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AVERAGING PRINCIPLE OF SDE WITH SMALL DIFFUSION:
MODERATE DEVIATIONS
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Consider the following stochastic differential equation in R
d :

dXε
t = b(Xε

t , ξt/ε) dt + √
εa(Xε

t , ξt/ε) dWt ,

Xε
0 = x0,

where the random environment (ξt ) is an exponentially ergodic Markov
process, independent of the Wiener process (Wt ), with invariant probability
measure π , and ε is some small parameter. In this paper we prove the
moderate deviations for the averaging principle of Xε , that is, deviations
of (Xε

t ) around its limit averaging system (x̄t ) given by dx̄t = b̄(x̄t ) dt

and x̄0 = x0 where b̄(x) = Eπ (b(x, ·)). More precisely we obtain the large
deviation estimation about(

ηε
t = Xε

t − x̄t√
εh(ε)

)
t∈[0,1]

in the space of continuous trajectories, as ε decreases to 0, where h(ε)

is some deviation scale satisfying 1 � h(ε) � ε−1/2. Our strategy will
be first to show the exponential tightness and then the local moderate
deviation principle, which relies on some new method involving a conditional
Schilder’s theorem and a moderate deviation principle for inhomogeneous
integral functionals of Markov processes, previously established by the
author in Guillin (2001).

1. Introduction. The main subject of this paper is the formulation of
moderate deviations for the averaging principle of a stochastic differential equation
(SDE) with small diffusion, initiated by Freidlin (1978), in the case where the fast
random environment does not depend on the Wiener process driving the SDE. Let
us first present more precisely the framework of this study.

Let ξ = (ξt )t≥0 be some ergodic Markov process with values in a general state
space E. Consider now the diffusion process Xε = (Xε

t )t∈[0,1], jointly defined
with ξ on some stochastic basis (�,F , (Ft )t≥0,P), given by the following
stochastic differential equation in R

d :

dXε
t = b(Xε

t , ξt/ε) dt + √
εa(Xε

t , ξt/ε) dWt,

Xε
0 = x0,

(1.1)
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where (Wt) is a standard Wiener process independent of ξ , and ε is a small
parameter. In such a model, Xε is considered as the “slow process,” while ξ is
the fast random environment (its time scale being of order 1/ε). As usual, we will
call b (resp. a) the drift (resp. diffusion) term.

Now suppose the following ergodic property: there exists a vector field b̄ such
that

lim
T →∞

1

T

∫ t0+T

t0

(
b(x, ξs)

)
ds = b̄(x), P-a.s.

uniformly in x ∈ R
d and t0 ≥ 0. Now let us denote for t ∈ [0,1], the solution

x̄ = (x̄t )t∈[0,1] of the averaged deterministic system in R
d ,

˙̄xt = b̄(x̄t ),

x̄0 = x0.
(1.2)

The motivation linked to the study of these models can be found, for example, in
stochastic mechanics [see Freidlin (1978)], where a polar change (or an appropriate
change linked to the considered Hamiltonian) may give an amplitude evolving
slowly whereas the phase is on an accelerated time scale, or in climate models
[Kiefer (2000)], where climate–weather interactions may be studied within the
averaging framework, climate being the slow motion and weather the fast one.

The averaging principle asserts that, under quite minimal assumptions and the
previous ergodic property, we have

lim
ε→0

P

(
sup

t∈[0,1]
|Xε

t − x̄t |
)

= 0.

The study of such a convergence has been extensively developed in both the
deterministic (a ≡ 0) and the stochastic context: see, for example, Bogolubov and
Mitropolskii (1961) and Sanders and Verhulst (1985) for the deterministic case,
Liptser (1994) for the stochastic one and more particularly Khasminskii (1980),
Freidlin (1978) and Freidlin and Wentzell (1998) for when (ξt ) is a diffusion
process and Liptser (1994) for its proof in an even more general case. We finally
refer to the recent works of Pardoux and Veretennikov (2000, 2001) for diffusion
approximation (averaging of a singularly perturbed SDE).

Here we will study deviations of Xε from the averaged solutions x̄, as
ε decreases to 0, that is, the asymptotic behavior of the trajectory for t ∈ [0,1],

ηε
t = Xε

t − x̄t√
εh(ε)

,(1.3)

where h(ε) is some deviation scale which strongly influences the asymptotic
behavior of ηε. If h(ε) is identically equal to 1, we are in the domain of the central
limit theorem (CLT), which was first established by Freidlin and Wentzell (1998)
with a ≡ 0 under some mixing conditions on the fast process; see also Liptser and



MDP FOR AVERAGING 415

Stoyanov (1990) for the general semimartingale case, and see Rachad (1999) and
Bernard and Rachad (2000) for when the fast process is a diffusion depending on
the slow process.

The case h(ε) = 1/
√

ε provides some large deviations estimations which have
been extensively studied in the past 20 years. The first work seems to go back
to Freidlin and Wentzell (1998), where a ≡ 0 and the fast process is a diffusion
whose drift depends on the slow process. There has been much generalization
in many directions in recent years; here we mention only three of them: Liptser
(1996) presented, for large deviations for two scaled diffusions (the fast process
is independent of the slow one), a combination of Freidlin and Wentzell’s and
Donsker and Varadhan’s results (i.e, large deviations of the slow process coupled
with the empirical measure of the fast process); Veretennikov (1999a) established
the large deviation principle (LDP) when the fast process depends only on the
slow process through the drift term, but allowed the same Wiener process for the
diffusion term of each component; finally Veretennikov (1999b, c) proves the LDP
when a ≡ 0 but the fast process has a “full” dependence (in drift and diffusion
coefficient) on the slow process.

To fill the gap between the CLT scale [h(ε) = 1] and the large deviations scale
[h(ε) = ε−1/2], we are naturally led to study moderate deviations, that is, when the
deviation scale satisfies

h(ε)
ε→0−→ +∞,

√
εh(ε)

ε→0−→ 0.(1.4)

The moderate deviations enable us to refine the central limit theorem in the
following sense: the rate function is a quadratic one which is the rate of large
deviations of Gaussian processes. Moreover, if the central limit theorem gives
asymptotic estimations for P(‖Xε − x̄‖ ∼ x

√
ε) and the large deviation principle

for P(‖Xε − x̄‖ ∼ x), the moderate deviations furnish estimations for P(‖Xε −
x̄‖ ∼ x

√
εh(ε)). Finally, the conditions imposed on ξ for the moderate deviations

will be less restrictive than the conditions for the LDP. When a ≡ 0 and b̄(x0) = 0
(i.e., the average system stays in the position x0), Baier and Freidlin (1977)
or Freidlin and Wentzell (1998) have imposed abstract conditions to prove the
moderate deviation principle (MDP). We may cite also, in a slightly different
direction, the work of Liptser and Spokoiny (1999), who obtained an upper bound
of moderate deviations for integral functionals of the slow process or Klebaner and
Liptser (1999) for randomly perturbed discrete dynamical systems. Very recently,
still in the setting a ≡ 0, the author Guillin (2001) obtained the full MDP under
the sole condition of the exponential ergodicity of the fast Markov process [and
reasonable conditions on b, without the assumption b̄(x0) = 0].

The main goal of this paper will be to extend the approach of Guillin (2001) to
the case where a small diffusion term is present, with the additional assumption
that the fast component is independent of the Wiener process driving the diffusion.
The main difficulty arises in the combination of the effect of ξ and the usual
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Freidlin–Wentzell theory for LDP of small diffusion. It can be seen as the analog
of the large deviations results of Liptser (1996) in the moderate deviations context
(but with more general fast process).

Our method is based on two ideas: the use of explicit criteria [Liptser and
Puhalskii (1992) or Feng and Kurtz (2000)] for exponential tightness in the space
of continuous mappings; the exponential ergodicity of the fast Markov process
and a theorem on moderate deviations of inhomogeneous integral functionals of a
Markov process [Guillin (2001), Theorem 2] combined with a conditional Schilder
theorem, stated in Lemma 2, Section 4.1.2.

The paper is organized as follows. In Section 2, we present the moderate
deviations of ηε. Section 3 contains some preliminary definitions and results which
are essential for the proof of the theorem. The last section is devoted to the proof
of our theorem.

