BROWNIAN MOTION AND DIRICHLET PROBLEMS AT INFINITY ${ }^{1}$

By Elton P. Hsu
Northwestern University

Abstract

We discuss angular convergence of Riemannian Brownian motion on a Cartan-Hadamard manifold and show that the Dirichlet problem at infinity for such a manifold is uniquely solvable under the curvature conditions $-C e^{(2-\eta) \operatorname{ar}(x)} \leq K_{M}(x) \leq-a^{2}(\eta>0)$ and $-C r(x)^{2 \beta} \leq K_{M}(x) \leq$ $-\alpha(\alpha-1) / r(x)^{2}(\alpha>\beta+2>2)$, respectively.

1. Introduction. A Cartan-Hadamard manifold is a complete, simply connected Riemannian manifold with nonpositive sectional curvature. We fix a reference point $o \in M$ once and for all. It is well known that the exponential map $\exp : T_{o} M \rightarrow M$ from the tangent space $T_{o} M$ based at o is a diffeomorphism. This defines a polar coordinate system (r, θ) on M. Two geodesic rays γ_{1} and γ_{2} on M are called equivalent if there is a constant C such that $d\left(\gamma_{1}(t), \gamma_{2}(t)\right) \leq C$ for all $t \geq 0$. It can be shown that this is an equivalence relation on the set of geodesic rays. The set of equivalence classes is the sphere at infinity $S_{\infty}(M)$. A basic fact of Cartan-Hadamard manifolds is that $\widehat{M}=M \cup S_{\infty}(M)$ with a properly defined topology (called the cone topology) is a compactification of M. For each $o \in M$, the sphere at infinity $S_{\infty}(M)$ can be identified homeomorphically with the unit sphere in the tangent space $T_{o} M$. If (r, θ) are the polar coordinates based at o, then a sequence of points $z_{n} \in M$ converges to a boundary point $\theta_{0} \in S_{\infty}(M)$ if and only if $r\left(z_{n}\right) \rightarrow \infty$ and $\theta\left(z_{n}\right) \rightarrow \theta_{0}$ (see [5]).

Given a continuous function f on $S_{\infty}(M)$, the Dirichlet problem at infinity is to find a function $u_{f} \in C^{\infty}(M) \cap C(\widehat{M})$ that is harmonic on M and equal to f on $S_{\infty}(M)$. We say that the Dirichlet problem at infinity is solvable for M if for every $f \in C\left(S_{\infty}(M)\right)$ there is a unique solution u_{f}. This property of a Cartan-Hadamard manifold can be obtained under certain conditions on the curvature of M and can be approached analytically or probabilistically. For analytic methods, see [1, 3, 4, $6,7]$; for probabilistic methods, see [8-10, 14-16, 18]. The more difficult problem of identifying the Martin boundary with the boundary at infinity was discussed in [4] and [13]. We are mainly concerned with a probabilistic approach to the problem, which involves basically proving the angular convergence of transient Brownian motion.

In this paper, we will combine an improved version of the method used in [9] and an idea from [14] to prove the solvability of the Dirichlet problem at infinity

[^0]under certain curvature growth conditions more generous than previously known. We consider two typical situations. In the first case, the sectional curvature is assumed to be bounded by a negative constant: $\operatorname{Sect}_{x} \leq-a^{2}$. In the second case, we assume that $\operatorname{Sect}_{x} \leq-c / r^{2}[r=r(x)=d(x, o)]$. This second case is significant because it vanishes as $r \rightarrow \infty$. Let us now state our main theorems.

ThEOREM 1.1. Let M be a Cartan-Hadamard manifold. Suppose that there exist a positive constant a and a positive and nonincreasing function h with $\int_{0}^{\infty} r h(r) d r<\infty$ such that

$$
-h(r)^{2} e^{2 a r} \leq \operatorname{Ric}_{x} \quad \text { and } \quad \operatorname{Sect}_{x} \leq-a^{2}
$$

Then the Dirichlet problem at infinity for M is solvable.
Early lower bounds of the form $C e^{\lambda a r}$ were obtained in [6] with $\lambda<1 / 3$ and in [14] with $\lambda<1 / 2$. Our result represents a significant improvement in this respect.

Theorem 1.2. Let M be a Cartan-Hadamard manifold. Suppose that there exist positive constants $r_{0}, \alpha>2$ and $\beta<\alpha-2$ such that

$$
-r^{2 \beta} \leq \operatorname{Ric}_{x} \quad \text { and } \quad \operatorname{Sect}_{x} \leq-\frac{\alpha(\alpha-1)}{r^{2}}
$$

for all $r=r(x) \geq r_{0}$. Then the Dirichlet problem at infinity for M is solvable.
Hsu and March [9] proved a lower bound of the form $-r^{2 \beta}$ with $\beta<1-$ $2 / \alpha<1$. Our new result opens the possibility of $\beta \geq 1$.

The rest of this paper has three sections. In Section 2, we state some preliminary results needed for the proof of our main theorems. In Sections 3 and 4, we deal with the constant upper bound case and the vanishing upper bound case, respectively.
2. Preliminary results. Let M be a Riemannian manifold and $\widetilde{M}=M \cup\{\Delta\}$ its one-point compactification. The path space $W(M)$ based on M is the space of continuous maps $X \in C([0, \infty)$; $\widetilde{M})$ with the following property: if $X_{t}=\Delta$ for some t, then $X_{s}=\Delta$ for all $s \geq t$. The lifetime $e(X)$ is defined by $e(X)=$ $\inf \left\{t: X_{t}=\Delta\right\}$. The path space $W(M)$ is equipped with the standard filtration $\mathscr{B}_{*}=\left\{\mathscr{B}_{t}\right\}$ and the lifetime $e: W(M) \rightarrow \mathbb{R}_{+}$is a \mathscr{B}_{*}-stopping time. We use \mathbb{P}_{x} to denote the law of Brownian motion on M starting from x. It is a probability measure on $W(M)$.

