at y € I' if, for each x € y,
the function F,(y, -) is differentiable at x and

VIF(y) = (ViF ()¢, € T, (D),
where
Vi F(y):= vax(yv y)‘y:x‘

Evidently, this definition is independent of the choice of the set O, .. We
call VI' F(y) the gradient of F aty eT.
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We define a set of smooth cylinder functions ¥ Cy°(D,T") as the set of all
functions on I" of the form

(11) Yy F)=gr({f1,¥)s-- s (N, V),

where fi,..., fy € D and gF € CgO(RN). Clearly, £ C3°(D,TI') is dense in
L?(u), p > 1. Any function F of the form (11) is differentiable at each point
y €TI', and its gradient is given by

N
(12) (V'F)y.x)=>03;8r(fi.¥)..... (fn.¥yDVSfi(x).,  yeTl, xey,
j=1

where 0; denotes the partial derivative w.r.t. the jth variable. For F,G €
FCP(D, T) we define

65(F.G)i= [ (V'F(). V"G, o) ditr).

Gibbs measures p in the LA-HT regime corresponding to stable potentials
and the construction with empty boundary condition have all local moments
finite; see (10). Thus, for such measures, with the help of (12) we have
(VEF(y), V' G(y))1,(r) € L' (1). Furthermore, the gradient respects u-classes
FCP (D, I determined by FC.°(D,TI") (see, e.g., [21, 27]. Hence, &r,
FCP(D,IN)) is a densely defined, positive definite, symmetric bilinear form
on Lz(u).

To ensure closability of this bilinear form we have to assume further properties
of the potential ¢:

(D) (Differentiability). The function exp(—¢) is weakly differentiable on R¢,
¢ is weakly differentiable on R?\ {0} and the weak gradient V¢ (which is a locally
dx-integrable function on R4 \ {0}), considered as a dx-a.e. defined function
on RY, satisfies

V¢ e LY (R?, exp(—¢) dx) N L*(RY, exp(—¢) dx).
Note that, for many typical potentials in statistical physics, we have ¢ €
C® (R4 \ {0}). For such “outside the origin regular” potentials, condition (D)
nevertheless does not exclude a singularity at the point 0 € R?.

Before we can formulate the next assumption we need to define the set Sy, of
tempered configurations:

oo
Seo =) Sn.
n=1

where

S, = {y er ‘ DAY R VN eV Al VNEN}.
reAynzé
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(LS) (Local summability). Forall A € O, (R?) and all Y € Scos
Jim > Ve —y)

YEYAn\A
exists in Llloc(A, dx).
Assuming (¢, B, z) satisfies (SS), (UD), (LR), (D) and (LS), and that w is the
corresponding Gibbs measure constructed with empty boundary condition, one can

prove an integration-by-parts formula for the gradient V! (see [2], Theorem 4.3).
Utilizing this formula we obtain, for F, G € ¥ Cy°(D, ),

(13) &, (F, G):/ HFGdy,
r

where
r
H, F(y)

N
== > 008 f1.¥)s - (SN YV fi. VFDRas V)
i,j=1

N
= 2 958r(fr.y)s o (fNa )

J=l1

(14)

X<<Afj7)’)_,3 > (W)(x—y),ij(X)—ij(y))Rd>

{x,ylcy
for p-ae., y €T and F € FCZ(D,T) as in (11). Moreover, H\ F € L*(n)

for each F € £ C3°(D,T') (see [2], Lemma 4.1). Utilizing (13), in [2], Propo-
sition 5.1, the following statement has been proven.

PROPOSITION 3.1. Assume that (¢, B, z) fulfill conditions (SS), (UI), (LR),
(D) and (LS), and let pu be the corresponding Gibbs measure constructed with
empty boundary condition. Then the bilinear form (81, ¥ Cyo (D, 1) is closable

on Lz(u) and its closure (E, D(Spl: )) is a symmetric Dirichlet form which is

conservative. Its generator is the Friedrichs extension of HY, which will be
denoted by the same symbol.

Of course, H /}: generates a strongly continuous contraction semigroup
M. r
T :=exp(—tH, ), t>0.

The existence of the diffusion process corresponding to (& I D(SIE )) was shown
in [2], Theorem 5...2, and [21], Theorem 4.13. For all d > 1, it lives on the
bigger state space I" consisting of all integer-valued Radon measures on RY (see,
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e.g., [10]). For d > 2 in [28], Corollary 1, the authors have proven that the set
I'/Tis € lﬂ—exceptlonal Thus, the associated diffusion process can be restricted
to a process on I'. For simplicity of notation, we exclude the case d = 1 in what
follows. However, all our further considerations also work in that case.

THEOREM 3.2. Let (¢, B, z) satisfy the same conditions as in Proposition 3.1
and let u be the corresponding Gibbs measure constructed with empty boundary
condition. Then:

(i) There exists a conservative diffusion process (i.e., a conservative strong
Markov process with continuous sample paths)

M = (2, F, (F,)1>0, (0120, X(1))1=0, (P})er)

on I which is properly associated with &l D(SE)); that is, for all (u-versions)
of F € LZ(F, w) and all t > 0, the function

y s plt, F)(y) 1= /Q F(X()dP,,  yeT.

isan & /5 -quasicontinuous version of T/* F. The process M is up to ji-equivalence
unique, has ® as an invariant measure and is called microscopic stochastic
dynamics.

(1) The diffusion process M is up to p-equivalence the unique diffusion
process having ( as invariant measure and solving the martingale problem for
(—HY . D(H))); that is, for all G € D(H},),

t
GX@) - GXO) + [ HIGX@)ds, 120,
0
is an E-martingale under P, (hence starting in y) for & /5 -q.a.y el.

In the above theorem M is canonical, that is, Q = C([0, c0) — I'), X(¢)(§) =
&(t), & € Q. The filtration (ﬁt)tZO is the natural “minimum completed admissible
filtration” (cf. [6], Chapter. A.2, or [20], Chapter IV) obtained from o {{ f, X(s)) |
O<s<t fedD}t=>0. F = Foo = \/,e[o’oo) ﬁ, is the smallest o -algebra
containing all ﬁ‘, and (®;);>¢ are the corresponding natural time shifts. For a
detailed discussion of these objects and the notion of quasicontinuity we refer
to [20]. The second part of the above theorem was proved in [2], Theorem 5.3.

REMARK 3.3. Let us consider the diffusion process (X(#));>¢ provided by
Theorem 3.2. In (14) we have an explicit formula for the action of the associated
generator —HIE on smooth cylinder functions. Utilizing an extension of Itd’s
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formula to this infinite dimensional situation on a heuristic level we find the
associated infinite system of stochastic differential equations

dx(t)y=-8 Z V¢(x(t) —y(t))dt+«/§de(t), x(t) € X(1),
(15) y(0eX(@),
Y(O)F#x(t)
X(0) =v, yerl,

where (B*),=x0)ex(0) 15 a sequence of independent Brownian motions. Theo-
rem 3.2(ii) implies that the process ((X(7));>0, P, ) solves the infinite system (15)
in the sense of the associated martingale problem for 8/5 -q.a. y € I as a starting
point.