2. Main result. Let us start with some definitions.

2.1. Formulation of an LDP. Let C0([0,1],R
d) be the space of continuous

trajectories from [0,1] to R
d starting from 0, equipped with the supremum norm

topology. Recall the definition of an LDP [see Deuschel and Stroock (1989) or
Dembo and Zeitouni (1998) for instance]. The family Zε = (Zε

t )t∈[0,1] obeys the
LDP in C0([0,1],R

d) with speed v(ε) → 0 and rate function I with respect to
(w.r.t.) the supremum norm if the following hold:

1. There exists I :C0([0,1],R
d) → [0,∞] such that I is inf-compact; that is, the

level sets ([I ≤ L] for L ≥ 0) are compact.
2. For any open set O in C0([0,1],R

d),

lim inf
ε→0

v(ε) logP(Zε ∈ O) ≥ − inf
z∈O

I (z).

3. For any closed subset F in C0([0,1],R
d),

lim sup
ε→0

v(ε) logP(Zε ∈ F) ≤ − inf
z∈F

I (z).

The function I is often called a good rate function associated with the LDP of (Zε).

2.2. Assumptions on the Markov process (ξt )t≥0. We then set the basic
definitions for the fast Markov process: ξ = (ξt )t≥0 will denote a continuous
time Markov process, defined on the probability space (�ξ ,F ξ , (F

ξ
t ),Pξ ), with

values in a general Polish space E, with transition semigroup (Pt )t∈R+ . The
operator Pt acts on bounded measurable functions f and probability measures µ

on E respectively via the relations Ptf (x) = ∫
E Pt (x, dy)f (y) and µPt(A) =∫

E µ(dx)Pt(x,A). Throughout this paper, we will moreover suppose that the
probability measure π is invariant, that is, π = πPt for all t ≥ 0, and that the
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process ξ is π -irreducible and aperiodic [see Nummelin (1984) or Down, Meyn
and Tweedie (1995) for more detailed explanations].

The Markov process (ξt ) is called exponentially ergodic if

‖Pt(x, ·) − π‖var ≤ M(x)ρt , t ≥ 0,(2.1)

for some constant ρ < 1 and some finite M(x) which is moreover in L1(π),
where ‖ · ‖var is the total variation norm. This definition is a natural extension
to the continuous time case of the geometrical ergodicity of Markov chains [see
Nummelin (1984)]. See the application after the statement of Theorem 1 for an
example of processes satisfying such a condition. We will suppose throughout this
paper that the initial measure µ (the law of ξ0) satisfies∫

E
M(x)µ(dx) < ∞.(2.2)

This condition means intuitively that ξ starting with the initial probability
measure µ conserves the exponential behavior of (2.1). Note that every Dirac
measure satisfies this condition as M(x) is finite.

2.3. Assumptions on the diffusion (1.1). Now let us fix the main assumptions
on the coefficients of the diffusion (1.1):

(A) The diffusion term a(x, z) : Rd × E → R
d×n is a bounded continuous

mapping with bounded (uniformly in z) first order derivative in x.
(B) The drift b(x, z) : Rd × E → R

d is a bounded continuous mapping with
bounded (uniformly in z) first and second order derivatives in x.

(C) W is a Wiener process in R
n, independent of ξ , defined on the stochastic basis

(�W ,F W, (F W
t ),PW).

The probability space (�,F , (Ft ),P) is then the product probability space of
those of ξ and W . Recall that Xε is the diffusion given in (1.1) and that under
the ergodicity assumption on ξ the averaged drift

b̄(x) =
∫
E

b(x, z)π(dz)

is well defined for all x ∈ R
d . The averaged solution x̄ is then given by (1.2).

Moreover, we introduce the notation

∀1 ≤ i, j ≤ d, Bi
j (x, y) = ∂bi

∂xj

(x, y), B(x, y) = (
Bi

j (x, y)
)
1≤i,j≤d ,

and set

B(x) =
∫
E

B(x, z)π(dz).

We also define the averaged diffusion coefficient

a2
s =

∫
E

a(x̄s, z)a
t (x̄s, z)π(dz),(2.3)
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where at denotes the transposed matrix. Finally set

f (t, ·) = b(x̄t , ·) − b̄(x̄t ).(2.4)

2.4. The rate functions. Let us introduce the following good rate function,
which is the Schilder rate function with diffusion term (a2

s )
1/2,

IW(γ ) =


∫ 1

0
sup
λ∈Rd

(
λt γ̇ (s) − 1

2λta2
s λ

)
ds,

if dγ (s) = γ̇ (s) ds, γ (0) = 0,

+∞, otherwise.

(2.5)

Note that IW(γ ) = ∞ if γ does not belong to the Cameron–Martin space H
defined by

H =
{
φ;dφ(t) = φ̇(t) dt and

∫ 1

0
‖φ̇(t)‖2 dt < ∞

}
.

Now define the variance associated with the Markov process ξ and functional f

which maps [0,1] × E to R
d with f = (f1, . . . , fd),

σ 2
ξ

(
f (t, ·))ij =

∫
E

fi(t, ·)
∫ ∞

0
Psfj (t, ·) ds dπ

+
∫
E

fj (t, ·)
∫ ∞

0
Psfi(t, ·) ds dπ.

(2.6)

To get more explicit expression of the rate function, we will always assume

(D) σ 2
ξ

(
f (t, ·)) ≥ ωI for some constant ω > 0, for all t ,

where I is the usual identity matrix. Then the following good rate function I
f
ξ is

well defined:

I
f
ξ (γ ) =


1
2

∫ 1

0

〈
γ̇ (s), σ 2

ξ

(
f (s, ·))−1

γ̇ (s)
〉
ds,

if dγ (s) = γ̇ (s) ds, γ (0) = 0,

+∞, otherwise.

(2.7)

Finally recall the definition

ηε
t = Xε

t − x̄t√
εh(ε)

and that the deviation scale h(ε) satisfies 1 � h(ε) � ε−1/2.
We can now state our result.

THEOREM 1. Assume that ξ is an exponentially ergodic Markov process and
the distribution of ξ0 satisfies (2.2). Suppose moreover conditions (A)–(D). Then
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ηε satisfies an LDP in C0([0,1],R
d) with speed h−2(ε) and good rate function S

given for γ ∈ C0([0,1],R
d) by

S(γ ) = I

(
γ −

∫ ·

0
B̄(x̄s)γ (s) ds

)
,(2.8)

where I is defined by

I (γ ) = inf
{
I

f
ξ (γ − ψ) + IW(ψ);ψ ∈ C0([0,1],R

d)
}

(2.9)

=


1
2

∫ 1

0

∥∥(
σ 2

ξ (f (s, ·)) + a2
s

)−1/2
γ̇ (s)

∥∥2
ds,

if dγ (s) = γ̇ (s) ds, γ (0) = 0,

+∞, otherwise.

(2.10)

Here, IW is given by (2.5) and I
f
ξ by (2.7).

It is well known that, by (2.10), I is a good rate function [see Deuschel and
Stroock (1989), Lemma 1.3.8]. From the expression of the rate function (2.8),
it seems that the LDP is inherited from the addition of two independent LDPs,
one coming from the drift part and the other from the diffusion term. In fact, the
two driving LDPs are not independent but behave as if they were. This curious
phenomenon is due to the assumption of independence between the fast process ξ

and the Wiener process W and the fast convergence of the quadratic variation of
the diffusion part to a deterministic one, allowing us to separate drift and diffusion
LDPs. This result can be seen as a version of the “averaged Schilder’s theorem.”

Note also that assumption (D) of the uniform invertibility of σ 2
ξ (f (t, ·)) is not

necessary for the LDP in this result but only for the explicit expression (2.8),
(2.10) of the rate functions (see comments after Theorem 3 in the next section).

REMARK. To the author’s knowledge, it is the first time that such an MDP is
stated for an SDE with small diffusion and a fast process which is not necessarily
given by a diffusion.

REMARK. Note that there are no nondegeneracy assumptions for the diffusion
coefficient of (1.1). In fact when a ≡ 0, Theorem 1 gives back the result of
Theorem 5 in Guillin (2001).

