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BROWNIAN MOTION AND DIRICHLET PROBLEMS AT INFINITY1

BY ELTON P. HSU

Northwestern University

We discuss angular convergence of Riemannian Brownian motion on a
Cartan–Hadamard manifold and show that the Dirichlet problem at infinity
for such a manifold is uniquely solvable under the curvature conditions
−Ce(2−η)ar(x) ≤ KM(x) ≤ −a2 (η > 0) and −Cr(x)2β ≤ KM(x) ≤
−α(α − 1)/r(x)2 (α > β + 2 > 2), respectively.

1. Introduction. A Cartan–Hadamard manifold is a complete, simply con-
nected Riemannian manifold with nonpositive sectional curvature. We fix a ref-
erence point o ∈ M once and for all. It is well known that the exponential map
exp : ToM → M from the tangent space ToM based at o is a diffeomorphism. This
defines a polar coordinate system (r, θ) on M . Two geodesic rays γ1 and γ2 on M

are called equivalent if there is a constant C such that d(γ1(t), γ2(t)) ≤ C for all
t ≥ 0. It can be shown that this is an equivalence relation on the set of geodesic
rays. The set of equivalence classes is the sphere at infinity S∞(M). A basic fact
of Cartan–Hadamard manifolds is that M̂ = M ∪ S∞(M) with a properly defined
topology (called the cone topology) is a compactification of M . For each o ∈ M ,
the sphere at infinity S∞(M) can be identified homeomorphically with the unit
sphere in the tangent space ToM . If (r, θ) are the polar coordinates based at o, then
a sequence of points zn ∈ M converges to a boundary point θ0 ∈ S∞(M) if and
only if r(zn) → ∞ and θ(zn) → θ0 (see [5]).

Given a continuous function f on S∞(M), the Dirichlet problem at infinity is
to find a function uf ∈ C∞(M) ∩ C(M̂) that is harmonic on M and equal to f on
S∞(M). We say that the Dirichlet problem at infinity is solvable for M if for every
f ∈ C(S∞(M)) there is a unique solution uf . This property of a Cartan–Hadamard
manifold can be obtained under certain conditions on the curvature of M and can
be approached analytically or probabilistically. For analytic methods, see [1, 3, 4,
6, 7]; for probabilistic methods, see [8–10, 14–16, 18]. The more difficult problem
of identifying the Martin boundary with the boundary at infinity was discussed
in [4] and [13]. We are mainly concerned with a probabilistic approach to the
problem, which involves basically proving the angular convergence of transient
Brownian motion.

In this paper, we will combine an improved version of the method used in [9]
and an idea from [14] to prove the solvability of the Dirichlet problem at infinity
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under certain curvature growth conditions more generous than previously known.
We consider two typical situations. In the first case, the sectional curvature is
assumed to be bounded by a negative constant: Sectx ≤ −a2. In the second
case, we assume that Sectx ≤ −c/r2 [r = r(x) = d(x, o)]. This second case is
significant because it vanishes as r → ∞. Let us now state our main theorems.

THEOREM 1.1. Let M be a Cartan–Hadamard manifold. Suppose that there
exist a positive constant a and a positive and nonincreasing function h with∫ ∞

0 rh(r) dr < ∞ such that

−h(r)2e2ar ≤ Ricx and Sectx ≤ −a2.

Then the Dirichlet problem at infinity for M is solvable.

Early lower bounds of the form Ceλar were obtained in [6] with λ < 1/3 and
in [14] with λ < 1/2. Our result represents a significant improvement in this
respect.

THEOREM 1.2. Let M be a Cartan–Hadamard manifold. Suppose that there
exist positive constants r0, α > 2 and β < α − 2 such that

−r2β ≤ Ricx and Sectx ≤ −α(α − 1)

r2

for all r = r(x) ≥ r0. Then the Dirichlet problem at infinity for M is solvable.

Hsu and March [9] proved a lower bound of the form −r2β with β < 1 −
2/α < 1. Our new result opens the possibility of β ≥ 1.

The rest of this paper has three sections. In Section 2, we state some preliminary
results needed for the proof of our main theorems. In Sections 3 and 4, we deal with
the constant upper bound case and the vanishing upper bound case, respectively.