4. Scaling of stochastic dynamics and associated Dirichlet form. We
perform the scaling of the process (X(¢));>0 in two steps.

First scaling. We scale the position of the particles inside the configuration
space as follows:

sy Sine(y)={ex|xey}eTl, e >0;

that is, for f € D, the scaling is given through ( f, Sin ¢ (¥)) = ery f(ex). Obvi-
ously, Sin,c is a homeomorphism on I'. From now on we assume that & corresponds
to (¢, B, 1), B > 0, and the construction with empty boundary condition. Let us de-
fine the image measure i, := S{‘;L oM. This measure is also defined on (I", B(I"))
and it is easy to check that it is the Gibbs measure corresponding to (¢, B, ¢~%)
and the construction with empty boundary condition, where ¢, := ¢ (¢~!). Fur-
thermore, since C (B¢, e =C (B, 1), recall (UI), the measure fi. is in the
LA-HT regime if and only if this is true for u.

Second scaling. This scaling leads us out of the configuration space and is
given by

1 — —
D3y > Soue(y) i=e"?(y — pg,) (B, 6™ )e ™" dx) €T,

where I'; 1= Sour.e(I') C D', ¢ > 0, D’ is the topological dual of D (where both
D and D’ are equipped with their respective usual locally convex topology).
We consider I'; as a topological subspace of D’, thus I'; is equipped with the
corresponding Borel o -algebra. Obviously, Souts : I’ = I'¢ is continuous, hence
Borel-measurable. Since it is also one-to-one and since both I' and D’ are
standard measurable spaces, it follows by [26], Chapter V, Theorem 2.4, that
I, is a Borel subset of £’ and that S(;l{,g :I'e — T is also Borel-measurable. The

function ,oéi) (B, e%) is the first correlation function corresponding to the Gibbs
measure fLg, that is,

[, r@n b e e tax = [(£.y)diey) ¥ € Co®.
Rd r
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Applied to a test function f € D, the second scaling gives

(16) (f»Sout,g(J/))ZSd/z(Zf(x) il (Boe e / f(x)dx)

xXey

where (-,-) denotes the dual paring between D and D’. Here we assume the
LA-HT regime. So, as mentioned before, ,0(1)(,3 1) is a constant, and thus by

definition of i, ,oéi) B, ¢~9) is also a constant; see Section 2.3. Obviously, the
random variable (16) is centered w.r.t. the measure [i,.

Scaled process. The scaled process of interest is
Xe (1) 1= Soute (Sin,e X(e7%1)), 120, £>0.

Associated Dirichlet form. Next for each ¢ > 0 we construct a Dirichlet form
&, such that (X, (¢));>¢ 1s the unique process which is properly associated with &;.

Let fte 1= Sy e Sin.e 4 = Sout.efte- Then we define a unitary mapping Sout.e :
L?(Ty, e) — L*(T, i) by defining 5out,8F to be the [i.-class represented by
Fo Sout,e for any p.-version Fof FelL? (¢, ne). Using this mapping we define
a bilinear form (&;, D(&;)) as the image bilinear form of (8 I D(8 I )) under the
mapping Sout,¢:

a7 &:(F,G) =&} (Sout.c F, Bout.c G), F,G € D(&),

where D(&;) .= 50ut eD(é’F ). Let FC°(D,T'e) be defined analogously to the
space ¥ Cg°(D,T'). Then, 0bv10usly, FCP(D, Te) C D(&;); hence (&, D(E;))
is densely defined. It follows by [20], Chapter VI, Exercise 1.1, that (&, D(&;)) is
a Dirichlet form. It is called the image Dirichlet form of (8 L D(SF )) under the
mapping Souts. Its generator (—H,, D(H,)) is given by

(18) e = Sout.e H, Sout.e D(H,) =48, . D(H} ).
Then for F € ?Cb (D, T'y) C D(H,), we have
N 82 P
H&‘F(a)) == _i’jZZI aSiaSj ((flv Cl)), ey (fN’w>)
< (V£ V fpa. €0 + p5) (B, =) dx)
N
(19) = > 8gr((fi. @), .o, {fv, @)
j=1
x <<Afj,w> —ePp 3 (Vee(x —y),
(X, }CSout,e®

Vfix)— ij(y))Rd>,
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where F is of the form (11) and the variable w is running through I';. Note that
the last term is well defined for p.-a.e. w € I',.

THEOREM 4.1. Let (¢, B8, 1) fulfill conditions (SS), (UI), (LR), (D) and (LS),
and let |1 be the corresponding Gibbs measure constructed with empty boundary
condition. Then for all (jc-versions) of F € L(T,, Ue) and all t > 0O the function

w > pe(t, F) (o) :=/QF(xg(t))dPS 1ot @eTy,

in,e ute

is a pe-version of T, ; F :=exp(—tH,) F. For

)
m g out Sw

welly,

the process M? = (2, lAT, (Fz/gZ)tzo, (61/82)20, (Xe ()0, (Quw)wer,) is a diffu-
sion process and thus up to |L¢-equivalence the unique process in this class which
is properly associated with (&;, D(8;)) and has |1, as an invariant measure.

PROOF. For F € L*(T¢, 1), we have F (X (1)) = (8in.e Sout.s F)(X(e721)),
t > 0, where &ip o F := F o Sjp . By Theorem 3.2, we have
(85ut.eBim e exp(—te > H ) Sin e Sout,e F) (@)

out,e “in,¢&

0) = [ oS FOXGE 0Py

—/ PO APt o,
for u, almost all w € I';. We note that (EF D(8 L )) is obviously the image
Dirichlet form under the map 4, o of &r, D(SF)) tlmes £~2. Hence we have,
for the corresponding generator (H:;, D(Hll;g))

1) HY =8 e ?H} $ine.  D(HY)= D(H))).

lIlé‘(

Using the Hille—Yosida theorem (via resolvent), (18) and (21), we can conclude
that

(22) SouteBim s €XP(—te 2 H) Sin e Boue = exp(—t Hy)

on L?(T, itg). Thus, by (20) and (22) the first statement of the theorem is
proved. The fact that M? is a diffusion is straightforward to check. In particular,

it then follows by [20], Chapter IV, Theorem 3.5, that M? is properly associated
with (8¢, D(&:)). U
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5. Convergence of Dirichlet forms. Our aim is to show convergence of
(X¢(1))r=0 to a generalized Ornstein—Uhlenbeck process (X(#));>0 as ¢ — 0. In
this section we prove this in terms of the corresponding Dirichlet forms.