REMARK. The results presented here can be extended to the space C of
continuous functions on [0,∞) equipped with the local supremum topology
defined by the metric r :

∀X′,X′′ ∈ C, r(X′,X′′) = ∑
n≥1

1

2n

(
1 ∧ sup

t≤n
|X′

t − X′′
t |

)
.
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Then the LDP stated in Theorem 1 still holds in (C, r), by applying the Dawson–
Gärtner theorem [see Dembo and Zeitouni (1998), Theorem 4.6.1], which states
that it is sufficient to check the LDP in C0([0, T ],R

d) for all T in the uniform
metric (i.e., Theorem 1).

EXAMPLE (ξ is the Ornstein–Uhlenbeck process). Let us consider the
following system of SDEs in dimension 1:

dXε
t = b(Xε

t , ξt/ε) dt + √
εa(Xε

t , ξt/ε) dWt, Xε
0 = x0,

dξt = − 1
2ξt dt + dVt,

(2.11)

where V and W are two independent Wiener processes. Assume also that
conditions (A) and (B) are satisfied. It is well known that the Ornstein–Uhlenbeck
process is a positive recurrent Markov process with invariant distribution π(dx) =
(2π)−1/2 exp(−x2/2) dx. Moreover, using Down, Meyn and Tweedie [(1995),
Theorems 5.3 and 5.2c] or criteria (L) in Guillin [(2001), Theorem 3], we easily
obtain that the Ornstein–Uhlenbeck process is exponentially ergodic. Suppose for
simplicity that

∫
R

b(x0, z)π(dz) = 0 so that x̄t = x0 for all t , and that the initial
distribution of ξ0 is a Dirac measure. Consequently, by Theorem 1, ηε satisfies
an LDP in C0([0,1],R) with speed h−2(ε) and good rate function SOU given, for
absolutely continuous γ starting from 0, by

SOU(γ ) = 1

2(σ 2 + a2)

∫ 1

0

(
γ̇ (s) − B̄(x0)γ (s)

)2
ds(2.12)

with

σ 2 = 4
∫

R

(∫ z

−∞
b(x0, u)e−u2/2 du

)2

ez2
dz,

a2 = 1√
2π

∫
R

a2(x0, z)e
−z2/2 dz,

which are well defined under assumptions (A) and (B).

We next present some definitions useful for proving an LDP, and some
preliminary results linked to the MDP of exponentially ergodic Markov processes
proved in Guillin (2001) which will be a recurrent tool in our proof.

3. Some preliminary definitions and results. We first recall the notions of
exponential tightness and local LDP which provide sufficient conditions to prove
an LDP. Let us denote by Zε = (Zε

t )t∈[0,1] a C0([0,1],R
d)-valued family.

DEFINITION 1. The family (Zε) is said to be exponentially tight [with speed
v(ε) → 0] in the space C0([0,1],R

d), if there exists an increasing sequence of
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compact sets (Kj)j≥1 of C0([0,1],R
d) such that

lim
j

lim sup
ε→0

v(ε) logP(Zε /∈ Kj) = −∞(3.1)

[Deuschel and Stroock (1989), Dembo and Zeitouni (1998)].

DEFINITION 2. The family (Zε) is said to satisfy the local LDP [with speed
v(ε) → 0] in C0([0,1],R

d) with rate function Î if, for any z ∈ C0([0,1],R
d),

lim
δ→0

lim sup
ε→0

v(ε) logP
(
Zε ∈ B(z, δ)

)
= lim

δ→0
lim inf
ε→0

v(ε) log P
(
Zε ∈ B(z, δ)

)
= −Î (z),

where B(z, δ) is the ball of radius δ centered in z [Freidlin and Wentzell (1998)].

The following theorem is well known; see Deuschel and Stroock (1989), Dembo
and Zeitouni (1998) or Liptser and Puhalskii (1992).

THEOREM 2. The exponential tightness and the local LDP for the family (Zε)

in C0([0,1],R
d) with local rate function Î imply the full LDP in C0([0,1],R

d)

for this family with rate function I (z) ≡ Î (z) which is inf-compact.

Let g : [0,1] × E → R
d be a measurable mapping and set

lεt = 1√
εh(ε)

∫ t

0
g(s, ξs/ε) ds

for t ∈ [0,1]. The following result is crucial for the proof of Theorem 1.

THEOREM 3 [Guillin (2001), Theorem 2]. Assume that g satisfies the
following conditions:

(G1) g is a bounded measurable mapping;
(G2)

∫
E g(t, x)π(dx) = 0 for all t ;

(G3) ωg(δ) = sup|s−t|≤δ,x∈E |g(s, x) − g(t, x)|, the modulus of continuity, satis-
fies

lim
δ→0

ωg(δ)√
δ

= 0.

Suppose that ξ is exponentially ergodic and the distribution of ξ0 satisfies (2.2).
Assume moreover that σ 2(g(t, ·)) is invertible uniformly in time, that is, satis-
fies (D). Then lε = (lεt )t∈[0,1] satisfies an LDP in C0([0,1],R

d) with speed h−2(ε)

and good rate function I
g
ξ given by (2.7).

We also present a direct consequence of this theorem.
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COROLLARY 1. Under the assumptions on g and ξ of Theorem 3, supt∈[0,1] ‖lεt ‖
satisfies an LDP in R with speed h−2(ε) and good rate function J .

In particular,

lim
x→∞J (x) = +∞,(3.2)

lim
j→∞ lim

ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]
‖lεt ‖ ≥ j

)
= −∞.(3.3)

PROOF. In fact, as the LDP of lε holds w.r.t. the uniform topology and γ →
supt∈[0,1] γ (t) is continuous, the contraction principle [see Dembo and Zeitouni
(1998), Theorem 4.2.1] implies that supt∈[0,1] ‖lεt ‖ satisfies an LDP in R with
speed h−2(ε) and good rate function J given by, for nonnegative x,

J (x) = 1
2 inf

γ : sups ‖γ (s)‖=x

{∫ 1

0
‖σ 2

ξ (g(s, ·))−1γ̇ (s)‖2 ds

}
.

As J is inf-compact (i.e., for each positive L, [J ≤ L] is compact), limit (3.2) is
obvious, and (3.3) follows from the upper bound of the LDP of supt |lεt | and (3.2).

�

REMARK. In fact, the LDP of Theorem 3 and the conclusion of this corollary
hold without the assumption that σ 2(g(t, ·)) is invertible uniformly in time, as we
have a good rate function, but in that case the rate function is expressed as the limit
of the finite dimensional rate function of a homogenized functional and then has
no explicit formulation [see Guillin (2001), formulas (2.17) and (2.35)].

The next result, which seems to be new, gives the MDP in the special simple
case when the drift term is identically equal to 0 and the diffusion term does not
depend on the slow variable. Set, for some function c : [0,1] × E → R

d×n,

rε
t = 1

h(ε)

∫ t

0
c(s, ξs/ε) dWs

for t ∈ [0,1].
PROPOSITION 1. Suppose that ξ is an exponentially ergodic Markov process

independent of W and suppose that the distribution of ξ0 satisfies (2.2). Assume
moreover that c is a bounded mapping satisfying condition (G3) of Theorem 3.
Then (rε) satisfies an LDP in C0([0,1],R

d) with speed h−2(ε), with rate function
ĨW given by

ĨW (γ ) =


∫ 1

0
sup
λ∈Rd

(
λt γ̇ (s) − 1

2λtc2
s λ

)
ds,

if dγ (t) = γ̇ (t) dt, γ (0) = 0,

+∞, otherwise,

(3.4)
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where

c2
s =

∫
E

c(s, z)ct(s, z)π(dz).(3.5)

PROOF. This proposition is in fact a direct consequence of Theorem 3 and
Theorem 2.1 of Puhalskii (1990) for large deviations of semimartingales where
we only have to check the condition called (sup C) in Puhalskii (1990), because,
in our case, there are no finite variation or jump parts so that conditions (A), (a),
(sup B), (K+L) and (L) in Puhalskii (1990) are trivially satisfied. In our context,
it is equivalent to check that there exists a continuous function Ct such that, for all
positive δ,

(sup C) lim
ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]
∣∣h2(ε)〈rε〉t −Ct

∣∣ > δ

)
= −∞,

where

〈rε
t 〉 = 1

h2(ε)

∫ t

0
c(s, ξs/ε)c

t (s, ξs/ε) ds

is the predictable quadratic variation process of the continuous martingale (rε
t ).