Now let M be a Cartan-Hadamard manifold and $\widehat{M}=M \cup S_{\infty}(M)$ its compactification by the sphere at infinity. A Brownian motion X can be decomposed into the radial process $r_{t}=r\left(X_{t}\right)$ and the angular process $\theta_{t}=\theta\left(X_{t}\right)$. The probabilistic approach to the Dirichlet problem is based on the following wellknown fact.

THEOREM 2.1. Let M be a Cartan-Hadamard manifold. Suppose that, for any $x \in M$,

$$
\mathbb{P}_{x}\left\{X_{e}=\lim _{t \uparrow e} X_{t} \text { exists }\right\}=1
$$

(in the cone topology of \widehat{M}) and, for any $\theta_{0} \in S_{\infty}(M)$ and any neighborhood U of θ_{0} in $S_{\infty}(M)$,

$$
\lim _{x \rightarrow \theta_{0}} \mathbb{P}_{x}\left\{X_{e} \in U\right\}=1
$$

Then the Dirichlet problem at infinity for M is solvable. For any $f \in C\left(S_{\infty}(M)\right)$, the function $u_{f}(x)=\mathbb{E}_{x} f\left(X_{e}\right)$ is the unique solution of the Dirichlet problem with boundary function f.

Proof. Since $u_{f}(x)=\mathbb{E}_{x} u_{f}\left(X_{\tau_{D}}\right)$ for any relatively compact open set D containing x, where τ_{D} is the first exit time of D, we see that u is harmonic on M. For any $\varepsilon>0$ and $\theta_{0} \in S_{\infty}(M)$, choose a neighborhood U of θ_{0} such that $\left|f(\theta)-f\left(\theta_{0}\right)\right| \leq \varepsilon$ for $\theta \in U$. Then

$$
\begin{aligned}
\left|u_{f}(x)-f\left(\theta_{0}\right)\right| & \leq \mathbb{E}_{x}\left|f\left(X_{e}\right)-f\left(\theta_{0}\right)\right| \\
& \leq \varepsilon \mathbb{P}_{x}\left\{X_{e} \in U\right\}+2\|f\|_{\infty} \mathbb{P}_{x}\left\{X_{e} \notin U\right\}
\end{aligned}
$$

Letting $x \rightarrow \theta_{0}$, we have $\lim \sup _{x \rightarrow \theta_{0}}\left|u_{f}(x)-f\left(\theta_{0}\right)\right| \leq \varepsilon$. This shows that $\lim _{x \rightarrow \theta_{0}} u_{f}(x)=f\left(\theta_{0}\right)$, as desired.

To prove the uniqueness, let $\left\{D_{n}\right\}$ be an exhaustion of M and u a solution of the Dirichlet problem at infinity with boundary function f. Then $\left\{u_{f}\left(X_{t \wedge \tau_{D_{n}}}\right), t \geq 0\right\}$ is a uniformly bounded martingale under \mathbb{P}_{x}; hence, $u(x)=\mathbb{E}_{x} u\left(X_{t \wedge \tau_{D_{n}}}\right)$. Letting $t \uparrow \infty$ and then $n \uparrow \infty$, we have

$$
u(x)=\mathbb{E}_{x} u\left(X_{e}\right)=\mathbb{E}_{x} f\left(X_{e}\right)=u_{f}(x)
$$

REMARK 2.2. Ancona [2] constructed a Cartan-Hadamard manifold such that Brownian motion converges to a single point on the boundary at infinity. For such manifolds, the Dirichlet problem at infinity is clearly not solvable.

We end this section with a description of the general method for proving angular convergence of Brownian motion. Define a sequence of stopping times $\left\{\tau_{n}\right\}$ by $\tau_{0}=0$ and

$$
\tau_{n}=\inf \left\{t \geq \tau_{n-1}: d\left(X_{t}, X_{\tau_{n-1}}\right)=1\right\}
$$

Let $\Delta \tau_{n}=\tau_{n}-\tau_{n-1}$ be the amount of time for the nth step. The angular oscillation during the time interval $\left[\tau_{n-1}, \tau_{n}\right]$ is

$$
\Delta \theta_{n}=\max _{\tau_{n-1} \leq t \leq \tau_{n}} \angle\left(\theta\left(X_{\tau_{n-1}}\right), \theta\left(X_{t}\right)\right)
$$

Proposition 2.3. Let M be a Cartan-Hadamard manifold on which Brownian motion is transient, that is,

$$
\mathbb{P}_{x}\left\{r_{t} \rightarrow \infty \text { as } t \uparrow e\right\}=1
$$

The Dirichlet problem at infinity is solvable if, for any positive ε and δ, there is an R such that, for all $z \in M$ with $r(z) \geq R$,

$$
\begin{equation*}
\mathbb{P}_{z}\left\{\sum_{n=1}^{\infty} \Delta \theta_{n} \leq \delta\right\} \geq 1-\varepsilon \tag{2.1}
\end{equation*}
$$

Proof. First, we note that $\sum_{n=1}^{\infty} \Delta \theta_{n}<\infty$ implies that $\lim _{t \uparrow e} X_{t}=X_{e}$ exists. Let $x \in M$ and $\varepsilon>0$. Choose $R \geq r(x)$ such that (2.1) holds (for $\delta=1$, say). Let $\tau_{R}=\inf \left\{t: r_{t}=R\right\}$. Then

$$
\begin{aligned}
\mathbb{P}_{x}\left\{X_{e}=\lim _{t \uparrow e} X_{t} \text { exists }\right\} & \geq \mathbb{P}_{x}\left\{\sum_{n=1}^{\infty} \Delta \theta_{n}<\infty\right\} \\
& =\mathbb{E}_{x} \mathbb{P}_{X_{\tau_{R}}}\left\{\sum_{n=1}^{\infty} \Delta \theta_{n}<\infty\right\} \\
& \geq 1-\varepsilon
\end{aligned}
$$