It will turn out that the limit Dirichlet form is defined in Lz({O’ , Vi), where
v, is the Gaussian white noise measure on D’ with covariance operator x4 () 1d
and

1608 =0 B D+ [ 1 (B.1.x.0)dx

is the compressibility of the Gibbs state u; see (35) below for the definition of
the Ursell function ug) and Proposition A.3 for the existence of the integral.
The measure v, exists due to the Bochner-Minlos theorem via its characteristic

function given by

. _ xe® ;
[ expiits.ondv,@ =exp( 222 [ (r@iax). seo.

For n € Z, we define a weighted Sobolev space #, as the closure of D w.r.t. the
Hilbert norm

IFB=(f flui= [ A F0f)dx, feD,
Rd

where Af(x) = —Af(x) + |x|>f(x), x € R, that is, A is the Hamilton operator
of the harmonic oscillator with ground state eigenvalue d. We identify #y =
L2(R4, dx) with its dual and obtain

DCSRYcH,c L*RY, dx)c H_, C S'(RY c D, neN.

Here, as usual, §'(R?) denotes the space of tempered distributions which is the
topological dual of S(R?), the Schwartz space of smooth functions on R¢ decaying
faster than any polynomial. Of course, #_, is the topological dual of F,, w.r.t. #y.
The dual paring between these spaces we denote by (-, -). Since the embeddings
Hy C H,—q are Hilbert—Schmidt for all n € Z, it follows by the Bochner—Minlos
theorem that v, (#H_g4) = 1.

The first part of the following theorem is an easy generalization of Proposi-
tion 3.9 in [4]. The second and third parts have been proved in [4], Proposition 5.4
and Theorem 6.5, respectively.

THEOREM 5.1. Let us assume that (¢, B, 1) fulfill (S) and (Ul), and let
be the corresponding Gibbs measure constructed with empty boundary condition.
Then:

(i) There exists CV) € (0, 00) such that
| N0l gy duat@) <€

uniformly in € € (0, 1] and, in particular, pe(H_4+1)) = 1.
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(ii) For each f € D, we have limg_,0E,,[(f, )21 =K, [(f.-)2].
(iii) The family of measures (ig)e~0 converges weakly on H_y41y to the
Gaussian measure vy, as € — 0.

We shall also use the following lemma, which is easy to derive by using the
properties of correlation functions (see Section 2.3) and recalling that ji, = S 1

is the Gibbs measure corresponding to (¢, 8, ™) and the construction with
empty boundary condition.

LEMMA 5.2. Let the conditions of Theorem 5.1 hold. Then we have

1 — 1 2 — 2 X—=)y
Py Boe ™ =pg (B 1), pg(B.e d,x,y)=p;>(ﬂ,1, ,0).

&

We define the Dirichlet form (€,,, D(€,,)) as the closure of the bilinear form

&,(F.G)=—p" (B, 1)/@/ /Rd 3, F () A3, G () dx dv,, ()

=g, 1)/{0/ /Rd (Vo F (@), V0, G (0))ga dx dvy (),

where F, G € F Cp°(D, D’), and the space F Cp°(D, D') is defined analogously
to F Cp°(D, I'). Here 0, F denotes the derivative of F = gr((f1,+),..., (fn,") €
FC(D, D') in direction &, x € R4, that is,

N
=308 (1, ), s {fiv, @) (),

d
axF(Cl)) = EF(CU+t8x)
j=1

t=0
wedD,

where N e Nand fi,..., fn € D.
Integrating by parts in the Gaussian space (see, e.g., [3], Theorem 6.1.2
and 6.1.3), we obtain

€, (F, G):/D/HF(a))G(a))de(a)), F.GeFCr (D, D),

where
N
HF = —py (B, 1) 37 00,87 ((fi, )y (fN )
i,j=1

(23) X /Rd (Vi (), V£ (x))pa dx

R

_ d; ) T AT ).
B Z igr({f1,) (N, DA, )
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It is well known (see, e.g., [3], Theorem 6.1.4) that the operator H is essentially
self-adjoint on F C° (D, D'). We preserve the same notation for its closure. The
operator H generates an infinite dimensional Ornstein—Uhlenbeck semigroup

T; :=exp(—tH), t>0,

in LZ(UM). This semigroup is associated with a generalized Ornstein—Uhlenbeck
process (X(#));>0 on D’ (see [3], Chapter 6, Section 1.5).

THEOREM 5.3. Suppose that (¢, B8, 1) satisfy conditions (S) and (Ul), and
let  be the corresponding Gibbs measure construction with empty boundary
condition. Then for all F, G € ?Cgo(ﬂ, D), we have

24) lim & (F, G) = &,,(F, G).
e—0

REMARK 5.4. (i) The (X(#));>0 is the unique process associated with the
closure of the pre-Dirichlet form (&, F C;°(D, D')) on L3(D, v,). In this sense
the convergence of bilinear forms proven in Theorem 5.3 uniquely determines the
limiting process (X(#));>0.

(i) The generator H corresponds to the following stochastic differential
equation:

6]
V(8. 1) T

where (W(7));>0 is a Brownian motion in ' with covariance operator—A, and
the coefficient py (B, 1)/ x(B) is called bulk diffusion coefficient.

(iii)) The generality of the class of admissible potentials is very important
from the physical point of view. Before one could only treat smooth, compactly
supported, positive potentials. However, any physically realistic potential has a
singularity at the origin. Furthermore, it is of physical interest to study potentials
which also have a negative part.

(iv) The proof of Theorem 5.3 is straightforward. However, it identifies the
bulk diffusion coefficient for very general potentials. This coefficient is, from the
physical point of view, the most interesting quantity.

PROOF OF THEOREM 5.3. We first note that each function F € ¥ Cy°(D,
D’), when restricted to I'g, belongs to FC(D,Tg) C D(&;). Furthermore,
since B(D') NIy = B(,), the measure u, can be considered as a measure
on (D', B(D')). By the polarization identity, it is sufficient to prove (24) for the
case G=F =gr({f1,0), ..., {fn,o)). Evaluating (17) and applying Lemma 5.2
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we obtain

N
E(F. F)=¢! 3 /F (V£ V f)pas ¥)

ij=1
x 0igr (L1, e (v — e~ oyl (B, e~ dx),

(fus e (v — 745 (B, e~ dx)))

)
Py —epy) (B dx)),
)

(f1,e%(
Fs e (y — e~ (B, 6™ dx))) die ()
(25)

= /2 Z / (Vfi,Vira, 0)0igr((fi,o),...,(fn,®))
e Xang((fl O, (v o) dpte(@)

+0(8,1) 5 |, (V560 V£ ) dx

i,j=1

X/ digr((f1, o), ..., (fn,®))
=D/

Xang(<f1’a)>7 fN7 )dMS(a))
By Theorem 5.1(iii) we get

nn})/ 085 (1. @) s (FNe DB E (fir @) s (v ) dpte(@)
e—=0J9p

:/Q/ aigF(<f1’w>’ EERE <fNaw>)a]gF((f1’w>’ SRR <fN,CL)>)UM(CL));

hence, the second term in (25) converges to &, (F, F') and it only remains to show
that first term in (25) converges to zero as ¢ — 0. However, this is obvious from
Theorem 5.1(i), because F € F Cp°(D, D). O

6. Convergence in law. The convergence in terms of the Dirichlet forms
admits no probabilistic interpretation. Hence, next we study convergence in law
of the scaled processes.