2. Preliminary results. Let M be a Riemannian manifold and M̃ = M ∪ {�}
its one-point compactification. The path space W(M) based on M is the space
of continuous maps X ∈ C([0,∞); M̃) with the following property: if Xt = �

for some t , then Xs = � for all s ≥ t . The lifetime e(X) is defined by e(X) =
inf{t : Xt = �}. The path space W(M) is equipped with the standard filtration
B∗ = {Bt} and the lifetime e : W(M) → R+ is a B∗-stopping time. We use Px

to denote the law of Brownian motion on M starting from x. It is a probability
measure on W(M).

Now let M be a Cartan–Hadamard manifold and M̂ = M ∪ S∞(M) its
compactification by the sphere at infinity. A Brownian motion X can be
decomposed into the radial process rt = r(Xt ) and the angular process θt = θ(Xt ).
The probabilistic approach to the Dirichlet problem is based on the following well-
known fact.
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THEOREM 2.1. Let M be a Cartan–Hadamard manifold. Suppose that, for
any x ∈ M ,

Px

{
Xe = lim

t↑e
Xt exists

}
= 1

(in the cone topology of M̂) and, for any θ0 ∈ S∞(M) and any neighborhood U of
θ0 in S∞(M),

lim
x→θ0

Px{Xe ∈ U } = 1.

Then the Dirichlet problem at infinity for M is solvable. For any f ∈ C(S∞(M)),
the function uf (x) = Exf (Xe) is the unique solution of the Dirichlet problem with
boundary function f .

PROOF. Since uf (x) = Exuf (XτD
) for any relatively compact open set D

containing x, where τD is the first exit time of D, we see that u is harmonic
on M . For any ε > 0 and θ0 ∈ S∞(M), choose a neighborhood U of θ0 such that
|f (θ) − f (θ0)| ≤ ε for θ ∈ U . Then

|uf (x) − f (θ0)| ≤ Ex |f (Xe) − f (θ0)|
≤ εPx{Xe ∈ U } + 2‖f ‖∞Px{Xe /∈ U }.

Letting x → θ0, we have lim supx→θ0
|uf (x) − f (θ0)| ≤ ε. This shows that

limx→θ0 uf (x) = f (θ0), as desired.
To prove the uniqueness, let {Dn} be an exhaustion of M and u a solution of the

Dirichlet problem at infinity with boundary function f . Then {uf (Xt∧τDn
), t ≥ 0}

is a uniformly bounded martingale under Px ; hence, u(x) = Exu(Xt∧τDn
). Letting

t ↑ ∞ and then n ↑ ∞, we have

u(x) = Exu(Xe) = Exf (Xe) = uf (x). �

REMARK 2.2. Ancona [2] constructed a Cartan–Hadamard manifold such
that Brownian motion converges to a single point on the boundary at infinity. For
such manifolds, the Dirichlet problem at infinity is clearly not solvable.

We end this section with a description of the general method for proving angular
convergence of Brownian motion. Define a sequence of stopping times {τn} by
τ0 = 0 and

τn = inf
{
t ≥ τn−1 : d(Xt,Xτn−1) = 1

}
.

Let �τn = τn −τn−1 be the amount of time for the nth step. The angular oscillation
during the time interval [τn−1, τn] is

�θn = max
τn−1≤t≤τn

∠
(
θ(Xτn−1), θ(Xt )

)
.
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PROPOSITION 2.3. Let M be a Cartan–Hadamard manifold on which
Brownian motion is transient, that is,

Px{rt → ∞ as t ↑ e} = 1.

The Dirichlet problem at infinity is solvable if, for any positive ε and δ, there is
an R such that, for all z ∈ M with r(z) ≥ R,

Pz

{ ∞∑
n=1

�θn ≤ δ

}
≥ 1 − ε.(2.1)

PROOF. First, we note that
∑∞

n=1 �θn < ∞ implies that limt↑e Xt = Xe exists.
Let x ∈ M and ε > 0. Choose R ≥ r(x) such that (2.1) holds (for δ = 1, say). Let
τR = inf{t : rt = R}. Then

Px

{
Xe = lim

t↑e
Xt exists

}
≥ Px

{ ∞∑
n=1

�θn < ∞
}

= ExPXτR

{ ∞∑
n=1

�θn < ∞
}

≥ 1 − ε.