Since ε is arbitrary, this shows that $\mathbb{P}_{x}\left\{X_{e}=\lim _{t \uparrow e} X_{t}\right.$ exists $\}=1$.
Let $\theta_{0} \in S_{\infty}(M)$ and U a neighborhood of θ_{0} on $S_{\infty}(M)$ containing θ_{0}. There is a $\delta>0$ such that

$$
\left\{\theta \in S_{\infty}(M): \angle\left(\theta, \theta_{0}\right) \leq 2 \delta\right\} \subset U
$$

We have

$$
\angle\left(\theta_{0}, \theta\left(X_{e}\right)\right) \leq \angle\left(\theta_{0}, \theta\left(X_{0}\right)\right)+\sum_{n=0}^{\infty} \Delta \theta_{n}
$$

For any $\varepsilon>0$, choose $R>0$ such that (2.1) holds. Then, for all $x \in M$ such that $r(x) \geq R$ and $\angle\left(\theta(x), \theta_{0}\right) \leq \delta$, we have

$$
\mathbb{P}_{x}\left\{X_{e} \in U\right\} \geq \mathbb{P}_{x}\left\{\angle\left(\theta_{0}, \theta\left(X_{e}\right)\right) \leq 2 \delta\right\} \geq \mathbb{P}_{x}\left\{\sum_{n=0}^{\infty} \Delta \theta_{n} \leq \delta\right\} \geq 1-\varepsilon
$$

This shows that

$$
\lim _{x \rightarrow \theta_{0}} \mathbb{P}_{x}\left\{X_{e} \in U\right\}=1
$$

By Theorem 2.1, the Dirichlet problem at infinity for M is solvable.
We use the following result to estimate the amount of time the Brownian motion spends for each step. Let

$$
\tau_{1}=\inf \left\{t>0: d\left(X_{t}, X_{0}\right)=1\right\}
$$

Proposition 2.4. There are positive constants C_{1}, C_{2} such that if the Ricci curvature on the geodesic ball $B(x ; 1)$ of radius 1 centered at x is bounded from below by a negative constant $-L^{2} \leq-1$, then

$$
\mathbb{P}_{x}\left\{\tau_{1} \leq \frac{C_{1}}{L}\right\} \leq e^{-C_{2} L}
$$

In fact, we can take $C_{1}=1 / 8 d$ and $C_{2}=1 / 2$.
Proof. This is Lemma 4 of [9]. We give a simpler proof here. Let $r_{t}=$ $d\left(X_{t}, x\right)$ be the radial process. According to [11], there is a Brownian motion β such that

$$
r_{t}=\beta_{t}+\frac{1}{2} \int_{0}^{t} \Delta r\left(X_{s}\right) d s-L_{t}
$$

where L is nondecreasing and increases only when X_{t} is on the cut locus of o. By Itô's formula, we have

$$
r_{t}^{2}=2 \int_{0}^{t} r_{s} d r_{s}+\langle r\rangle_{t}
$$

Hence,

$$
\begin{equation*}
r_{t}^{2} \leq 2 \int_{0}^{t} r_{s} d \beta_{s}+\int_{0}^{t} r_{s} \Delta r\left(X_{s}\right) d s+t \tag{2.2}
\end{equation*}
$$

By the Laplacian comparison theorem, we have, for all $z \in B(x ; 1)$,

$$
\Delta r(z) \leq(d-1) L \operatorname{coth} L r(z)
$$

On the other hand, $l \operatorname{coth} l \leq 1+l$ for all $l \geq 0$. Hence, if $s \leq \tau_{1}$, we have

$$
r_{s} \Delta r\left(X_{s}\right) \leq(d-1) L r_{s} \operatorname{coth} L r_{s} \leq(d-1)(1+L)
$$

We now let $t=\tau_{1}$ in (2.2) and obtain

$$
1 \leq 2 \int_{0}^{\tau_{1}} r_{s} d \beta_{s}+2 d L \tau_{1}
$$

From the above inequality, we see that the event $\tau_{1} \leq 1 / 8 d L$ implies

$$
\int_{0}^{\tau_{1}} r_{s} d \beta_{s} \geq \frac{3}{8}
$$

By Lévy's criterion, there is a Brownian motion W such that

$$
\int_{0}^{\tau_{1}} r_{s} d \beta_{s}=W_{\eta}, \quad \eta=\int_{0}^{\tau_{1}} r_{s}^{2} d s \leq \frac{1}{8 d L}
$$

Hence, $\tau_{1} \leq 1 / 8 d L$ implies

$$
\max _{0 \leq s \leq 1 / 8 d L} W_{s} \geq W_{\eta} \geq \frac{3}{8}
$$

The random variable on the left-hand side is distributed as $\sqrt{1 / 8 d L}\left|W_{1}\right|$. It follows that

$$
\mathbb{P}_{x}\left[\tau_{1} \leq \frac{1}{8 d L}\right] \leq \mathbb{P}_{x}\left[\left|W_{1}\right| \geq \sqrt{\frac{9 L}{8}}\right] \leq e^{-L / 2}
$$

We will use the following geometric result to estimate the angle in a CartanHadamard manifold. It is essentially Lemma 2 of [9], but we include a complete proof to clarify a few points.