The laws of the scaled equilibrium processes P* := Q,, o X;l(z P,o X;l)
are probability measures on C([0, 00),I'¢), where Q, = frs Qudus(w) and
P, = [P, du(y) (cf. Theorem 4.1). Since C([0,00),T';) is a Borel subset
of C([0,00),D’) (under the natural embedding) with compatible measurable
structures we can consider P® as a measure on C([0, 00), D’) and by using
Theorem 3.2(ii) we find that the process (X(#));>0 corresponding to P?, that is,
the realization of (X.(7));>0 as a coordinate process in C([0, 00), D’), solves
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the martingale problem for (—H,, D(H:: )) w.r.t. the corresponding minimum
completed admissible filtration (F;);>¢ for all € > 0.

6.1. Tightness.

THEOREM 6.1. Let (¢, B, 1) fulfill conditions (SS), (UI), (LR), (D) and (LS),
and let u be the corresponding Gibbs measure constructed with empty boundary
condition. Then there exists m € N, m > d + 1, such that the family of probability
measures (P%).~q can be restricted to the space C([0, 00), H_,,). Furthermore,
(P?) ¢~ is tight on C([0, 00), H_p,).

REMARK 6.2. Theorem 6.1 has been proved before by Brox [4] and
Spohn [34], for smooth, compactly supported potentials only. Their proof can
be generalized to a more general class of potentials. However, their technique
requires that 9 j¢xi (here ;¢ is the partial derivative of the potential in direction j
and x' the ith component of the identity) is locally integrable w.r.t. the Lebesgue
measure. From the physical point of view this is a very restrictive assumption on
the singularity of the potential at the origin.

PROOF OF THEOREM 6.1. Let f € H. By Theorem 5.1(1)) we know,
in particular, that the functions (f,-), (Vf,-) € L>(us). Hence it is easy to
show by approximation that (f,:) € D(&:). Consider the conservative diffu-
sion process M? on I', associated with (&, D(&;)) according to Theorem 4.1.
We may regard M® on the state space D’ (common to all M?, ¢ > 0). Con-
sidering its distribution on C([0, 00), D’) we may regard its canonical re-
alization M® = (2, F, (F;);>0, (©;)/>0, (X(#)):>0, (Q)wep’). So, in particu-
lar, @ = C([0,0), D), X()(w) = w(t),t > 0, ;(w) = w( + -) and P* =
Jr, Q;,die(w). Fix T > 0. Below we canonically project the process onto Q7 :=
C ([0, T1, D’) without expressing this explicitly. We define the time reversal
rr(w) ;= o(T — ), v € Qr. Now, by the well-known Lyons—Zheng decompo-
sition (cf. [6, 19] and also [18] for its infinite dimensional variant), we have, for all
0<t<T,

(£, X)) — (£, X)) = 5M; (e, f) + 5(Mr_i (e, f)(rr) —Mr (e, /)(rr)),
P?-ae., where (M, (e, f))o<:<r is a continuous (P?, (F;)o</<r)-martingale and
(M, (e, f)(rT))o<:<r is a continuous (P*, (rT_l(F,))OE,ET)—martingale. [We note

that P® or ' — P¢ because (T%.+)¢>0 1s symmetric on Lz(ug).] Moreover, by (25),
the bracket of M(e, f) is given by

t
(M(e, f)); =2 /0 2V £ g, Xa0) + 050 (8, 1) /R V@) dxdu,

as, for example, directly follows from [6], Theorem 5.2.3 and Theorem 5.1.3(i).
We note here that both theorems in [6] are formulated and proved for locally
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compact separable metric spaces, while D’ is not of this type. However, both
theorems carry over to general state spaces by virtue of the local compactification
and regularization procedure developed in [20], Chapter V1.2, which is easily seen
to be applicable in our case (see, e.g., [20], Chapter VI, Theorem 2.4, in regard
to [6], Theorem 5.1.3(i)). Hence by the Burkholder—Davies—Gundy inequalities
and since P® o r I' = P¢, we can find C® € (0, 00) such that, for all f € D,
0<e<1,0<s<t<T,

Ep:[I(f, X(1)) — (£, X())]*]
< Ep:[IM; (e, f) — M (e, f)I*]
+ Ep:[[Mr_ (e, £)(rr) — Mr_s(e, £)(rr)|*]

<c® (Eps [(/t (gd/z(wf@d, X(u))
1 2
0.1 [ 19 dr) du }

T—s
(26) +Epe[</T_z (sd/z(wf@d,xq —u))

2
#0611V 0Rsdx ) du) D

<4c —s>2<sd /F (IVf 4. o) die()

+ o8, 1)2( [, 19 e, dx)z)

<COY¢ =)’ (NV F12allder + 1V fIrallg).

where C® :=4C® max(C), ,0;,1)(,3, 1)? and C(V as in Theorem 5.1(i).

Now we can use (26) to define (f, X(¢)) — (f, X(s)) for f € S(R?) via an
approximation as an element in L*($2, P?). Then, of course, the estimate (26) is
also true for f € S(RY).

Let m € N and let (e;);en be the sequence of Hermite functions, forming
an orthonormal system in #,_>4. Then (aim_dei)ieN, where (a;)ien are the
eigenvalues of A w.r.t. the Hermite functions, forms an orthonormal system
in #_,,. Since the mappings f — |||Vf|]12§d||[21+1 and f > |||V flgall§ are
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continuous on S(R¥), we can choose « > 0 and m € N large enough that
IV £ Ralli + NV flrallg <@l flmoa VY feSRY.

In particular, for all i € N, we have |||V€i|]12§d||[21+1 + ||| Vei|gall} < . Hence, by
the above, we can estimate

Ep[IX©®) — X%,
(27) < Za Epe [(e;, X(2)) — (e, X(s))|4])1/2

< c@(z — ),

where the constant CO := («C®)1/2 20 ai_z‘i is finite, because A~ is a
Hilbert—Schmidt operator. Since by Theorem 5.1(iii) e — v, as € — 0, now the
tightness of (P?)..o on C([0, c0), #_,,) follows by standard arguments. []

6.2. Identification of the limit via the associated martingale problem. To
identify the limit by Theorem 6.7 below it would be sufficient to show that each
accumulation point P of (P?)..¢ solves the martingale problem for (—H, Dy),
where Do :={G({f,)) | G € CZ(R), f € S(RY)}, with initial distribution v,,, that
is,

t
G((f£.X(") —G((. X(O)))+/O HG((f. NDX(s)ds, 120,

is an F;-martingale under P and P o X(0)~ = v;,. One well-known way to estab-
lish this property is to prove convergence of the generators H, to the generator H
as ¢ — 0. Thus, first we study the difference ||(H — He) G((f, ‘Dl 12y, fore — 0.