Let us prove that (sup C) holds with Ct = ∫ t
0 c2

s ds, where c2
s is defined in (3.5).

Since, under our hypothesis, c(s, z)ct(s, z) and c2
s both satisfy condition (G3), so

does c(s, z)ct(s, z) − c2
s , which is also bounded. By definition of c2

s , (G2) holds,
and we may then apply Theorem 3, so that

1√
εh(ε)

∫ t

0

(
c(s, ξs/ε)c

t (s, ξs/ε) − c2
s

)
ds

satisfies an LDP in C0([0,1],R
d). Consequently Corollary 1, relation (3.3), yields,

∀ δ > 0,

lim
ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]

∥∥∥∥ 1√
εh(ε)

∫ t

0

(
c(s, ξs/ε)c

t (s, ξs/ε) − c2
s

)
ds

∥∥∥∥ >
δ√

εh(ε)

)
= −∞,

which is the condition (sup C) we needed to prove. �

4. Proof of Theorem 1. To simplify notation, we shall give the proof only in
the case d = n = 1. Throughout the proof, K will denote a generic constant which
may change from line to line, independent of time and ε. Let us first recall the
definition of ηε, for t ∈ [0,1],

ηε
t = Xε

t − x̄t√
εh(ε)

= 1√
εh(ε)

∫ t

0

(
b(Xε

s , ξs/ε) − b̄(x̄s)
)
ds + 1

h(ε)

∫ t

0
a(Xε

s , ξs/ε) dWs.
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Now introduce η̂ε
t , defined for t ∈ [0,1],

η̂ε
t = 1√

εh(ε)

∫ t

0

(
b(x̄s, ξs/ε) − b̄(x̄s)

)
ds

+ 1

h(ε)

∫ t

0
a(x̄s, ξs/ε) dWs +

∫ t

0
B̄(x̄s)η̂

ε
s ds

and

λε
t = 1√

εh(ε)

∫ t

0

(
b(x̄s, ξs/ε) − b̄(x̄s)

)
ds,(4.1)

M̂ε
t = 1

h(ε)

∫ t

0
a(x̄s, ξs/ε) dWs(4.2)

so that

η̂ε
t = λε

t + M̂ε
t +

∫ t

0
B̄(x̄s)η̂

ε
s ds.(4.3)

In the first step of the proof (Section 4.1), we will establish that η̂ε satisfies
the LDP of Theorem 1 and then in Section 4.2, we prove that ηε and η̂ε are
exponentially equivalent w.r.t. the LDP; that is, for all positive δ,

lim
ε→0

1

h2(ε)
log P

(
sup

t∈[0,1]
|ηε

t − η̂ε
t | > δ

)
= −∞.(4.4)

Theorem 1 will then follow from those two claims thanks to Theorem 4.2.13 of
Dembo and Zeitouni (1998). Let us begin with the LDP of η̂ε.

4.1. The LDP of η̂ε . First write

Rε = λε + M̂ε.

PROPOSITION 2. If Rε satisfies the LDP in C0([0,1],R
d) of speed h−2(ε)

and good rate function I , then η̂ε satisfies the LDP in C0([0,1],R
d) of speed

h−2(ε) and good rate function S given by (2.8).

PROOF. By definition of η̂ε , we have

η̂ε
t = Rε

t +
∫ t

0
B̄(x̄s)η̂

ε
s ds.

We want to prove that the application mapping η̂ε to Rε is continuous. In other
words, if T :C0([0,1],R

d) → C0([0,1],R
d) is defined by T (u) = v, where

∀ t ∈ [0,1], v(t) = u(t)+ ∫ t
0 B̄(x̄s)v(s) ds, we want to prove that T is continuous.
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Let u,u′ ∈ C0([0,1],R
d) and let T (u) = v and T (u′) = v′. Since B̄ is bounded,

|v(t) − v′(t)| =
∣∣∣∣u(t) − u′(t) +

∫ t

0
B̄(x̄s)

(
v(s) − v′(s)

)
ds

∣∣∣∣
≤ |u(t) − u′(t)| + K

∫ t

0
|v(s) − v′(s)|ds

and, by Gronwall’s lemma,

|v(t) − v′(t)| ≤ eK sup
0

|u(t) − u′(t)| ∀ t ∈ [0,1],

which proves the continuity of T . Therefore, by the contraction principle, the LDP
of η̂ε follows from the one of Rε with good rate function given by

S(γ ) = inf
φ

{
I (φ); γ (t) = φ(t) +

∫ t

0
B̄(x̄s)γ (s) ds ∀ t ∈ [0,1]

}

= I

(
γ (·) −

∫ ·

0
B̄(x̄s)γ (s) ds

)
,

which is exactly (2.8). �

We will often use the following lemma.

LEMMA 1. Under the assumptions of Theorem 1, λε (resp. M̂ε) satisfies an
LDP in C0([0,1],R

d) with speed h−2(ε) and good rate function I
f
ξ given by (2.7),

[resp. IW given by (2.5)].

PROOF. Recall that [see (4.3)]

λε
t = 1√

εh(ε)

∫ t

0
f (s, ξs/ε) ds(4.5)

with f (s, z) = b(x̄s, z)− b̄(x̄s). Now note that, under (B), f is in fact bounded and
Lipschitz continuous and is centered w.r.t. π by definition, so that condition (G) of
Theorem 3 is fulfilled and then the LDP of rate I

ξ
f follows.

Under (A), a is bounded and Lipschitz continuous, so the conditions of
Proposition 5 are satisfied with c(s, z) = a(x̄s, z), hence rε = M̂ε , and ÎW is in
this case the rate IW . Consequently, M̂ε satisfies the desired LDP of rate IW . �

Thanks to Proposition 6, we have reduced the search for the LDP of η̂ε to that
of Rε. This last LDP will be established in three steps: the exponential tightness,
the local LDP and the explicit expression of the rate function.
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4.1.1. Exponential tightness of Rε. We have to find here a sequence of
compacts Kj such that Rε satisfies (3.1). This condition is not so easy to check
by a direct approach. Sufficient conditions for exponential tightness in the space of
continuous trajectories were given by Liptser and Puhalskii [(1992), Theorem 3.1],

lim
j→∞ lim sup

ε→0

1

h2(ε)
log P

(
sup

t∈[0,1]
|Rε

t | > j

)
= −∞,(4.6)

lim
δ→0

lim sup
ε→0

1

h2(ε)
log sup

τ≤1−δ

P

(
sup
t≤δ

|Rε
τ+t − Rε

τ | > r

)
= −∞ ∀ r > 0,(4.7)

where τ is a stopping time w.r.t. (Ft )t≥0.
We will in fact prove a weaker form of (4.7) sufficient for the exponential

tightness as remarked by Feng and Kurtz [(2000), Section 3.1, Remark 3.2],

lim
δ→0

sup
s∈[0,1]

lim sup
ε→0

sup
s≤t≤s+δ

1

h2(ε)
log P(|Rε

t − Rε
s | > r) = −∞ ∀ r > 0,(4.8)

with the convention Rε
t = Rε

1 for t ≥ 1.

PROOF OF (4.6). By definition of Rε, we have, for all t ∈ [0,1],
|Rε

t | ≤ |λε
t | + |M̂ε

t |(4.9)

so that, for (4.6), it is sufficient to establish

lim
j→∞ lim sup

ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]
|λε

t | > j

)
= −∞,(4.10)

lim
j→∞ lim sup

ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]
|M̂ε

t | > j

)
= −∞.(4.11)

By Lemma 1 and the proof of Corollary 1, (4.10) follows immediately.
Note that, by assumption (A), the diffusion coefficient a is uniformly bounded.