LEMMA 2.5. Let M be a Cartan-Hadamard manifold. Suppose that there are positive constants $\alpha \geq 1$ and $r_{0} \geq 1$ such that

$$
\operatorname{Sect}_{x} \leq-\frac{\alpha(\alpha-1)}{r(x)^{2}}, \quad r(x) \geq r_{0}
$$

Let $x, y \in M$ be such that

$$
r(x) \geq 2 r_{0}, \quad r(y) \geq 2 r_{0}, \quad d(x, y) \leq 1
$$

Then there is a constant C independent of x and y such that the angle between the geodesic rays to x and y satisfies

$$
\angle(\theta(x), \theta(y)) \leq \frac{C}{r(x)^{\alpha}} .
$$

Proof. Without loss of generality, we assume $r(x) \leq r(y)$. Let

$$
K(r)=\min \left\{-\sup _{r(x) \leq r} \operatorname{Sect}_{x}, \frac{\alpha(\alpha-1)}{r^{2}}\right\}
$$

Let G be the unique solution of the Jacobi equation

$$
G^{\prime \prime}(r)-K(r) G(r)=0, \quad G(0)=0, \quad G^{\prime}(0)=1
$$

Since $K(r)=\alpha(\alpha-1) / r^{2}$ for $r \geq r_{0}$, we have $G(r)=c_{1} r^{\alpha}+c_{2} r^{1-\alpha}$. Hence,

$$
\begin{equation*}
G(r) \sim c_{1} r^{\alpha}, \quad \frac{G^{\prime}(r)}{G(r)} \sim \frac{\alpha}{r} \quad \text { as } r \uparrow \infty \tag{2.3}
\end{equation*}
$$

In particular, $G(r) \geq C^{-1} r^{\alpha}$ for some C and all $r \geq r_{0}$. Now let N be the rotationally symmetric manifold with the metric $d s_{N}^{2}=d r^{2}+G(r)^{2} d \theta^{2}$. In N, consider the geodesic triangle $A O B$ such that

$$
d(O, A)=r(x), \quad d(O, B)=r(y), \quad \angle(\theta(A), \theta(B))=\angle(\theta(x), \theta(y))
$$

By the Rauch comparison theorem, we have $d_{N}(A, B) \leq d(x, y)$. Hence,

$$
1 \geq d_{N}(A, B) \geq G(r(x)) \angle(\theta(A), \theta(B))=G(r(x)) \angle(\theta(x), \theta(y))
$$

This implies that $\angle(\theta(x), \theta(y)) \leq C / r(x)^{\alpha}$.
When the sectional curvature is bounded from above by a negative constant, we have the following analogue of the above lemma.

Lemma 2.6. Let M be a Cartan-Hadamard manifold. Suppose that there is a positive constant a such that $\operatorname{Sect}_{x} \leq-a^{2}$. Let $x, y \in M$ be such that $r(x) \leq r(y)$ and $d(x, y) \leq 1$. Then

$$
\angle(\theta(x), \theta(y)) \leq \frac{a}{\sinh \operatorname{ar}(x)} \leq\left[\frac{1}{r(x)}+2 a\right] e^{-a r(x)}
$$

Proof. Let $G(r)=\sinh a r / a$ and follow the proof of the preceding lemma.
3. Constant upper bound. In this section, we consider the case of a constant upper bound on the sectional curvature of M. We first give an estimate on the probability that Brownian motion starting at $r(x)=R$ will ever return to $r=$ $R \leq r(x)$.

LEMmA 3.1. Suppose that $\operatorname{Sect}_{x} \leq-a^{2}$. For any $R \geq 0$, we have, for $r(x) \geq R$,

$$
\begin{equation*}
\mathbb{P}_{x}\left\{r_{t} \leq R \text { for some } t \geq 0\right\} \leq \cosh ^{1-d} a(r-R) \tag{3.1}
\end{equation*}
$$

Proof. There is a Brownian motion β such that

$$
r_{t}=r_{0}+\beta_{t}+\frac{1}{2} \int_{0}^{t} \Delta r\left(X_{t}\right) d t
$$

By the Laplacian comparison theorem, we have $\Delta r \geq(d-1) a$ coth $a r$. If we define r^{*} by

$$
r_{t}^{*}=r_{0}+\beta_{t}+\frac{d-1}{2} \int_{0}^{t} a \operatorname{coth} a r_{s}^{*} d s
$$

then a comparison theorem for stochastic differential equations shows that $r_{t} \geq r_{t}^{*}$. Thus, it is enough to prove the estimate for r^{*}.

The following argument is well known. Let

$$
l(r)=\int_{r}^{\infty}(\sinh a u)^{1-d} d u
$$

and $\sigma_{R}=\inf \left\{t: r_{t}^{*}=R\right\}$. If $r(x) \geq R$, then $\left\{l\left(r_{t \wedge \sigma_{R}}^{*}\right)\right\}$ is a uniformly bounded martingale. Letting $t \uparrow \infty$, we have

$$
l(r)=\mathbb{E}_{x} l\left(r_{t \wedge \sigma_{R}}^{*}\right)=l(R) \mathbb{P}_{x}\left\{\sigma_{R}<\infty\right\}
$$

Hence,

$$
\mathbb{P}_{x}\left\{r_{t}^{*} \leq R \text { for some } t \geq 0\right\}=\mathbb{P}_{x}\left\{\sigma_{R}<\infty\right\}=\frac{l(r)}{l(R)}
$$

On the other hand,

$$
\begin{aligned}
\frac{l(r(x))}{l(R)} & =\frac{\int_{r}^{\infty}(\sinh a u)^{1-d} d u}{\int_{R}^{\infty}(\sinh a u)^{d-1} d u} \\
& \leq \sup _{u \geq R}\left[\frac{\sinh a(u+r-R)}{\sinh a u}\right]^{1-d} \\
& \leq \cosh ^{1-d} a(r-R) .
\end{aligned}
$$

In the last step, we have used

$$
\frac{\sinh (x+y)}{\sinh x}=\frac{\sinh x \cosh y+\cosh x \sinh y}{\sinh x} \geq \cosh y .
$$

The result follows.