To see that HG({f, -)) € Lz(ug) we use representation (23).

6.2.1. Nonconvergence of generators. Using (19) and (23) again, by an
approximation argument it is easy to show that (f,-), f € D, is an element
of D(H;) and D(H). As we shall prove now at least on such functions the above
convergence does not hold if we have nontrivial interactions. For the proof of the
following theorem we refer to Appendix C.

THEOREM 6.3. Let the potential ¢ be isotropic, that is, ¢ (x) = V(r), r =
|X|gd,x € R4. Furthermore, letxkxlaiajqﬁ e LY(R?, dx) and x'9;¢ € L2(R?, dx).
Additionally, let the assumptions required in Theorems A.4 and B.1 hold and let 1
be the Gibbs measure associated with (¢, B, 1) and the construction with empty
boundary condition, where B € [0, Bol and By > 0 is as in Theorem A.4. Then
there exists a function [0, Bol > B = Ry (B) € Ry such that

lim |(H = H)(f. )2, = RyBIAf 2y Y IED.
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Furthermore, if w # 1, then there exist B1(¢) € (0, Bol such that Ry(B) > 0 for
all B € (0, B11.

REMARK 6.4. Theorem 6.3 states that for high temperatures (small inverse
temperature) and sufficiently smooth isotropic potentials the generators do not
converge in the L2-sense. It applies obviously to compactly supported potentials
¢ € Cg (]Rd ) and has been conjectured in [4, 29, 34].

6.2.2. A conditional theorem on convergence in law. To identify the limit the
following weaker type of convergence is sufficient.

CONJECTURE 6.5. Let (¢, B, 1) fulfill conditions (SS), (UI), (LR), (D) and
(LS), and let v be the corresponding Gibbs measure constructed with empty
boundary condition. Furthermore, for G € Cg R), feD andt,s >0, define

t+s
Ve(f.t,s) :=/t G'((f,X(w)))(H — He)(f, ) (X(u)) du.
Then

gE})EPS[|VS(f,t7S)|]:O~

REMARK 6.6. Conjecture 6.5 states that the scaled generators converge in
time average, whereas Theorem 6.3 concerns convergence of the scaled generators
at an arbitrary fixed time. Conjecture 6.5 was first formulated in [29]. In [34]
the author describes a proof of Conjecture 6.5 for positive, smooth, compactly
supported potentials and d < 3, but with G(x) = x (see [34], Assumption (C),
page 10). It is easy to show that, if Conjecture 6.5 holds for G(x) = x, then it also
holds for all G € CZ(R).

THEOREM 6.7. Let (¢, B, 1) fulfill conditions (SS), (Ul), (LR), (D) and (LS),
and let | be the corresponding Gibbs measure constructed with empty boundary
condition. Assume Conjecture 6.5. Additionally, let P be an accumulation point
of (P%)e=0 on C([0, 00), H—m) with m € N as in Theorem 6.1. Then P solves
the martingale problem for (—H, Dg) with initial distribution v, that is, for all
G € C3(R), f € S(RY),

t
(28) G((f,X(t)))—G((f,X(O)))-i-/O HG((f, - NDX(s)ds, 120,

is an F,-martingale under P and P o X(0)~! = V. The measure P is uniquely
determined by these properties, in particular, all such P coincide. Hence P, — P
weakly as ¢ — 0.
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PROOF. Let f € D, t,s > 0, and define the following random variables
on C([0, 00), H_;):
t+s

Ue(f.t,5) := G({(£.X(®)) — G({f, X(5))) + t H,G((f, D X(u)) du,
t+s
U(f,t,s):=G((f£,X(®)) — G((f, X(5))) +/¢ HG({(f. - )(X(w)) du,

an [ 2
Si(fotes) = [ G (L X)XV Bg) )
Utilizing Theorem 5.1(i) it follows that

(29) lim Epe[|Se(f, 7, $)I]=0.

The trace filtration obtained by restricting (F;);>¢o to C([0, 00), #_,,) coincides
with the natural filtration of C ([0, c0), #_,,), which we also denote by (F;);>¢.
Since P? solves the martingale problem for (—H,, Do) w.r.t. (F;);>0, we have for
all F,-measurable bounded, continuous, F; : C([0, c0), #_,;) — R and & > 0 that
Ep:[F;U:(f,t,s)] = 0. Thus, together with Conjecture 6.5 and (29), it follows that

lim EPS[FZ‘U(f’ z, S)]
= (}E)I(I)EPF[FZ(Ué‘(f’ t, S) + VE(f’ t, S) + Sg(f, t, S))] =0.
Let P be an accumulation point of (P?).-.¢ on C([0, c0), #_,,), thatis, P®» — P
weakly for some subsequence €, — 0 for n — 00. Obviously, by Theorem 5.1(iii),

we have Po X(7) ™! = v, for all # > 0, in particular, P o X0)~! = v, By (30), it
remains to show that

(31) nli)ngoEPg”[FlU(f’t’s)]:]EP[FZU(f’t’s)]‘

Obviously, we only have to prove (31) with U(f,¢,s) replaced by the last
summand in its definition, because for the first two summands convergence is clear.
To do this we set

h:=HG({f,-)

Py (B 1),

— o WB. DG (£ IV flea|? — G ((f. WAF, ).
py (B, DG, DIV flrally 0B (fs DAL, )

Then
t+s

t+s
EP[FI | HG((f,-»(X(u))du}—Epan[Fft HG((f,-»(X(u))du}

t+s
sz |Ep[Fih(X(u))] — Epen [Fih(X(u))]| du
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and for K, :={w € H_,; | |lo|l-m <r}, r > 0, we have both for the positive and
negative parts A", h~ of h and u € [t,t + s], setting hri =ht A supg. |hl,

|Ep[F,h* (X())] — Epen [ FhE (X (w))]|
< ‘ / | [hE (X (u)) dP — / | F[hE (X (u)) dPE"
{(X(w)eK,} {X(u)ekK,}

+/ |Fy| 17| (X(w)) dP
{(X(w)eH_m\Kr}

+ / | Fy 1] (X(u)) dP®
{(X(w)eH_n\K,}

< [Ep[| Fy |hE (X ()] — Epeu [| F; |1 (X (u))]|

+2 |Fi||h|(X(u)) dP
{(X(u)eH_m\K;}

+2 | F¢| h|(X(w)) dP*".
{(X(w)eH_m\Kr}

However, for all r > 0,

/ |Fy| 1] (X(w)) AP
{(X(w)eH_n\K,}

S LTy
J{—m\Kr

l a 167 16l
<o B OCV e (FL N el

r Xxo(B)

where we used |[{(Af, w)| < |Aflmlloll-m and 1 < ||w|| - /7 on H_p, \ K. The
constant CV is as in Theorem 5.1(i). Similarly,

||Af||m),

/ |Fy| 1] (X)) dP
{(X(w)eH_n\K;}

1
1
<0y (B DI NG ooV £1all§ — /ﬂ o],y dvyu (@)