Since ε is arbitrary, this shows that Px{Xe = limt↑e Xt exists} = 1.
Let θ0 ∈ S∞(M) and U a neighborhood of θ0 on S∞(M) containing θ0. There

is a δ > 0 such that

{θ ∈ S∞(M) : ∠(θ, θ0) ≤ 2δ} ⊂ U.

We have

∠
(
θ0, θ(Xe)

) ≤ ∠
(
θ0, θ(X0)

) +
∞∑

n=0

�θn.

For any ε > 0, choose R > 0 such that (2.1) holds. Then, for all x ∈ M such that
r(x) ≥ R and ∠(θ(x), θ0) ≤ δ, we have

Px{Xe ∈ U } ≥ Px

{
∠

(
θ0, θ(Xe)

) ≤ 2δ
} ≥ Px

{ ∞∑
n=0

�θn ≤ δ

}
≥ 1 − ε.

This shows that

lim
x→θ0

Px{Xe ∈ U } = 1.

By Theorem 2.1, the Dirichlet problem at infinity for M is solvable. �

We use the following result to estimate the amount of time the Brownian motion
spends for each step. Let

τ1 = inf{t > 0 : d(Xt,X0) = 1}.
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PROPOSITION 2.4. There are positive constants C1,C2 such that if the Ricci
curvature on the geodesic ball B(x; 1) of radius 1 centered at x is bounded from
below by a negative constant −L2 ≤ −1, then

Px

{
τ1 ≤ C1

L

}
≤ e−C2L.

In fact, we can take C1 = 1/8d and C2 = 1/2.

PROOF. This is Lemma 4 of [9]. We give a simpler proof here. Let rt =
d(Xt , x) be the radial process. According to [11], there is a Brownian motion β

such that

rt = βt + 1
2

∫ t

0
�r(Xs) ds − Lt,

where L is nondecreasing and increases only when Xt is on the cut locus of o. By
Itô’s formula, we have

r2
t = 2

∫ t

0
rs drs + 〈r〉t .

Hence,

r2
t ≤ 2

∫ t

0
rs dβs +

∫ t

0
rs �r(Xs) ds + t.(2.2)

By the Laplacian comparison theorem, we have, for all z ∈ B(x; 1),

�r(z) ≤ (d − 1)L cothLr(z).

On the other hand, l coth l ≤ 1 + l for all l ≥ 0. Hence, if s ≤ τ1, we have

rs �r(Xs) ≤ (d − 1)Lrs cothLrs ≤ (d − 1)(1 + L).

We now let t = τ1 in (2.2) and obtain

1 ≤ 2
∫ τ1

0
rs dβs + 2 dLτ1.

From the above inequality, we see that the event τ1 ≤ 1/8dL implies∫ τ1

0
rs dβs ≥ 3

8 .

By Lévy’s criterion, there is a Brownian motion W such that∫ τ1

0
rs dβs = Wη, η =

∫ τ1

0
r2
s ds ≤ 1

8dL
.

Hence, τ1 ≤ 1/8dL implies

max
0≤s≤1/8dL

Ws ≥ Wη ≥ 3
8 .
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The random variable on the left-hand side is distributed as
√

1/8dL|W1|. It follows
that

Px

[
τ1 ≤ 1

8dL

]
≤ Px

[
|W1| ≥

√
9L

8

]
≤ e−L/2. �

We will use the following geometric result to estimate the angle in a Cartan–
Hadamard manifold. It is essentially Lemma 2 of [9], but we include a complete
proof to clarify a few points.

LEMMA 2.5. Let M be a Cartan–Hadamard manifold. Suppose that there are
positive constants α ≥ 1 and r0 ≥ 1 such that

Sectx ≤ −α(α − 1)

r(x)2 , r(x) ≥ r0.

Let x, y ∈ M be such that

r(x) ≥ 2r0, r(y) ≥ 2r0, d(x, y) ≤ 1.

Then there is a constant C independent of x and y such that the angle between the
geodesic rays to x and y satisfies

∠
(
θ(x), θ(y)

) ≤ C

r(x)α
.

PROOF. Without loss of generality, we assume r(x) ≤ r(y). Let

K(r) = min
{
− sup

r(x)≤r

Sectx,
α(α − 1)

r2

}
.