Therefore, by definition of the predictable quadratic process 〈Mε
t 〉, we have

〈Mε
1〉 = 1

h2(ε)

∫ 1

0
a2(x̄s, ξs/ε) ds,

and Bernstein’s inequality [see Revuz and Yor (1994), pages 153–154] yields

P

(
sup

t∈[0,1]
|Mε

t | > j

)
= P

(
sup

t∈[0,1]
|Mε

t | > j; 〈Mε〉1 ≤ K

h2(ε)

)

≤ exp
(
−j2h2(ε)

2K

)
,

which obviously implies (4.11). The estimation (4.6) is proved. �
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PROOF OF (4.8). We essentially use the same trick. First, we obviously have

|Rε
t − Rε

s | ≤ |λε
t − λε

s | +
∣∣M̂ε

t − M̂ε
s

∣∣.
Hence, for (4.8), it is enough to prove

lim
δ→0

sup
s∈[0,1]

lim sup
ε→0

1

h2(ε)
log P

(
sup

s≤t≤s+δ

|λε
t − λε

s | > r

)
= −∞ ∀ r > 0,

lim
δ→0

sup
s∈[0,1]

lim sup
ε→0

1

h2(ε)
log P

(
sup

s≤t≤s+δ

|Mε
t − Mε

s | > r

)
= −∞ ∀ r > 0.

The first limit is once again a consequence of the MDP of λε obtained in Lemma 1
and the exponential tightness deduced from Corollary 1. The second limit can be
obtained by Bernstein’s inequality. Estimation (4.8) is proved. �

4.1.2. The local MDP of Rε. We will first prove the lower bound of the local
MDP, which requires less effort, before establishing the more delicate local upper
bound.

The key remark is the following variant of Schilder’s theorem, which can be
proved in the same way as Theorem 1.3.27 of Deuschel and Stroock [(1989),
Lemmas 1.3.8, 1.3.14, 1.3.21].

LEMMA 2. Let (Mε) be a sequence of continuous Gaussian martingales,
and let Ct be a deterministic continuously increasing functional. Let ψ be in the
Cameron–Martin space and let η > 0. There exists δ = δ(ψ,η) > 0 such that, if
for ε small enough

sup
t∈[0,1]

|h2(ε)〈Mε〉t − Ct | < δ,(4.12)

we have for all a > 0 small enough, for sufficiently small ε (depending on a,ψ,η),

exp
(−h2(ε)

(
SC(ψ) + η

)) ≤ P
(
Mε ∈ B(ψ,a)

)
≤ exp

(−h2(ε)
(
SC(ψ) − η

))
,

(4.13)

where

SC(ψ) =


∫ 1

0
sup
λ∈Rd

(
λt ψ̇(s) − 1

2λt Ċsλ
)
ds, if dψ(s) = ψ̇(s) ds, ψ(0) = 0,

+∞, otherwise.

Note that, when Ct = ∫ t
0 a2

s ds, we have SC = IW of Theorem 1.
Before proving the lower and upper bounds of the local MDP, let us present

the following trivial but crucial fact. By the independence of ξ and the Wiener
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process W , M̂ε is a Pξ -Gaussian continuous martingale w.r.t. the filtration
generated by the Wiener process, with predictable quadratic process

〈
M̂ε 〉

t = 1

h2(ε)

∫ t

0
a2(x̄s, ξs/ε) ds w.r.t. Pξ .

It will be essential for the use of Lemma 2 in our context.

LOWER BOUND OF THE LOCAL LDP OF Rε . Given an arbitrary path γ in
C0([0,1],R), and positive numbers a,η, we suppose here that I (γ ) < ∞ (trivial
otherwise). By definition of I (γ ), choose some ψ such that

Iξ (γ − ψ) + IW(ψ) < I (γ ) + η.(4.14)

First, note that

P
(
Rε ∈ B(γ, a)

) ≥ E
(
P

(
Rε ∈ B(γ, a), B

ξ
ε,δ|ξ

))
,

where the event B
ξ
ε,δ is defined by

B
ξ
ε,δ =

{
sup

t∈[0,1]

∣∣∣∣∫ t

0

(
a2(x̄s, ξs/ε) − a2

s

)
ds

∣∣∣∣ ≤ δ

}
,

and δ will be chosen later. Note that, under our assumptions (as a is Lipshitz
continuous), functional a2(x̄s, z) − a2

s satisfies condition (G) of Theorem 3; then,
applying Corollary 1 (see details in the proof of Proposition 1), we have, for all
positive δ,

lim
ε→0

1

h2(ε)
log P

(
(B

ξ
ε,δ)

c) = −∞.(4.15)

Now, by the preceding remark on (M̂ε) and Lemma 2, there exist ã(ψ) ∈ (0, a/2)

and δ > 0 such that for sufficiently small ε, on the event B
ξ
ε,δ ,

P
(
M̂ε ∈ B

(
ψ, ã(ψ)

)|ξ ) ≥ exp
(−h2(ε)

(
IW(ψ) + η

))
a.s.(4.16)

Since the events B
ξ
ε,δ and {λε ∈ B(γ − ψ,a/2)} are σ(ξ)-measurable, we have

P
(
Rε ∈ B(γ, a)

) ≥ E

(
P

(
Rε ∈ B(γ, a), B

ξ
ε,δ, M̂

ε ∈ B
(
ψ, ã(ψ)

)|ξ ))
≥ E

(
P

(
λε ∈ B(γ − ψ,a/2), B

ξ
ε,δ, M̂

ε ∈ B
(
ψ, ã(ψ)

)|ξ ))
≥ E

(
1λε∈B(γ−ψ,a/2)1B

ξ
ε,δ

P
(
M̂ε ∈ B

(
ψ, ã(ψ)

)|ξ ))
≥ P

(
λε ∈ B(γ − ψ,a/2), B

ξ
ε,δ

)
exp

(−h2(ε)
(
IW(ψ) + η

))
,

(4.17)
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where we have used estimation (4.16) in the last step. Note now

lim inf
ε→0

1

h2(ε)
logP

(
λε ∈ B

(
γ − ψ,

a

2

))

≤ max


lim inf
ε→0

1

h2(ε)
logP

(
λε ∈ B

(
γ − ψ,

a

2

)
,B

ξ
ε,δ

)
lim sup

ε→0

1

h2(ε)
logP

(
(B

ξ
ε,δ)

c
)

 .

(4.18)

On the other hand, λε satisfies, by Lemma 1, an LDP with good rate function I
f
ξ ,

so that

lim inf
ε→0

1

h2(ε)
log P

(
λε ∈ B

(
γ − ψ,

a

2

))
≥ −I

f
ξ (γ − ψ).

Consequently, this together with (4.15) and (4.18) yields

lim inf
ε→0

1

h2(ε)
logP

(
λε ∈ B

(
γ − ψ,

a

2

)
, B

ξ
ε,δ

)
≥ −I

f
ξ (γ − ψ).

Combining this last inequality with (4.17), we get, for every given η > 0 and a > 0,

lim inf
ε→0

1

h2(ε)
logP

(
Rε ∈ B(γ, a)

) ≥ −I
f
ξ (γ − ψ) − IW(ψ) − η

≥ −I (γ ) − 2η,

which is the desired lower bound of the local LDP.

We now turn to the more delicate proof of the upper bound of the local LDP.

UPPER BOUND OF THE LOCAL LDP OF Rε . Fix an arbitrary γ in C0([0,1],R).
For a positive number a, we have

P
(
Rε ∈ B(γ, a)

) = E
(
E

(
1Rε∈B(γ,a)|ξ ))

= E

(
E

(
1Rε∈B(γ,a)1B

ξ
ε,δ

|ξ )) + E

(
E

(
1Rε∈B(γ,a)1(B

ξ
ε,δ)

c |ξ
))

.

Therefore,

P
(
Rε ∈ B(γ, a)

) ≤ E

(
E

(
1
B

ξ
ε,δ

P
(
Rε ∈ B(γ, a)

)|ξ )) + P
(
(B

ξ
ε,δ)

c
)
.(4.20)

We have already noted in (4.15) that P((B
ξ
ε,δ)

c) is negligible with respect to the
LDP.