—m

)
Py (B, 1) 1
+¢7”Fl”oo”G/”oo”Af”m;/ lwl2,, dvy(w),

Xo(B) Hom
and since the Gaussian measure v, has measure 1 on H_,, there exists a
constant C© e (0, 0o) such that / o ||a)||2_m dv,(w)<C ©) Hence by the weak
convergence of P> — P as n — oo and Lebesgue’s dominated convergence
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theorem,
t+s
lim sup |Ep[ Fih™ (X ()] — Epen [Frh™ (X (w))]| du
n—-oo Jt
2s
< =py (B, Hmax {CV. COY|F oo
1G" lloo 2 16l
x R S INTY
(v sl + A1
for all » > 0. Letting r — o0, equality (31) follows and therefore
(32) Ep[FiU(f,t,5)]=0 Vfed.

However, by an approximation, (32) is also true for all f € S(Rd).

Now it remains to show that P is uniquely determined by (28), but this follows
by an easy generalization of Theorem 1.4 in [9]. All the assumptions required
there are fulfilled in our situation except for the assumption on the operator B.
This operator B in our case is /—A, which is not bounded as required in [9].
Analyzing the proof, however, one finds that continuity and boundedness of the
function

[0,00) 5t (Bexp(tA) f, Bexp(tA) f) € [0, 00)

for a fixed f € S(RY) is sufficient, which in our case is obviously true. [J
APPENDIX A

Inverse temperature derivative of correlation functions. First, we have to
define the finite volume correlation functions

pon(Bozn) = Zph (B.2) [ exp(-PERMUE) D). 0,220,

Zon(B.2) = / exp(—BE (£))dr.(6).  neTon. AcORY,

o, A

where we restricted the Lebesgue—Poisson measure to I'g o 1= | |2 1"(()"1)\; see
Section 2.3.

The proof of the following lemma is an easy generalization of [13], Theo-
rem 3.3.18.

LEMMA A.1. Let (¢, Bo, z) satisfy conditions (S) and (Ul). Furthermore, let
¢ fulfill the condition

(33) 0<[ o, (PRSI — 1) dx < 00
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for some Ao € O (Rd) Then

(34) im0 Pen Bz X1, x) = pg (B2, X1, - )
for all z > 0 and uniformly in B, xi,...,x, on any set [0, Bo] x (A")", where
A € O.(RY).

REMARK A.2. Condition (33) is obviously fulfilled for smooth, compactly
supported potentials ¢. Or, if ¢ € L' (R¢ \ Ag) and bounded on R¢ \ Aq for some
Ag € O.(R?), and not dx-a.e. zero on R?\ A, then condition (33) is also fulfilled.

Via a recursion formula one can transform the correlation functions ,0(; 3\ into

the so-called Ursell functions u' ¢ A and vice versa (see, e.g., [22, 31]). Their
relation is given by

P, A(B,2Z, 1)

(35) = Z M¢,A(IB’Z’ nl)“‘uqb,A(,BvZ» 7)]), TIEFO,
niY---Unj=n,
neOn =2, ks#l, jeN

where 1" ) is related to uy A analogously to (8). Correspondlngly, ") and ug are
defined w1th pg replacing py . Due to the translation invariance of the correlation
functions, Ursell functions are also translation invariant. Furthermore, by an easy
generalization of Theorem 4.5 in [4] (see also [31], Chapter 4), we obtain the
following integrability property.

PROPOSITION A.3. Let (¢, B, z) satisfy conditions (S) and (Ul). Then, for

each n > 1, there exists a nonnegative measurable function U q(b”;? O R,

such that
ug Bz 0| <USEY VA€ ORY,
and

1
/Rdxn ’Uq(bn;;(xl,...,xn)f(xl,...,xn)]dxl... dxn

Sexp(2n,33(¢))<z e m )" C(Bg, z)’”)

mO

x sup | |exp(—B (xn — yn)) — 1]

xpeR4

X sup e |exp(—=Be (xn—1 — yn—1)) — 1|

Xn—1 €R?

-sup | Jexp(—Bp(xi — y») = HIf 1o yu)ldyr -+~ dyn,

xR
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for all measurable functions f:R4" — R.

THEOREM A.4. Let (¢, Bo, z) satisfy conditions (S) and (Ul), and let either
¢p=0o0r¢elL WRY, dx) N L3R4, dx) and condition (33) hold. Then Py €
Cc(0, Bol) and for \,-a.e. n € I'g, we have

d
afg‘” (B.z.m) = —E® () pp(B. 2. 1)

- /R WG x)pg(B. 20U ixDzdx

1
2R12

(36)
6 (c = y)(po(B, 2, nU {x, y))

— pp(B 2. mPY (B, 2. x, y))z2 dxdy,
where E? () := limA/Rd Ei(n),

PROOF. First, we note that the expression on the right-hand side of (36) is
well defined and finite. Indeed, since ¢ € L'(R?) and the correlation functions
are bounded [see (9)], the first integral in this expression is finite. Using (35) and
Proposition A.3, one finds that the second integral is also finite.

Analyzing the properties of the Lebesgue—Poisson measure we find, for
neloa,

3P, A
B

B.2.1) = —EL () pg.n(Brz.m) — f WG | x)pp.0(Br 2.0 U (x D)z dx

— 5/Azd)(x - y)(p¢,A(ﬁ,z, nUix, y})

— Pp.a (B2 Py (B2 x.y))2 dxdy.

Using (34), Proposition A.3 and that bound (9) also holds for finite volume
correlation functions, uniformly in A C R?, twice applying the dominated
convergence theorem shows

Ah/'rfléd<a 0B )(ﬂ o

= —E*pp(Bzm = [ WO X)p(B.z U lxhzd

1
—> | e —»(psB.znULx ¥

2 JRrdx2

= ps(B, 2. Moy (B2, x, )2  dxdy

for A;-a.e. n € I'yp. It remains to show that the derivative and the infinite volume
limit can be interchanged. We evidently have to show this only for potentials which
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are not identically equal to zero. By using Lemma A.1 and Proposition A.3, we

see that for z > 0, n € I'y, fixed the function 8’;%/‘ (B, z, ) converges uniformly

on [0, Bolas A R4 and

) . 0pg.A
—(B,z,n) = lim ———(B,z,n).
98 (B.z,m) -y (B.z.m)

The second order derivative can be derived analogously. The only difference
is that in the second order derivative the potential ¢ appears in its second power.
Hence, for ¢ € LY(R?, dx) N L*(R?, dx) we obtain that Py € (o0, Bol). A more
detailed proof can be found in [7]. O

APPENDIX B

Coercivity identity for Gibbs measures. Here we derive an analog of the
usual coercivity identity on L?(R¢, gdx) for L>(I', ), where p is a Ruelle
measure on [", whose potential satisfies some weak additional conditions.