Let G be the unique solution of the Jacobi equation

G′′(r) − K(r)G(r) = 0, G(0) = 0, G′(0) = 1.

Since K(r) = α(α − 1)/r2 for r ≥ r0, we have G(r) = c1r
α + c2r

1−α . Hence,

G(r) ∼ c1r
α,

G′(r)
G(r)

∼ α

r
as r ↑ ∞.(2.3)

In particular, G(r) ≥ C−1rα for some C and all r ≥ r0. Now let N be the
rotationally symmetric manifold with the metric ds2

N = dr2 + G(r)2 dθ2. In N ,
consider the geodesic triangle AOB such that

d(O,A) = r(x), d(O,B) = r(y), ∠
(
θ(A), θ(B)

) = ∠
(
θ(x), θ(y)

)
.

By the Rauch comparison theorem, we have dN(A,B) ≤ d(x, y). Hence,

1 ≥ dN(A,B) ≥ G(r(x))∠
(
θ(A), θ(B)

) = G(r(x))∠
(
θ(x), θ(y)

)
.

This implies that ∠(θ(x), θ(y)) ≤ C/r(x)α . �

When the sectional curvature is bounded from above by a negative constant, we
have the following analogue of the above lemma.



DIRICHLET PROBLEMS AT INFINITY 1311

LEMMA 2.6. Let M be a Cartan–Hadamard manifold. Suppose that there is a
positive constant a such that Sectx ≤ −a2. Let x, y ∈ M be such that r(x) ≤ r(y)

and d(x, y) ≤ 1. Then

∠
(
θ(x), θ(y)

) ≤ a

sinhar(x)
≤

[
1

r(x)
+ 2a

]
e−ar(x).

PROOF. Let G(r) = sinhar/a and follow the proof of the preceding lemma.
�

3. Constant upper bound. In this section, we consider the case of a constant
upper bound on the sectional curvature of M . We first give an estimate on the
probability that Brownian motion starting at r(x) = R will ever return to r =
R ≤ r(x).

LEMMA 3.1. Suppose that Sectx ≤ −a2. For any R ≥ 0, we have, for
r(x) ≥ R,

Px{rt ≤ R for some t ≥ 0} ≤ cosh1−d a(r − R).(3.1)

PROOF. There is a Brownian motion β such that

rt = r0 + βt + 1
2

∫ t

0
�r(Xt) dt.

By the Laplacian comparison theorem, we have �r ≥ (d − 1)a cothar . If we
define r∗ by

r∗
t = r0 + βt + d − 1

2

∫ t

0
a cothar∗

s ds,

then a comparison theorem for stochastic differential equations shows that rt ≥ r∗
t .

Thus, it is enough to prove the estimate for r∗.
The following argument is well known. Let

l(r) =
∫ ∞
r

(sinhau)1−d du

and σR = inf{t : r∗
t = R}. If r(x) ≥ R, then {l(r∗

t∧σR
)} is a uniformly bounded

martingale. Letting t ↑ ∞, we have

l(r) = Exl
(
r∗
t∧σR

) = l(R)Px{σR < ∞}.
Hence,

Px{r∗
t ≤ R for some t ≥ 0} = Px{σR < ∞} = l(r)

l(R)
.
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On the other hand,

l(r(x))

l(R)
=

∫ ∞
r (sinhau)1−d du∫ ∞
R (sinhau)d−1 du

≤ sup
u≥R

[
sinha(u + r − R)

sinhau

]1−d

≤ cosh1−d a(r − R).

In the last step, we have used

sinh(x + y)

sinhx
= sinhx coshy + coshx sinhy

sinhx
≥ coshy.

The result follows. �

Next, we consider the rate of escape for Brownian motion.

LEMMA 3.2. Suppose that Sectx ≤ −a2. For any λ < (d − 1)a/2, we have

lim
r(x)→∞Px

{
rt ≥ max{λt, r(x)/2}, ∀ t ≥ 0

} = 1.

PROOF. Again, it is enough to show the result for the r∗
t in the proof of the

preceding lemma. Fix a λ1 ∈ (λ, (d − 1)a/2) and take R such that

[(d − 1)a/2] cothar ≥ λ1, r ≥ R/2.