For L positive, the level set KL = [ψ; IW(ψ) ≤ L] is compact, since IW is a
good rate function. Set η ∈ (0,1/2) independently of L. Recall that, due to the
independence of ξ and W , (M̂ε) is a Pξ -Gaussian continuous martingale. Then,
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by Lemma 2, for any ψ ∈ KL there exists ã = ã(ψ) > 0 such that, for sufficiently
small ε,

1
B

ξ
ε,δ

P
(
M̂ε ∈ B(ψ, ã)|ξ ) ≤ exp

(−h2(ε)
(
IW (ψ) − η

))
a.s.(4.21)

On the other hand, by the LDP satisfied by λε
t , there exists â = â(ψ) > 0 such

that, for sufficiently small ε,

P
(
λε ∈ B(γ − ψ, â)

) ≤ exp
(−h2(ε)D

(
Iξ (γ − ψ),η

))
,(4.22)

where

D(x,η) = (x − η) ∧ 1

η

is introduced to avoid the problem of Iξ (γ − ψ) being possibly infinite. Since KL

is compact, we may choose a finite collection of mappings ψ1, . . . , ψN ∈ KL such
that KL ⊂ GL

N = ⋃N
l=1 B(ψl, al), where

al = ã(ψl) ∧
(

â(ψl)

2

)
.

Hence, on the event B
ξ
ε,δ , we have almost surely

P
(
Rε ∈ B(γ, a)|ξ ) ≤ P

(
Rε ∈ B(γ, a), M̂ε ∈ GL

N |ξ ) + P
(
M̂ε /∈ KL|ξ )

≤
N∑

i=1

P
(
λε ∈ B(γ − ψi, a + ai), M̂ε ∈ B(ψi, ai)|ξ )

+ P
(
M̂ε /∈ KL|ξ )

.

Now, note that the event [λε ∈ B(γ −ψi, a +ai)] is σ(ξ)-measurable, and we have
almost surely

1
B

ξ
ε,δ

P
(
Rε ∈ B(γ, a)|ξ ) ≤

N∑
i=1

1λε∈B(γ−ψi,a+ai)1B
ξ
ε,δ

P
(
M̂ε ∈ B(ψi, ai)|ξ )

+ P
(
M̂ε /∈ KL|ξ )

.

Substituting estimations (4.21) and (4.22) in the previous upper bound and
using (4.20), we get for a < mini ai and for all ε small enough

P
(
Rε ∈ B(γ, a)

) ≤
N∑

i=1

exp
(
−h2(ε)

(
D

(
Iξ (γ − ψi), η

) + IW (ψi) − η
))

+ P
(
M̂ε /∈ KL

) + P
(
(B

ξ
ε,δ)

c
)
.

(4.23)

Remark also that, by the upper bound of the LDP of Proposition 1,

lim sup
ε→0

1

h2(ε)
log P

(
M̂ε /∈ KL

) ≤ −L.
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From (4.23), we get for 0 < a < mini ai and for any given L (i.e., with N constant)

lim sup
ε→0

1

h2(ε)
log P

(
Rε ∈ B(γ, a)

)
≤ max

1≤i≤N
max

{−L,−(
D

(
Iξ (γ − ψi), η

) + IW(ψi) − η
)}

≤ max
{
−L,− min

1≤i≤N
D

(
Iξ (γ − ψi) + IW(ψi),2η

)}
≤ max

{
−L,− inf

ψ
D

(
Iξ (γ − ψ) + IW(ψ),2η

)}
,

where η < 1/2 ensures the second inequality. Consequently

lim sup
a→0

lim sup
ε→0

1

h2(ε)
logP

(
Rε ∈ B(γ, a)

)
≤ max

{
−L,− inf

ψ
D

(
Iξ (γ − ψ) + IW(ψ),2η

)};
letting L go to infinity, we get

lim sup
a→0

lim sup
ε→0

1

h2(ε)
logP

(
Rε ∈ B(γ, a)

) ≤ − inf
ψ

D
(
Iξ (γ − ψ) + IW(ψ),2η

)
.

As η is arbitrarily small, we obtain the desired local upper bound.

4.1.3. Identification of the rate function I . As problems may arise of non-
commutativity of matrices in higher dimensions, let us return in this subsection to
dimension d . Recall first the definition of I , with the notation σ 2

s = σ 2
ξ (f (s, ·)),

I (γ ) = inf
{
I

f
ξ (γ − ψ) + IW(ψ); ψ ∈ C0([0,1],R

d)
}

= inf
ψ

{
1
2

∫ 1

0

〈
γ̇ (s) − ψ̇(s), (σ 2

s )−1(
γ̇ (s) − ψ̇(s)

)〉
ds

+
∫ 1

0
sup
β∈Rd

{
βt ψ̇(s) − 1

2βta2
s β

}
ds

}
.

Note that

IW(ψ) =
 1

2

∫ 1

0

〈
ψ̇(s),

(
a2
s

)−1
g ψ̇(s)

〉
ds, if ψ̇ ∈ range(a2· ),

+∞, otherwise,

where (a2
s )

−1
g denotes the usual generalized inverse of a2

s .
In fact, the main difficulty in explicitly identifying this rate function is the non-

invertibility of a2
s . To circumvent this problem, we will in fact approximate a2

s

by

Aη
s = a2

s + ηId,
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where Id is the identity matrix and η a positive number. Now introduce

I η(γ ) = inf
ψ

{
I

f
ξ (γ − ψ) + I

η
W (ψ)

}
,

where

I
η
W (ψ) =

∫ 1

0
sup
β∈Rd

{
βt ψ̇(s) − 1

2βtAη
s β

}
ds

= 1
2

∫ 1

0

∥∥(Aη
s )

−1/2ψ̇(s)
∥∥2

ds.

We will divide the proof into two steps: the explicit expression of I η and the
convergence of I η to I as η decreases to 0.

EXPRESSION OF I η . By the invertibility of A
η
s uniformly in s, we have

I
f
ξ (γ − ψ) + I

η
W(ψ)

= 1
2

∫ 1

0

∥∥(σ 2
s )−1/2(

γ̇ (s) − ψ̇(s)
)∥∥2 + ∥∥(Aη

s )
−1/2ψ̇(s)

∥∥2
ds

= 1
2

∫ 1

0

∥∥(σ 2
s )−1/2γ̇ (s)

∥∥2 − ∥∥(
(σ 2

s )−1 + (Aη
s )

−1)−1/2
(σ 2

s )−1γ̇ (s)
∥∥2

ds

+ 1
2

∫ 1

0

∥∥(
(σ 2

s )−1 + (Aη
s )

−1)1/2
ψ̇(s)

− (
(σ 2

s )−1 + (Aη
s )

−1)−1/2
(σ 2

s )−1γ̇ (s)
∥∥2

ds.

Now minimizing in ψ , so that the second integral in the last equality vanishes,

I η(γ ) = 1
2

∫ 1

0

∥∥(σ 2
s )−1/2γ̇ (s)

∥∥2 − ∥∥(
(σ 2

s )−1 + (Aη
s )

−1)−1/2
(σ 2

s )−1γ̇ (s)
∥∥2

ds

= 1
2

∫ 1

0

〈
γ̇ (s),

(
(σ 2

s )−1 − (
(σ 2

s )−1(
(σ 2

s )−1 + (Aη
s )

−1)−1
(σ 2

s )−1))
γ̇ (s)

〉
ds

= 1
2

∫ 1

0

〈
γ̇ (s),

[
(σ 2

s )−1(
(σ 2

s )−1 + (Aη
s )

−1)−1
(Aη

s )
−1]

γ̇ (s)
〉
ds

= 1
2

∫ 1

0

〈
γ̇ (s), (σ 2

s + Aη
s )

−1γ̇ (s)
〉
ds.

Consequently,

lim
η→0

I η(γ ) = 1
2

∫ 1

0

〈
γ̇ (s),

(
σ 2

ξ (f (s, ·)) + a2
s

)−1
γ̇ (s)

〉
ds,(4.24)

which is exactly the desired expression (2.10).
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CONVERGENCE OF I η TO I . We first want to prove that I
η
W converges to IW

as η tends to 0. Note that

IW(ψ) =
∫ 1

0
sup
β∈Rd

{
βtψ − 1

2βta2
s β

}
ds

=
∫ 1

0
sup
β∈Rd

{
βtψ − 1

2βt
(
a2
s + ηId

)
β + 1

2ηβtβ
}
ds

≥
∫ 1

0
sup
β∈Rd

{
βtψ − 1

2βt
(
a2
s + ηId

)
β

}
ds

= I
η
W (ψ).

(4.25)

On the other hand, we have

lim
η→0

〈
ψ̇(s),

(
a2
s + ηId

)−1
ψ̇(s)

〉 = { 〈
ψ̇(s),

(
a2
s

)−1
g ψ̇(s)

〉
, if ψ̇(s) ∈ range

(
a2
s

)
,

+∞, otherwise.