Next, we consider the rate of escape for Brownian motion.
Lemma 3.2. Suppose that $\operatorname{Sect}_{x} \leq-a^{2}$. For any $\lambda<(d-1) a / 2$, we have

$$
\lim _{r(x) \rightarrow \infty} \mathbb{P}_{x}\left\{r_{t} \geq \max \{\lambda t, r(x) / 2\}, \forall t \geq 0\right\}=1
$$

Proof. Again, it is enough to show the result for the r_{t}^{*} in the proof of the preceding lemma. Fix a $\lambda_{1} \in(\lambda,(d-1) a / 2)$ and take R such that

$$
[(d-1) a / 2] \operatorname{coth} a r \geq \lambda_{1}, \quad r \geq R / 2 .
$$

Suppose that $\varepsilon>0$. By Lemma 3.1, we can take R even larger such that, for all $x \in M$ with $r(x) \geq R$,

$$
\begin{equation*}
\mathbb{P}_{x}\left\{r_{t}^{*} \geq r(x) / 2, \forall t \geq 0\right\} \geq 1-\varepsilon . \tag{3.2}
\end{equation*}
$$

By the law of iterated logarithm,

$$
\liminf _{t \uparrow \infty} \frac{\beta_{t}}{\sqrt{2 t \log \log t}}=-1
$$

Hence, there is an even larger R (independent of x) such that

$$
\begin{equation*}
\mathbb{P}_{x}\left\{\beta_{t} \geq-\left(\lambda-\lambda_{1}\right) t-R, \forall t \geq 0\right\} \geq 1-\varepsilon . \tag{3.3}
\end{equation*}
$$

If the events in (3.2) and (3.3) happen simultaneously, then

$$
\begin{aligned}
r_{t}^{*} & =r_{0}^{*}+\beta_{t}+\frac{d-1}{2} \int_{0}^{t} a \operatorname{coth} a r_{s}^{*} d s \\
& \geq R-\left(\lambda_{1}-\lambda\right) t-R+\lambda_{1} t \\
& =\lambda t .
\end{aligned}
$$

It follows that for all $x \in M$ with $r(x) \geq R$ we have

$$
\mathbb{P}_{x}\left\{r_{t}^{*} \geq \max \left\{\lambda_{1} t, r(x) / 2\right\}, \forall t \geq 0\right\} \geq 1-2 \varepsilon
$$

This proves the lemma.
We now estimate the total angular variation. Suppose that $r_{t} \geq r(x) / 2$ for all $t \geq 0$ with large $r(x)$. Recall that in Section 2 we have defined

$$
\begin{aligned}
\tau_{n} & =\inf \left\{t \geq \tau_{n-1}: d\left(X_{t}, X_{\tau_{n-1}}\right)=1\right\}, \quad \tau_{0}=0 \\
\Delta \tau_{n} & =\tau_{n}-\tau_{n-1} \\
\Delta \theta_{n} & =\max _{\tau_{n-1} \leq t \leq \tau_{n}} \angle\left(\theta\left(X_{\tau_{n-1}}\right), \theta\left(X_{t}\right)\right) .
\end{aligned}
$$

From Lemma 2.6, we have $\Delta \theta_{n} \leq C e^{-a r_{\tau_{n}}}$. Hence,

$$
\sum_{n=1}^{\infty} \Delta \theta_{n} \leq C \sum_{n=1}^{\infty} e^{-a r_{\tau_{n}}}
$$

Next, let J_{k} be the total number of steps in the geodesic ball of radius k, that is,

$$
J_{k}=\#\left\{n: r_{\tau_{n}} \leq k\right\} .
$$

We have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \Delta \theta_{n} \leq C \sum_{k=1}^{\infty}\left(J_{k}-J_{k-1}\right) e^{-a(k-1)} \leq C_{0} \sum_{k=1}^{\infty} J_{k} e^{-a k} \tag{3.4}
\end{equation*}
$$

Thus, the problem is reduced to finding a good estimate for J_{k}.
REmark 3.3. The idea of studying J_{k} is due to Leclercq [14].
THEOREM 3.4. Let M be a Cartan-Hadamard manifold whose sectional curvature is bounded from above by $-a^{2}$. Suppose that the Ricci curvature satisfies the lower bound

$$
\operatorname{Ric}_{x} \geq-h(r)^{2} e^{2 a r}
$$

where h is a positive and nonincreasing function such that $\int_{0}^{\infty} r h(r) d r<\infty$. Then the Dirichlet problem at infinity for M is solvable.

Proof. Fix a constant $\lambda<(d-1) a / 2$ and let

$$
A=\left\{r_{t} \geq \max \{\lambda t, r(x) / 2\}, \forall t \geq 0\right\}
$$

By Lemma 3.2, there is an R such that, for $r(x) \geq R$,

$$
\mathbb{P}_{x}\{A\} \geq 1-\frac{\varepsilon}{2}
$$

Let $\tau_{n_{l}}$ be the l th time such that $r_{\tau_{n_{l}}} \leq k-1$. Then

$$
\left\{\tau_{n_{l}} \leq t\right\}=\left\{\sum_{n=1}^{\infty} I_{\left\{r_{\tau_{n}} \leq k-1, \tau_{n} \leq t\right\}} \geq l\right\}
$$

from which it is clear that $\tau_{n_{l}}$ is a stopping time.
For a fixed k, denote for the time being

$$
L_{k}=C_{1} h(k) e^{a k}, \quad N_{k}=\frac{(k+1) L_{k}}{\lambda C_{1}}
$$

Without loss of generality, we may assume that $h(k) \geq e^{-a k / 2}$ [otherwise, just add $e^{-a r / 2}$ to $\left.h(r)\right]$ and $L_{k} \geq 1$. Consider the length of time $\Delta \tau_{n_{l}}$ for the next step. Let

$$
B_{l}=\left\{\Delta \tau_{n_{l}} \leq \frac{C_{1}}{L_{k}}, \tau_{n_{l}}<\infty\right\}, \quad C_{N_{k}}=B_{1} \cup B_{2} \cup \cdots \cup B_{N_{k}}
$$