Suppose that ε > 0. By Lemma 3.1, we can take R even larger such that, for all
x ∈ M with r(x) ≥ R,

Px{r∗
t ≥ r(x)/2, ∀ t ≥ 0} ≥ 1 − ε.(3.2)

By the law of iterated logarithm,

lim inf
t↑∞

βt√
2t log log t

= −1.

Hence, there is an even larger R (independent of x) such that

Px{βt ≥ −(λ − λ1)t − R, ∀ t ≥ 0} ≥ 1 − ε.(3.3)

If the events in (3.2) and (3.3) happen simultaneously, then

r∗
t = r∗

0 + βt + d − 1

2

∫ t

0
a cothar∗

s ds

≥ R − (λ1 − λ)t − R + λ1t

= λt.
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It follows that for all x ∈ M with r(x) ≥ R we have

Px

{
r∗
t ≥ max{λ1t, r(x)/2}, ∀ t ≥ 0

} ≥ 1 − 2ε.

This proves the lemma. �

We now estimate the total angular variation. Suppose that rt ≥ r(x)/2 for all
t ≥ 0 with large r(x). Recall that in Section 2 we have defined

τn = inf
{
t ≥ τn−1 : d(Xt ,Xτn−1) = 1

}
, τ0 = 0,

�τn = τn − τn−1,

�θn = max
τn−1≤t≤τn

∠
(
θ(Xτn−1), θ(Xt )

)
.

From Lemma 2.6, we have �θn ≤ Ce−arτn . Hence,
∞∑

n=1

�θn ≤ C

∞∑
n=1

e−arτn .

Next, let Jk be the total number of steps in the geodesic ball of radius k, that is,

Jk = #
{
n : rτn ≤ k

}
.

We have
∞∑

n=1

�θn ≤ C

∞∑
k=1

(Jk − Jk−1)e
−a(k−1) ≤ C0

∞∑
k=1

Jke
−ak.(3.4)

Thus, the problem is reduced to finding a good estimate for Jk .

REMARK 3.3. The idea of studying Jk is due to Leclercq [14].

THEOREM 3.4. Let M be a Cartan–Hadamard manifold whose sectional
curvature is bounded from above by −a2. Suppose that the Ricci curvature satisfies
the lower bound

Ricx ≥ −h(r)2e2ar,

where h is a positive and nonincreasing function such that
∫ ∞

0 rh(r) dr < ∞. Then
the Dirichlet problem at infinity for M is solvable.

PROOF. Fix a constant λ < (d − 1)a/2 and let

A = {
rt ≥ max{λt, r(x)/2}, ∀ t ≥ 0

}
.

By Lemma 3.2, there is an R such that, for r(x) ≥ R,

Px{A} ≥ 1 − ε

2
.
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Let τnl
be the lth time such that rτnl

≤ k − 1. Then

{τnl
≤ t} =

{ ∞∑
n=1

I{rτn≤k−1,τn≤t} ≥ l

}
,

from which it is clear that τnl
is a stopping time.

For a fixed k, denote for the time being

Lk = C1h(k)eak, Nk = (k + 1)Lk

λC1
.

Without loss of generality, we may assume that h(k) ≥ e−ak/2 [otherwise, just add
e−ar/2 to h(r)] and Lk ≥ 1. Consider the length of time �τnl

for the next step. Let

Bl =
{
�τnl

≤ C1

Lk

, τnl
< ∞

}
, CNk

= B1 ∪ B2 ∪ · · · ∪ BNk
.

By Proposition 2.4 and the fact that τnl
is a stopping time,

PxBl = Ex

{
PXτnl

[
τ1 ≤ C1

Lk

]
, τnl

< ∞
}

≤ e−C2Lk .(3.5)

Recall that Jk−1 is the total number of steps such that rτn ≤ k − 1. We have
{Jk−1 ≥ Nk} = {τnNk

< ∞}. Now

{Jk−1 ≥ Nk} ∩ A = {
τnNk

< ∞} ∩ A ∩ CNk
+ {

τnNk
< ∞} ∩ A ∩ Cc

Nk
.(3.6)

On A, we have rt ≥ λt for all t ≥ 0. This means that

|{t : rt ≤ k}| ≤ k

λ
.