Hence Fatou’s lemma implies

lim inf
η→0

I
η
W(ψ) = lim inf

η→0

1
2

∫ 1

0

〈
ψ̇(s),

(
a2
s + ηId

)−1
ψ̇(s)

〉
ds

≥ 1
2

∫ 1

0
lim inf
η→0

〈
ψ̇(s),

(
a2
s + ηId

)−1
ψ̇(s)

〉
ds

= IW(ψ).

Combining this bound with inequality (4.25), we deduce

lim
η→0

I
η
W(ψ) = IW (ψ).(4.26)

The function η → I
η
W is decreasing and relation (4.25) yields that η → I η is

decreasing and

I η(γ ) ≤ I (γ ).

Now, since all the rate functions here have compact level sets, (4.26) implies

lim
η→0

I η(γ ) = sup
η>0

inf
ψ

{
I

f
ξ (γ − ψ) + I

η
W (ψ)

}
= inf

ψ
sup
η>0

{
I

f
ξ (γ − ψ) + I

η
W (ψ)

}
= I (γ ).

This ends the proof since the limit of I η has been previously shown to be (4.24).

4.2. Exponential equivalence of ηε and η̂ε . We divide this section into two
steps, giving successive equivalent forms of ηε w.r.t. the LDP, the last one being η̂ε .
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Step 1. Consider the following diffusion: for t ∈ [0,1],
dX̃ε

t = b(X̃ε
t , ξt/ε) dt + √

ε a(x̄t , ξt/ε) dWt,

X̃ε
0 = x0

(4.27)

and, for t ∈ [0,1],

η̃ε = X̃ε
t − x̄t√
εh(ε)

.(4.28)

We will prove in this step that ηε and η̃ε are exponentially equivalent w.r.t. the
LDP, that is, for all positive r ,

lim
ε→0

1

h2(ε)
log P

(
sup

t∈[0,1]
|ηε

t − η̃ε
t | > r

)
= −∞.(4.29)

To this end, observe that, using the Lipschitz property of b,

|ηε
t − η̃ε

t | =
∣∣∣∣Xε

t − X̃ε
t√

εh(ε)

∣∣∣∣
=

∣∣∣∣∫ t

0

b(Xε
s , ξs/ε) − b(X̃ε

s , ξs/ε)√
εh(ε)

ds

+ 1

h(ε)

∫ t

0

(
a(Xε

s , ξs/ε) − a(x̄s, ξs/ε)
)
dWs

∣∣∣∣
≤ K

∫ t

0

∣∣∣∣Xε
s − X̃ε

s√
εh(ε)

∣∣∣∣ds +
∣∣∣∣ 1

h(ε)

∫ t

0

(
a(Xε

s , ξs/ε) − a(x̄s, ξs/ε)
)
dWs

∣∣∣∣
= K

∫ t

0
|ηε

s − η̃ε
s |ds +

∣∣∣∣ 1

h(ε)

∫ t

0

(
a(Xε

s , ξs/ε) − a(x̄s, ξs/ε)
)
dWs

∣∣∣∣.
Then, writing

M̃ε
t = 1

h(ε)

∫ t

0

(
a(Xε

s , ξs/ε) − a(x̄s, ξs/ε)
)
dWs,

Gronwall’s lemma implies

|ηε
t − η̃ε

t | ≤ eK sup
s∈[0,1]

∣∣M̃ε
s

∣∣ ∀ t ∈ [0,1].

Therefore, (4.29) will follow if we can prove that, for each positive r ,

lim
ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]
∣∣M̃ε

t

∣∣ > r

)
= −∞.

For any fixed arbitrary positive L, observe

P

(
sup

t∈[0,1]
∣∣M̃ε

t

∣∣ > r

)
≤ P

(
sup

t∈[0,1]
∣∣M̃ε

t

∣∣ > r; 〈
M̃ε

1
〉 ≤ Lε

)
+ P

(〈
M̃ε

1
〉
> Lε

)
.
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Note now that, by Bernstein’s inequality,

1

h2(ε)
logP

(
sup

t∈[0,1]
∣∣M̃ε

t

∣∣ > r; 〈
M̃ε

〉
1 ≤ Lε

)
≤ − r2

2Lε h2(ε)

and since εh2(ε) → 0 when ε decreases to 0, we have, for all arbitrary positive
L and r ,

lim
ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]
∣∣M̃ε

t

∣∣ > r; 〈
M̃ε

1
〉 ≤ Lε

)
= −∞.

To conclude we only have to establish that

lim
L→∞ lim

ε→0

1

h2(ε)
log P

(
1

ε

〈
M̃ε

1
〉
> L

)
= −∞.(4.30a)

Note first that, since b is Lipschitz continuous,

|ηε
t | =

∣∣∣∣ 1√
εh(ε)

∫ t

0

(
b(Xε

s , ξs/ε) − b̄(x̄s)
)
ds + 1

h(ε)

∫ t

0
a(Xε

s , ξs/ε) dWs

∣∣∣∣
=

∣∣∣∣ 1√
εh(ε)

∫ t

0

(
b(Xε

s , ξs/ε)−b(x̄s, ξs/ε)
)
ds +λε

t + 1

h(ε)

∫ t

0
a(Xε

s , ξs/ε) dWs

∣∣∣∣
≤ K

∫ t

0
|ηε

s |ds +
∣∣∣∣λε

t + 1

h(ε)

∫ t

0
a(Xε

s , ξs/ε) dWs

∣∣∣∣
and then by Gronwall’s lemma,

sup
t∈[0,1]

|ηε
t | ≤ sup

t∈[0,1]

∣∣∣∣λε
t + 1

h(ε)

∫ t

0
a(Xε

s , ξs/ε) dWs

∣∣∣∣.
Therefore, since a is Lipschitz continuous,

1

ε

〈
M̃ε

1
〉 = ∫ 1

0

(
a(Xε

s , ξs/ε) − a(x̄s, ξs/ε)√
εh(ε)

)2

ds

≤ K

∫ 1

0

(
Xε

s − x̄s√
εh(ε)

)2

ds

= K

∫ 1

0
|ηε

s |2 ds

≤ K

(
sup

t∈[0,1]
|ηε

t |
)2

≤ K

(
sup

t∈[0,1]
|λε

t | + sup
t∈[0,1]

∣∣∣∣ 1

h(ε)

∫ t

0
a(Xε

s , ξs/ε) dWs

∣∣∣∣)2

.
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Consequently, (4.30a) is obtained if

lim
L→∞ lim

ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]
|λε

t | > L

)
= −∞,(4.30b)

lim
L→∞ lim

ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]

∣∣∣∣ 1

h(ε)

∫ t

0
a(Xε

s , ξs/ε) dWs

∣∣∣∣ > L

)
= −∞.(4.30c)

Note that the first statement is exactly (4.10) and the second follows directly
from Bernstein’s inequality and the boundedness of a, as for (4.11). The desired
negligibility is thus proved.

Step 2. Let us introduce the process η̂ε defined for t ∈ [0,1] by

η̂ε
t = λε

t + M̂ε
t +

∫ t

0
B̄(x̄s)η̂

ε
s ds,

where λε is defined by (4.1) and M̂ε by (4.2). We want to establish in this step that
η̃ε and η̂ε are exponentially equivalent w.r.t. the LDP, that is, for each positive δ,

lim
ε→0

1

h2(ε)
log P

(
sup

t∈[0,1]
|η̂ε

t − η̃ε
t | > δ

)
= −∞.(4.31)

To simplify the notation, put

�(s, ξs/ε) = B(x̄s, ξs/ε) − B̄(x̄s),(4.32)

�
(
s, X̃ε

s , ξs/ε

) = 1√
εh(ε)

[
b
(
X̃ε

s , ξs/ε

) − b(x̄s, ξs/ε)

(4.33)
− √

εh(ε)B(x̄s, ξs/ε)η̃
ε
s

]
.