By Proposition 2.4 and the fact that $\tau_{n_{l}}$ is a stopping time,

$$
\begin{equation*}
\mathbb{P}_{x} B_{l}=\mathbb{E}_{x}\left\{\mathbb{P}_{X_{\tau_{n_{l}}}}\left[\tau_{1} \leq \frac{C_{1}}{L_{k}}\right], \tau_{n_{l}}<\infty\right\} \leq e^{-C_{2} L_{k}} \tag{3.5}
\end{equation*}
$$

Recall that J_{k-1} is the total number of steps such that $r_{\tau_{n}} \leq k-1$. We have $\left\{J_{k-1} \geq N_{k}\right\}=\left\{\tau_{n_{N_{k}}}<\infty\right\}$. Now

$$
\begin{equation*}
\left\{J_{k-1} \geq N_{k}\right\} \cap A=\left\{\tau_{n_{N_{k}}}<\infty\right\} \cap A \cap C_{N_{k}}+\left\{\tau_{n_{N_{k}}}<\infty\right\} \cap A \cap C_{N_{k}}^{c} \tag{3.6}
\end{equation*}
$$

On A, we have $r_{t} \geq \lambda t$ for all $t \geq 0$. This means that

$$
\left|\left\{t: r_{t} \leq k\right\}\right| \leq \frac{k}{\lambda}
$$

But on $\left\{\tau_{n_{N_{k}}}<\infty\right\} \cap C_{N_{k}}^{c}$,

$$
\left|\left\{t: r_{t} \leq k\right\}\right| \geq \sum_{l=1}^{N_{k}} \Delta \tau_{n_{l}} \geq N_{k} \frac{C_{1}}{L_{k}}=\frac{k+1}{\lambda}
$$

This shows that $\left\{\tau_{n_{N_{k}}}<\infty\right\} \cap A \cap C_{N_{k}}^{c}=\varnothing$ and we have, from (3.6),

$$
\left\{J_{k-1} \geq N_{k}\right\} \cap A \subseteq C_{N_{k}}=B_{1} \cup B_{2} \cup \cdots \cup B_{N_{k}}
$$

By (3.5),

$$
\mathbb{P}_{x}\left\{J_{k-1} \geq N_{k}, A\right\} \leq N_{k} e^{-C_{2} L_{k}} \leq C_{3} k e^{a k-C_{2} e^{a k / 2}}
$$

Using the definition of L_{k}, we see from the above inequality that, for any $\varepsilon>0$, there is a sufficiently large R such that, for $r(x) \geq R$,

$$
\sum_{k \geq r(x) / 2}^{\infty} \mathbb{P}_{x}\left\{J_{k} \geq C_{4} k h(k) e^{a k}, A\right\} \leq \frac{\varepsilon}{2}
$$

On A, we have $r_{t} \geq r(x) / 2$ for all t. This means that $J_{k}=0$ for $k \leq r(x) / 2$. It follows that, for $r(x) \geq R$,

$$
\mathbb{P}_{x}\left\{J_{k}=0, k \leq \frac{r(x)}{2} ; J_{k} \leq C_{4} k h(k) e^{a k}, k \geq \frac{r(x)}{2}\right\} \geq \mathbb{P}_{x} A-\frac{\varepsilon}{2} \geq 1-\varepsilon
$$

If the event in the above inequality holds, then, by (3.4),

$$
\sum_{n=1}^{\infty} \Delta \theta_{n} \leq C_{4} \sum_{k \geq r(x) / 2} k h(k)
$$

This can be made arbitrarily small because the $\sum_{k=1}^{\infty} k h(k)$ converges by hypothesis. Therefore, we have shown that for any positive ε and δ, there is an R such that, for all $x \in M$ with $r(x) \geq R$,

$$
\mathbb{P}_{x}\left\{\sum_{n=1}^{\infty} \Delta \theta_{n} \leq \delta\right\} \geq 1-\varepsilon
$$

By Proposition 2.3, this implies the solvability of the Dirichlet problem at infinity for M.
4. Vanishing upper bound. In this section, we assume that M is a CartanHadamard manifold whose curvature satisfies the following condition: there are positive constant $r_{0}, \alpha>2$ and $\beta<\alpha-2$ such that, for all $r(x) \geq r_{0}$,

$$
-r(x)^{2 \beta} \leq \operatorname{Ric}_{x} \quad \text { and } \quad \operatorname{Sect}_{x} \leq-\frac{\alpha(\alpha-1)}{r(x)^{2}}
$$

The proof for this case is completely parallel to that in the previous section, so we will be brief.

LEmmA 4.1. There is a constant C such that, for all $R \geq 1$ and $x \in M$ with $r(x) \geq R$,

$$
\mathbb{P}_{x}\left\{r_{t} \leq R \text { for some } t \geq 0\right\} \leq C\left[\frac{R}{r(x)}\right]^{(d-1) \alpha-1}
$$

Proof. Define the function G as in the proof of Lemma 2.5. As before, we may assume that M is rotationally symmetric with metric $d s^{2}=d r^{2}+G(r)^{2} d \theta^{2}$. In this case, by the same argument as in Lemma 3.1, we have

$$
\mathbb{P}_{x}\left\{r_{t} \leq R \text { for some } t \geq 0\right\}=\frac{\int_{r(x)}^{\infty} G(s)^{1-d} d s}{\int_{R}^{\infty} G(s)^{1-d} d s}
$$

The result follows immediately from the fact that $G(r) \sim c_{1} r^{\alpha}$ as $r \uparrow \infty$.