But on {τnNk
< ∞} ∩ Cc

Nk
,

|{t : rt ≤ k}| ≥
Nk∑
l=1

�τnl
≥ Nk

C1

Lk

= k + 1

λ
.

This shows that {τnNk
< ∞} ∩ A ∩ Cc

Nk
= ∅ and we have, from (3.6),

{Jk−1 ≥ Nk} ∩ A ⊆ CNk
= B1 ∪ B2 ∪ · · · ∪ BNk

.

By (3.5),

Px{Jk−1 ≥ Nk,A} ≤ Nke
−C2Lk ≤ C3keak−C2e

ak/2
.

Using the definition of Lk , we see from the above inequality that, for any ε > 0,
there is a sufficiently large R such that, for r(x) ≥ R,

∞∑
k≥r(x)/2

Px

{
Jk ≥ C4kh(k)eak,A

} ≤ ε

2
.
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On A, we have rt ≥ r(x)/2 for all t . This means that Jk = 0 for k ≤ r(x)/2. It
follows that, for r(x) ≥ R,

Px

{
Jk = 0, k ≤ r(x)

2
;Jk ≤ C4kh(k)eak, k ≥ r(x)

2

}
≥ PxA − ε

2
≥ 1 − ε.

If the event in the above inequality holds, then, by (3.4),

∞∑
n=1

�θn ≤ C4
∑

k≥r(x)/2

kh(k).

This can be made arbitrarily small because the
∑∞

k=1 kh(k) converges by
hypothesis. Therefore, we have shown that for any positive ε and δ, there is an R

such that, for all x ∈ M with r(x) ≥ R,

Px

{ ∞∑
n=1

�θn ≤ δ

}
≥ 1 − ε.

By Proposition 2.3, this implies the solvability of the Dirichlet problem at infinity
for M . �

4. Vanishing upper bound. In this section, we assume that M is a Cartan–
Hadamard manifold whose curvature satisfies the following condition: there are
positive constant r0, α > 2 and β < α − 2 such that, for all r(x) ≥ r0,

−r(x)2β ≤ Ricx and Sectx ≤ −α(α − 1)

r(x)2 .

The proof for this case is completely parallel to that in the previous section, so we
will be brief.

LEMMA 4.1. There is a constant C such that, for all R ≥ 1 and x ∈ M with
r(x) ≥ R,

Px{rt ≤ R for some t ≥ 0} ≤ C

[
R

r(x)

](d−1)α−1

.

PROOF. Define the function G as in the proof of Lemma 2.5. As before, we
may assume that M is rotationally symmetric with metric ds2 = dr2 +G(r)2 dθ2.
In this case, by the same argument as in Lemma 3.1, we have

Px{rt ≤ R for some t ≥ 0} =
∫ ∞
r(x) G(s)1−d ds∫ ∞
R G(s)1−d ds

.

The result follows immediately from the fact that G(r) ∼ c1r
α as r ↑ ∞. �
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In the proof of the next lemma, we need the following fact (see [17]): let Y a be
the Bessel process of index q > 1 from a ≥ 0:

Y a
t = a + βt + q

2

∫ t

0

ds

Y a
s

,(4.1)

where β is a one-dimensional Brownian motion. Then for any λ > 0 we have

P

{
lim
t↑∞

Y a
t

t1/2−λ
= ∞

}
= 1.(4.2)

Note that Y a
t ≤ Y b

t if a ≤ b.

LEMMA 4.2. For any λ > 0, we have

lim
r(x)→∞Px

{
rt ≥ max{t, r(x)}1/2−λ, ∀ t ≥ 0

} = 1.

PROOF. Again, it is enough to assume that M is rotationally symmetric, as in
Lemma 4.1. The radial process is given by

rt = r0 + βt + d − 1

2

∫ t

0

G′(rs)
G(rs)

ds.

Now take a q ∈ (1, (d − 1)α). By (2.3), there is an r1 ≥ 1 such that

(d − 1)
G′(r)
G(r)

≥ q

r
, r ≥ r1.

Let Y a be the Bessel process of index q defined by (4.1). If r(x) ≥ r1, then we
have

rt ≥ Y
r(x)
t ≥ Y

r1
t ≥ Y 1

t , t ≤ σr1,

where σr1 is the first time rt reaches r1. For any ε > 0, there is an R ≥ r1
(independent of x) such that

Px

{
Y 1

t ≥ t1/2−λ, ∀ t ≥ R
} ≥ 1 − ε.