First we have to develop a little further the analysis and geometry as in Section 3.
For each y € I', consider the triple

37) Ty.0o(T) D T, (I) D Ty o(T).

Here, T, o(I') consists of all finite sequences from T, (I'), and T, (") :=
(Ty,o(l"))/ is the dual space consisting of all sequences V(y) = (V(¥,X))xey,
where V(y,x) € T, (R%). The pairing between any V(y) € T, oo(I") and v(y) €
T, o(I') with respect to the zero space T, (I') is given by

(V(V), U(V))Ty(r) = Z (V(V’x)’ U(y’x))TX(Rd)'

xey

This series is, in fact, finite.
For y € I', we define Bu(y) = (Bu(y» x))xey € Ty,oo(r) by

(38) Bu(y.x):=—B Y V¢x—y)., xey.

yey\{x}
As follows from the proof of Lemma 4.1 in [2], for p-a.e. y € I' the series
on the right-hand side of (38) converges absolutely in R?, provided (¢, 8, z)
satisfies (SS), (UI), (LR) and (D), and that u is the corresponding Gibbs measure
constructed with empty boundary condition. Observe that

H,F(y):==A"F(y) = (Bu(). V' F("))r (1),
(39) ATF(y)=) A:F(y),

xey

AyF(y) = Any(x,y)ly:x,
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where Hll; is the generator as in (14) and F' € F C°(D,T') as in (11). Of course,
A acting on differentiable functions defined on R¢ is denoting the Laplacian
on RY. We call B,, the logarithmic derivative of the measure /.

Let A(y) € (T),,oo(l"))®2 [cf. (37)], so that A(y) = (A(y, X, y))x,yey, Where
A(y,x,y) €T, (RY) @ T, (R?). We realize A(y) as a linear operator acting from
T, o(T") into T, o (I") setting

Ty o) 3 V(y) = A(y)V(y)

= (Z (A(y’x’ Y), V(y7x))Tx(Rd)> € T)/,OO(F)‘
yey

xey

Evidently, if A(y) € (Ty,o(F))®2, then A(y) defines a linear continuous operator
in T, (I"). We denote by A(y)* its adjoint operator.

For a vector field I" 3 y = W(y) € T}, oo (I'), we define its derivative vIw(y)
as a mapping

Foye VW) = (VIWE,x.0), e, € (T).00(D)®

X,yey

such that

VZW(y_8y+8Zax)|Z=yv lf.x?éy,

VW, x,y):=V,W(y, x) = _
g V.W(y —ey+e,Dlmy,  ifx=y,

if all derivatives V, W (y, x), x, y € y, exist. For a function F:I" — RY, we write
F":=VV'VTI F_ if it exists.

THEOREM B.1 (Coercivity identity). Let the potential ¢ satisfy (SS), (I)
and (LR), and the three following conditions:

1) ¢ e Cz(Rd \ {0}), e~? is continuous on R? and e‘¢V¢ can be extended
to a continuous, vector-valued function on RY:
(ii) for each y € Soo, the three series ery o —x), ery Vo (- — x) and
Yoxey V2¢ (- — x) converge locally uniformly on X \ y;
(ii1) we have

Vo e L' (R, exp(—¢ (x)) dx) N L*(RY, exp(—¢ (x)) dx),
V2p e L'(RY, exp(—¢ (x)) dx).
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Furthermore, let | be the Gibbs measure corresponding to (¢, B,z) and the
construction with empty boundary condition. Then, for any F € ¥ C3°(D, T'),

1Hy, Fli72,,

= /F Trr, oy F' (V) F" ()" dpu(y)

= [T F@). B F ) iy dia()

(40)
= /F Trr, ) F" () F"(y)* d(y)

+8[ X (P -V ),

{x,ylcy

Vo —y) x (V' Fy,0) = VI F(y, ), du().

REMARK B.2. As easily seen, conditions (i)—(iii) of the above theorem
imply (D) and (LS).

REMARK B.3. As will be seen from the proof of Theorem B.1, the coercivity
identity (40) holds for each monomial ' = (f, -)", where f € D and n € N.

PROOF OF THEOREM B.1. Let G:T x RY - R, be measurable, then,
by [24], we have the following, due to condition (ii):

[ X 6o.ndur)
xXey

(41)
:/l;%l;{dzexp<—ﬁ Z¢(x - y))G(y +ex, x)dxdp(y).

yey

Let F € FC°(D,I'). By (39) and (41), we get

2
1) F Iz, = [ 3 (AF )+ (Bl 0. VT F 0y, ) i)
xe€y

+ > (AcFG) + (Buy. ). VT F(r.2)) 1 )
X,YEY, XFY

(42) X (ByF ) + (Bur, ), VI F (v, ), aay ) din()



SCALING LIMIT OF STOCHASTIC DYNAMICS 1525
=/, zexp(—ﬂ Y- y))
r JR yey

X (AXF(V +&x)

2
+ (Bu(y + £, Vo F (v +£0) g,y ) dxdpa(y)

" /r /Rd /Rd 3 eXp<_’3< Y b —yn)

yiey
+ ) pln— )Q)))
y2€yU{x1}
x (Ax] F(y +&x, + &x,)
+ (Bu(y + &x, + €4y, X1)s
Vo F(y +éex, + 8x2))TX1 (R"))

X (AXZF(V +8X1 +8x2)
+(Bﬂ(y+8X1 +8X2,X2),

Vi F(r +8x, + )7, mey) dx1 dx2dp(y).

By conditions (i) and (ii), we conclude that, for each fixed y € S, the function

gy (x) = eXP(-ﬂ Y px— y))

yey

is continuous on RY, two times continuously differentiable on R¢ \ y, and
Vg, extends to a continuous function on R4, Moreover, by (38), By (y + &x,x)
is the logarithmic derivative of the measure v, := g, dx. Finally, it is easy to see
from (i)—(iii) that the function

gy (0)(logg, (x))" = eXp(—ﬁ o px— y))ﬂ > Vi (x —y)
yey yey

belongs to Llloc(Rd). Thus, the usual coercivity identity on the space of square-
integrable functions L*(R4,d v,,) implies that

L. eXp(—ﬁ > gl y))

yey

2
(43) x(AxF(y +8x)+(B/L(V +éx,x), Vi F(y +8x))T RA dx
x(RY)
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-/ exp(—ﬁ > o y))

yey

X (Trp, gy Ve Ve F(y + £ (Ve Ve F (v + )

- (VxF(V +ex), Vi Bu(y +&x, x)Vy F(y +8x))Tx(Rd)>dx~

Absolute analogously, a slight modification of the proof of the coercivity identity
on R? implies that

/Rd /Rd eXp<_'3 Yo dxi—yD)—B Y px2a—y2) — Bd(xi —xz))
Y€y y€Y

X (AxlF(V +&x + 8x2)
+ (BM(V + Ex; T Exps x1), Vxl F(y + &x; T gxz))Txl (Rd))

x (A F(y + e, +6x,)
(44)
+ (B,U«(V + Exy + Exys XZ), sz F()/ + Exy + SXZ))TXZ (R‘Z)> d)C1 d)CQ
- / /d‘”‘P<—f’ D¢ —yD =B Y dxa—y2) — B(xi —m)
REJR Y1€Y ey
2
X (Hvxzvxl F(V + 8x1 + 8xz)HTX2 (R‘Z)®Txl (Rd)
— (Vi F(y 4 €x, + 61, Vi Bu(y + &2, + €1y X1)
X Vxl F(y + &x; t+ 8x2))Tx2 (Rd)> dxydx;.
Next, by (38), (i) and (ii), we get, for any y € S,
- > V-2, ifx=y,
(45) VyB,(y,x) = zey\(x}
BV2p(x —y), otherwise.