In the proof of the next lemma, we need the following fact (see [17]): let Y^{a} be the Bessel process of index $q>1$ from $a \geq 0$:

$$
\begin{equation*}
Y_{t}^{a}=a+\beta_{t}+\frac{q}{2} \int_{0}^{t} \frac{d s}{Y_{s}^{a}} \tag{4.1}
\end{equation*}
$$

where β is a one-dimensional Brownian motion. Then for any $\lambda>0$ we have

$$
\begin{equation*}
\mathbb{P}\left\{\lim _{t \uparrow \infty} \frac{Y_{t}^{a}}{t^{1 / 2-\lambda}}=\infty\right\}=1 \tag{4.2}
\end{equation*}
$$

Note that $Y_{t}^{a} \leq Y_{t}^{b}$ if $a \leq b$.
LEMMA 4.2. For any $\lambda>0$, we have

$$
\lim _{r(x) \rightarrow \infty} \mathbb{P}_{x}\left\{r_{t} \geq \max \{t, r(x)\}^{1 / 2-\lambda}, \forall t \geq 0\right\}=1
$$

Proof. Again, it is enough to assume that M is rotationally symmetric, as in Lemma 4.1. The radial process is given by

$$
r_{t}=r_{0}+\beta_{t}+\frac{d-1}{2} \int_{0}^{t} \frac{G^{\prime}\left(r_{s}\right)}{G\left(r_{s}\right)} d s
$$

Now take a $q \in(1,(d-1) \alpha)$. By (2.3), there is an $r_{1} \geq 1$ such that

$$
(d-1) \frac{G^{\prime}(r)}{G(r)} \geq \frac{q}{r}, \quad r \geq r_{1}
$$

Let Y^{a} be the Bessel process of index q defined by (4.1). If $r(x) \geq r_{1}$, then we have

$$
r_{t} \geq Y_{t}^{r(x)} \geq Y_{t}^{r_{1}} \geq Y_{t}^{1}, \quad t \leq \sigma_{r_{1}},
$$

where $\sigma_{r_{1}}$ is the first time r_{t} reaches r_{1}. For any $\varepsilon>0$, there is an $R \geq r_{1}$ (independent of x) such that

$$
\mathbb{P}_{x}\left\{Y_{t}^{1} \geq t^{1 / 2-\lambda}, \forall t \geq R\right\} \geq 1-\varepsilon
$$

Hence, using Lemma 4.1, we have, for $r(x) \geq R \geq 1$,

$$
\begin{aligned}
& \mathbb{P}_{x}\{ r_{t} \\
&\left.\geq \max \{t, r(x)\}^{1 / 2-\lambda}, \forall t \geq 0\right\} \\
& \geq \mathbb{P}_{x}\left\{r_{t} \geq t^{1 / 2-\lambda}, \forall t \geq r(x)\right\}-\mathbb{P}_{x}\left\{r_{t} \leq r(x)^{1 / 2-\lambda} \text { for some } t \geq 0\right\} \\
& \geq \mathbb{P}_{x}\left\{Y_{t}^{1} \geq t^{1 / 2-\lambda}, \forall t \geq R\right\}-\operatorname{Cr}(x)^{-(\lambda+1 / 2)[(d-1) \alpha-1]} \\
& \geq 1-\varepsilon-\operatorname{Cr}(x)^{-(\lambda+1 / 2)[(d-1) \alpha-1]} .
\end{aligned}
$$

It follows that for all sufficiently large $r(x)$ we have

$$
\mathbb{P}_{x}\left\{r_{t} \geq \max \{t, r(x)\}^{1 / 2-\lambda}, \forall t \geq 0\right\} \geq 1-2 \varepsilon .
$$

THEOREM 4.3. Suppose that M is a Cartan-Hadamard manifold. Suppose that there exist positive constants $r_{0}, \alpha>2$ and $\beta<\alpha-2$ such that

$$
-r(x)^{2 \beta} \leq \operatorname{Ric}_{x} \quad \text { and } \quad \operatorname{Sect}_{x} \leq-\frac{\alpha(\alpha-1)}{r(x)^{2}} \quad \text { for } r \geq r_{0}
$$

Then the Dirichlet problem at infinity is solvable for M.
Proof. We define $\tau_{n}, \Delta \tau_{n}, \Delta \theta_{n}, \tau_{n_{l}}$ and J_{k} as in the previous section. Under the current upper bound of the sectional curvature, we have $\Delta \theta_{n} \leq C / r_{\tau_{n}}^{\alpha}$ by Lemma 2.5. Hence,

$$
\begin{align*}
\sum_{n=1}^{\infty} \Delta \theta_{n} & \leq C_{0} J_{1}+C_{0} \sum_{k=1}^{\infty} \frac{J_{k+1}-J_{k}}{k^{\alpha}} \tag{4.3}\\
& \leq C_{0} J_{1}+C_{1} \sum_{k=1}^{\infty} \frac{J_{k}}{k^{\alpha+1}}+C_{0} \liminf _{k \uparrow \infty} \frac{J_{k}}{k^{\alpha}}
\end{align*}
$$

We will now estimate the size of J_{k}. By Proposition 2.4, we have

$$
\mathbb{P}_{x}\left\{\Delta \tau_{n_{l}} \leq C_{1} k^{-\beta}, \tau_{n_{l}}<\infty\right\} \leq e^{-C_{1} k^{\beta}}
$$

Choose a positive λ such that $\beta+2 /(1-2 \lambda)<\alpha$. Let

$$
A=\left\{r_{t} \geq \max \{t, r(x)\}^{1 / 2-\lambda}, \forall t \geq 0\right\}
$$

Fix an arbitrary $\varepsilon>0$. By Lemma 4.2, $\mathbb{P}_{x} A \geq 1-\varepsilon / 2$ for sufficiently large $r(x)$. By the same argument as in Theorem 3.4, we have

$$
\mathbb{P}_{x}\left\{J_{k} \geq\left(C_{1}+1\right) k^{\beta+2 /(1-2 \lambda)}, A\right\} \leq C_{3} k^{\beta+2 /(1-2 \lambda)} e^{-C_{2} k^{\beta}}
$$