Hence, using Lemma 4.1, we have, for r(x) ≥ R ≥ 1,

Px

{
rt ≥ max{t, r(x)}1/2−λ, ∀ t ≥ 0

}
≥ Px

{
rt ≥ t1/2−λ, ∀ t ≥ r(x)

} − Px

{
rt ≤ r(x)1/2−λ for some t ≥ 0

}
≥ Px

{
Y 1

t ≥ t1/2−λ, ∀ t ≥ R
} − Cr(x)−(λ+1/2)[(d−1)α−1]

≥ 1 − ε − Cr(x)−(λ+1/2)[(d−1)α−1].

It follows that for all sufficiently large r(x) we have

Px

{
rt ≥ max{t, r(x)}1/2−λ, ∀ t ≥ 0

} ≥ 1 − 2ε. �
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THEOREM 4.3. Suppose that M is a Cartan–Hadamard manifold. Suppose
that there exist positive constants r0, α > 2 and β < α − 2 such that

−r(x)2β ≤ Ricx and Sectx ≤ −α(α − 1)

r(x)2 for r ≥ r0.

Then the Dirichlet problem at infinity is solvable for M .

PROOF. We define τn,�τn,�θn, τnl
and Jk as in the previous section. Under

the current upper bound of the sectional curvature, we have �θn ≤ C/rα
τn

by
Lemma 2.5. Hence,

∞∑
n=1

�θn ≤ C0J1 + C0

∞∑
k=1

Jk+1 − Jk

kα

≤ C0J1 + C1

∞∑
k=1

Jk

kα+1 + C0 lim inf
k↑∞

Jk

kα
.

(4.3)

We will now estimate the size of Jk . By Proposition 2.4, we have

Px

{
�τnl

≤ C1k
−β, τnl

< ∞} ≤ e−C1k
β

.

Choose a positive λ such that β + 2/(1 − 2λ) < α. Let

A = {
rt ≥ max{t, r(x)}1/2−λ, ∀ t ≥ 0

}
.

Fix an arbitrary ε > 0. By Lemma 4.2, PxA ≥ 1 − ε/2 for sufficiently large r(x).
By the same argument as in Theorem 3.4, we have

Px

{
Jk ≥ (C1 + 1)kβ+2/(1−2λ),A

} ≤ C3k
β+2/(1−2λ)e−C2k

β

.

On A, we have |{t : rt ≤ k}| ≤ k2/(1−2λ) and Jk = 0 for k ≤ r(x)1/2−λ. Hence, as
in the proof of Theorem 3.4, we have, for sufficiently large r(x),

Px

{
Jk = 0, k ≤ r(x)1/2−λ;Jk ≤ C4k

β+2/(1−2λ), k ≥ r(x)1/2−λ}
≥ PxA − C3

∑
k≥r(x)1/2−λ

kβ+2/(1−2λ)e−C2k
β

≥ 1 − ε.

If the event in the above inequality is true, then Jk/kα → 0 as k ↑ ∞ and, by (4.3),

∞∑
n=1

�θn ≤ C4
∑

k≥r(x)1/2−λ

k−(α+1)+β+2/(1−2λ)

≤ C5r(x)−(α−β)(1−2λ)/2+1.
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By our choice of λ, the exponent is negative. Hence, we have shown that for any
positive ε and δ, there is an R such that, for r(x) ≥ R,

Px

{ ∞∑
n=1

�θn ≤ δ

}
≥ 1 − ε.

The theorem now follows from Proposition 2.3. �

REMARK 4.4. For the Bessel process Y a in (4.1), we have

P

{
lim inf
t→∞

Y a
t√

tψ(t)
≥ 1

}
= 1

if ψ is a positive nonincreasing function such that
∫ ∞

0 ψ(t)q−1 dt < ∞. Using
this rate instead of t1/2−λ in (4.2), we can improve the lower bound in the
above theorem. For example, it can be shown that the Dirichlet problem is
solvable if the Ricci curvature is bounded from below by −r2(α−2)/(ln r)2l for
l > (dα − α + 1)/(dα − α − 1).
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