By (41), (45), condition (iii) and estimate (4.29) in [2], we have, for any A €
O (RY),

fF/AzeXp<—ﬂy62;¢(x —y))

X (1 + ||VXBM(V + &y, x)||TX(Rd)®Tx(Rd)) dxdu(y)

(46) :/F Y L+ IVeBu(y, Olg, @iyer, @) du)

XEYA
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= / > (1+/3 > ||v2¢<x—y>||Rd®Rd)dM<y)
Fxera yerilx)

= [ Awdx+ [ [ o@ e »BIVI(x = Dlpagpa dyds
A A JRE

S/Apf})(x)dx +c® /A /Rd BIVZ(x — y)pagrae P?C" dydx

< 00,

where C® € (0, 00) is a constant, and analogously

fFfAfAZZeXP<—ﬂ D 0=y =B Y ¢lx2—y2) — Bo(xi _xz))

Y€y Y2€Y

X (14 |V, Bu(y + &x, + &x,. xl)IIsz(Rd)®Tx1 (Rd))d)(fl dxodu(y)

47) =/ > (L 1Yy Bu Dy gy, ) ()
Fx,yeyA,Héy

=/F Z (1+8 V2 (x — W llrdgra) du(y)
X,YEVA, XFY

< Q.
Now, by (41)—(44), (46) and (47),
1) F 12 = [ 3 (Tor, oy Va Ve F) (VY ()
x€y
— (Ve F (1), VeBu(y, )V F () g, )

2
48) + ¥ (||VnyF(y) I7, &)1, (RY)
X,yEY, XF£Y

— (Y F ). V3B (s )V F (1)), gy ) A ()
N /r Trr, o) F' () F" ()" dpu(y)

= [[TF. BV FG)) gy dist)

Finally, from (45) and (48), we get the second equality in (40). O
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APPENDIX C
Proof for nonconvergence of generators.
PROOF OF THEOREM 6.3. We have
ICH = Ho) (£, ) 122, = fr HUf o) H{f.0)dje(@)
49) =2 [ Hf.0) el f.0) dite(@)

+ / Ho(f, o) Hol f. ) d e (o).
e

A direct consequence of Theorem 5.1(ii) is that

(1) 2
B, 1)
,}E}}) Hfa) H(f, w)due(w) = W AL 200

Furthermore, we have

. (0y (B. 1))?
60 tm [ U ) el ) dpe(@) = =2 S IA

where (50) can be shown in the same way as the convergence of Dirichlet forms in
Theorem 5.3, the argument is even more simple. Showing convergence of the third
term in (49) is a quite elaborate task. Using (18), the coercivity identity provided
in Theorem B.1, (7) and Lemma 5.2, we obtain

/F He (. @) He{ f. ) djie(@)

= / YH (fsv)dite(y)
= py (B, s‘d)llAflle(dx)
+25 [ (V@ =vro.

V2e(x — )V LX) = V£ (0)))papy (B.e ™% x. y)dxdy

1
=05 (B, DIAS 72 )

e—(d+2)
_|_

B[ (vre—vro. ve(*2) v rw -vm)

X p(;z) (,B, 1, % 0) dxdy.
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By the mean value theorem, we get
2

(V@ = Vo2 ) (s = Vi)

—d 1 1 —_
=87/0 /0 <V2f(y+q1(x—y))u
V%(ﬂ)vzf(y +aa( — y))ﬂ) dq1 dgs.
£ £ Rd

Thus, we obtain an approximate identity and

lim H (fio)H(f, ) dus(w)

e—0

(1
=p§ (B, l)llAflliz(dx)

P [0 dx

i,j,k,l=1
x [ 83 f 90,00 £ () dy,

where x' is the ith component of x € R?. Set

D¢(I37 la,]v kal)

D ki @
— /Rd Bx*x9:0,0 ()P (B, 1, x,0) dx.

For isotropic potentials the corresponding second correlation function is also
isotropic and the coefficient (51) turns out to be

i ] V/
fRd,s<xr§ (FV"(r) = V() + r(r)ai,j>x’<x15;2>(,3,1,r)dx,

here §; ; is the Kronecker delta. Hence, for isotropic potentials the coefficient
Dy(B,1i, j, k,I) is only different from zero if each index in the set {i, j, k, !}

at least occurs twice. Utilizing polar coordinates, the identity fo sin*(0) d =

3 fozn sm2(9) cos?(0)do and the symmetry of [pa 9;0k f () 0;0; f(y)dy in all its
indexes, we find

e—>0Jr

lim | He(f, 0)He( f @) dpte(@) = Dy(BYIAS 3241
where

Dy(B) = py (B, 1) + 3 /R px'x'0101¢(x)py” (B, 1,x,0) dx.
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Next, we compare the coefficients Dy (B) and (pq(bl) (B, 1))2 /Xx¢(B) in terms of a
high temperature expansion. The latter coefficient is the isothermal compressibility
of the fluid or gas characterized by ©. Applying Theorem A.4, we obtain

82
Dy(B) =1 +ﬂ2@D¢<0> +o(B?),

(D5 12 2 (oD, 1))2
M —1 ZG_M(O) +0(8%), B €10, Bol,

Xo(B) Ip?
where
82 2 | 5
WDMO) = —(A;lqu(x)dx) +A;{d (x'31(x))" dx,
82 (py (-, 1) 2

Thus, the remainder function is given by

(0y (B, 1))
Ry(B) =Dy () — ——————
(52) ? ? Xo(B)

=8 [ ('ag) dx +o(. B elo.pol

Hence, Ry =0 on [0, Bo] is equivalent to [pa (x181¢(x))2 dx = 0. This, in turn, is
equivalent to

(53) p(x)=0  fordx-ae. x € R%.

Since the potential is isotropic, the only potential in consideration which
fulfills (53) is ¢ = 0. Hence, by (52) for u # m; there exists 81 € (0, Bo] such
that Ry(B) > O forall B € (0,81]. U
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