On A, we have $\left|\left\{t: r_{t} \leq k\right\}\right| \leq k^{2 /(1-2 \lambda)}$ and $J_{k}=0$ for $k \leq r(x)^{1 / 2-\lambda}$. Hence, as in the proof of Theorem 3.4, we have, for sufficiently large $r(x)$,

$$
\begin{aligned}
& \mathbb{P}_{x}\left\{J_{k}=0, k \leq r(x)^{1 / 2-\lambda} ; J_{k} \leq C_{4} k^{\beta+2 /(1-2 \lambda)}, k \geq r(x)^{1 / 2-\lambda}\right\} \\
& \quad \geq \mathbb{P}_{x} A-C_{3} \sum_{k \geq r(x)^{1 / 2-\lambda}} k^{\beta+2 /(1-2 \lambda)} e^{-C_{2} k^{\beta}} \\
& \quad \geq 1-\varepsilon .
\end{aligned}
$$

If the event in the above inequality is true, then $J_{k} / k^{\alpha} \rightarrow 0$ as $k \uparrow \infty$ and, by (4.3),

$$
\begin{aligned}
\sum_{n=1}^{\infty} \Delta \theta_{n} & \leq C_{4} \sum_{k \geq r(x)^{1 / 2-\lambda}} k^{-(\alpha+1)+\beta+2 /(1-2 \lambda)} \\
& \leq C_{5} r(x)^{-(\alpha-\beta)(1-2 \lambda) / 2+1}
\end{aligned}
$$

By our choice of λ, the exponent is negative. Hence, we have shown that for any positive ε and δ, there is an R such that, for $r(x) \geq R$,

$$
\mathbb{P}_{x}\left\{\sum_{n=1}^{\infty} \Delta \theta_{n} \leq \delta\right\} \geq 1-\varepsilon
$$

The theorem now follows from Proposition 2.3.
REMARK 4.4. For the Bessel process Y^{a} in (4.1), we have

$$
\mathbb{P}\left\{\liminf _{t \rightarrow \infty} \frac{Y_{t}^{a}}{\sqrt{t} \psi(t)} \geq 1\right\}=1
$$

if ψ is a positive nonincreasing function such that $\int_{0}^{\infty} \psi(t)^{q-1} d t<\infty$. Using this rate instead of $t^{1 / 2-\lambda}$ in (4.2), we can improve the lower bound in the above theorem. For example, it can be shown that the Dirichlet problem is solvable if the Ricci curvature is bounded from below by $-r^{2(\alpha-2)} /(\ln r)^{2 l}$ for $l>(d \alpha-\alpha+1) /(d \alpha-\alpha-1)$.

Acknowledgment. The author gratefully acknowledges the anonymous referee's careful reading of the paper.

REFERENCES

[1] Ancona, A. (1987). Negatively curved manifolds, elliptic operators and the Martin boundary. Ann. of Math. 125 495-536.
[2] ANCONA, A. (1994). Convexity at infinity and Brownian motion on manifolds with unbounded negative curvature. Rev. Mat. Iberoamericana 10 189-220.
[3] Anderson, M. T. (1983). The Dirichlet problem at infinity for manifolds of negative curvature. J. Differential Geom. 18 701-711.
[4] Anderson, M. T. and Schoen, R. (1985). Positive harmonic functions on complete manifolds of negative curvature. Ann. of Math. (2) 121 429-461.
[5] Bishop, R. I. and O'NEILL, B. (1969). Manifolds of negative curvature. Trans. Amer. Math. Soc. 145 1-49.
[6] Borbely, A. (1993). A note on the Dirichlet problem at infinity for manifolds of negative curvature. Proc. Amer. Math. Soc. 118 205-210.
[7] ChoI, H. I. (1984). Asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds. Trans. Amer. Math. Soc. 281 691-716.
[8] Hsu, P. and Kendall, W. S. (1992). Limiting angles of certain two-dimensional Riemannian Brownian motion. Ann. Fac. Sci. Toulouse Math. (6) 1 169-186.
[9] Hsu, P. and MARCH, P. (1985). The limiting angle of certain Riemannian Brownian motion. Comm. Pure Appl. Math. 38 755-768.
[10] Kendall, W. S. (1984). Brownian motion on a surface of negative curvature. Seminar on Probability XVIII. Lecture Notes in Math. 1059.
[11] Kendall, W. S. (1987). The radial part of Brownian motion on a manfiold: A semimartingale property. Ann. Probab. 15 1491-1500.
[12] Kifer, Yu. (1976). Brownian motion and harmonic functions on manifolds of negative curvature. Theory Probab. Appl. 21 755-768.
[13] Kifer, Yu. (1985). Brownian motion and positive harmonic functions on complete manifolds of nonpositive curvature. In From Local Times to Global Geometry, Control and Physics (K. D. Elworthy, ed.) 187-232. Wiley, New York.
[14] Leclerce, É. (1997). The asymptotic Dirichlet problem with respect to an elliptic operator on a Cartan-Hadamard manifold with unbounded curvatures. C. R. Acad. Sci. Sér. I. Math. 325 857-862.
[15] PinSky, M. A. (1978). Stochastic Riemannian geometry. In Probabilistic Analysis and Related Topics (A. T. Bharucha-Reid, ed.) 1199-236. Academic, New York.
[16] Prat, J. J. (1975). Etude asymptotique et convergence angulaire du mouvement brownien sur un variété à courbure negative. C. R. Acad. Sci. Paris 290 1539-1542.
[17] Shiga, T. and Watanabe, S. (1973). Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahrsch. Verw. Gebiete 27 37-46.
[18] SULLIVAN, D. (1983). The Dirichlet problem at infinity for a negatively curved manifold. J. Differential Geom. 18 723-732.

Department of Mathematics
NORTHWESTERN UNIVERSITY
Evanston, Illinois 60208
E-MAIL: elton@math.northwestern.edu

[^0]: Received March 2001; revised July 2002.
 ${ }^{1}$ Supported in part by NSF Grant DMS-01-04079.
 AMS 2000 subject classifications. Primary 58J65; secondary 60J60.
 Key words and phrases. Brownian motion, Dirichlet problem, Cartan-Hadamard manifold.