First note that, by definition of η̃ε
t [see (4.27) and (4.28)], we have the following

crucial decomposition:

η̃ε
t = λε

t + 1

h(ε)

∫ t

0
a(x̄s, ξs/ε) dWs +

∫ t

0
B̄(x̄s)η̃

ε
s ds

+
∫ t

0

(
B(x̄s, ξs/ε) − B̄(x̄s)

)
η̃ε

s ds

(4.34)

+ 1√
εh(ε)

∫ t

0

[
b
(
X̃ε

s , ξs/ε

) − b(x̄s, ξs/ε) − √
εh(ε)B(x̄s, ξs/ε)η̃

ε
s

]
ds

= λε
t + M̂ε

t +
∫ t

0
B̄(x̄s)η̃

ε
s ds +

∫ t

0
�(s, ξs/ε)η

ε
s ds +

∫ t

0
�

(
s, X̃ε

s , ξs/ε

)
ds.

Therefore,

|η̃ε
t − η̂ε

t | ≤
∫ 1

0
|B̄(x̄s)||η̃ε

s − η̂ε
s |ds +

∣∣∣∣∫ t

0
�(s, ξs/ε)η

ε
s ds +

∫ t

0
�

(
s, X̃ε

s , ξs/ε

)
ds

∣∣∣∣.
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By this decomposition, Gronwall’s lemma entails

|η̃ε
t − η̂ε

t | ≤ e‖B̄‖
(

sup
t∈[0,1]

∣∣∣∣∫ t

0
�(s, ξs/ε)η̃

ε
s ds

∣∣∣∣ + sup
t∈[0,1]

∣∣∣∣∫ t

0
�

(
s, X̃ε

s , ξs/ε

)
ds

∣∣∣∣).

Thus, we have to prove the negligibility of the last two terms of this inequality,
that is, for all positive δ,

lim
ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]

∣∣∣∣∫ t

0
�

(
s, X̃ε

s , ξs/ε

)
ds

∣∣∣∣ > δ

)
= −∞,(4.35)

lim
ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]

∣∣∣∣∫ t

0
�(s, ξs/ε)η̃

ε
s ds

∣∣∣∣ > δ

)
= −∞.(4.36)

To this end, note the following:

|�(s, ξs/ε)| ≤ ‖B‖ + ‖B̄‖,(4.37) ∣∣�(
s, X̃ε

s , ξs/ε

)∣∣ ≤ K|η̃ε
s |,(4.38) ∣∣�(

s, X̃ε
s , ξs/ε

)∣∣ ≤ √
εh(ε)K|η̃ε

s |2,(4.39)

and, by Gronwall’s lemma, decomposition (4.34), inequalities (4.37), (4.38) and
the boundedness of B̄ imply

|η̃ε
t | ≤ K

(
sup

t∈[0,1]
|λε

t | + sup
t∈[0,1]

|M̂ε
t |

)
.(4.40)

We will use here the techniques introduced in Guillin [(2001), Section 3] to
prove (4.35) and (4.36).

Begin with (4.35). Combining inequalities (4.39) and (4.40), we have

P

(
sup

t∈[0,1]

∣∣∣∣∫ t

0
�

(
s, X̃ε

s , ξs/ε

)
ds

∣∣∣∣ > δ

)

≤ P

(∫ 1

0
|η̃ε

s |2 ds >
δ

K
√

εh(ε)

)

≤ P

(
sup

t∈[0,1]
|λε

t |2 >
δ

4K
√

εh(ε)

)
+ P

(
sup

t∈[0,1]
∣∣M̂ε

t

∣∣2 >
δ

4K
√

εh(ε)

)
.

Note that the negligibility of these last two terms is easily deduced from
(4.10) and (4.11).

Let us deal now with (4.36), which is much more difficult. First, using (4.34),
we get ∫ t

0
�(s, ξs/ε)η̃

ε
s ds =

∫ t

0
�(s, ξs/ε)

(
λε

s + M̂ε
s

)
ds

+
∫ t

0
�(s, ξs/ε)

∫ s

0
B̄(x̄u)η̃

ε
u duds
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+
∫ t

0
�(s, ξs/ε)

∫ s

0
�(u, ξu/ε)η̃

ε
u duds

+
∫ t

0
�(s, ξs/ε)

∫ s

0
�

(
u, X̃ε

u, ξu/ε

)
duds.

Hence by Gronwall’s lemma, applied to
∫ t

0 �(s, ξs/ε)η̃
ε
s ds,

∣∣∣∣∫ t

0
�(s, ξs/ε)η̃

ε
s ds

∣∣∣∣
≤ e(‖B‖+‖B̄‖) sup

t∈[0,1]

(∣∣∣∣∫ t

0
�(s, ξs/ε)λ

ε
s ds

∣∣∣∣
+

∣∣∣∣∫ t

0
�(s, ξs/ε)M̂

ε
s ds

∣∣∣∣
+

∣∣∣∣∫ t

0
�(s, ξs/ε)

∫ s

0
B̄(x̄u)η̃

ε
u duds

∣∣∣∣
+

∣∣∣∣∫ t

0
�(s, ξs/ε)

∫ s

0
�

(
u, X̃ε

u, ξu/ε

)
duds

∣∣∣∣)
= e(‖B‖+‖B̄‖) sup

t∈[0,1]
(|Iεt | + |IIεt | + |IIIεt | + |IVε

t |
)
.

(4.41)

Now we have to prove negligibility with respect to the moderate deviations
[i.e., with speed h−2(ε)] of the four terms on the right-hand side of this last
inequality. For the term IVε

t , note that

sup
t∈[0,1]

|IVε
t | ≤ (‖B‖ + ‖B̄‖) sup

t∈[0,1]

∣∣∣∣∫ t

0
�

(
s, X̃ε

s , ξs/ε

)
ds

∣∣∣∣
and (4.35) thus provides the needed negligibility of supt∈[0,1] |IVε

t |. The third term
needs more effort.

(a) Negligibility of IIIεt . First, by integrating by parts,

IIIεt =
∫ t

0
�(s, ξs/ε)

∫ s

0
B̄(x̄u)η̃

ε
u duds

=
∫ t

0
�(s, ξs/ε) ds

∫ t

0
B̄(x̄u)η̃

ε
u du

−
∫ t

0
B̄(x̄u)η̃

ε
u

∫ u

0
�(s, ξs/ε) ds du.

(4.42)
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For the first term on the right-hand side, for all δ > 0, L > 0, we have, using (4.40),

P

(
sup

t∈[0,1]

∣∣∣∣∫ t

0
�(s, ξs/ε) ds

∫ t

0
B̄(x̄u)η̃

ε
u du

∣∣∣∣ > δ

)

≤ P

(
sup

t∈[0,1]

∣∣∣∣∫ t

0
�(s, ξs/ε) ds

∣∣∣∣ >
δ

L

)

+ P

(
sup

t∈[0,1]

∣∣∣∣∫ t

0
B̄(x̄u)η̃

ε
u du

∣∣∣∣ > δL

)

≤ P

(
sup

t∈[0,1]

∣∣∣∣∫ t

0
�(s, ξs/ε) ds

∣∣∣∣ >
δ

L

)

+ P

(
sup

s∈[0,1]
|λε

s | >
Lδ

K

)
+ P

(
sup

s∈[0,1]
∣∣M̂ε

s

∣∣ >
Lδ

K

)
.

(4.43)

The negligibility of the last two terms has been established previously in (4.10)
and (4.11) after a suitable asymptotic of L; and for the first note that

lim sup
ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]

∣∣∣∣∫ t

0
�(s, ξs/ε) ds

∣∣∣∣ >
δ

L

)

= lim sup
ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]

∣∣∣∣ 1√
εh(ε)

∫ t

0
�(s, ξs/ε) ds

∣∣∣∣ >
δ

L
√

εh(ε)

)
.

Under our assumptions, it is easily seen, as B is Lipschitz continuous, that
� satisfies condition (G) of Theorem 3; then the desired negligibility follows from
Corollary 1 and the fact that δ/(L

√
εh(ε)) → ∞ for given δ and L.

Now we deal with the second term of the integration by parts (4.42). First
observe that, by the boundedness of B̄ and (4.40),∣∣∣∣∫ t

0
B̄(x̄u)η̃

ε
u

∫ u

0
�(s, ξs/ε) ds du

∣∣∣∣ ≤ K sup
u∈[0,1]

|η̃ε
u| sup

u∈[0,1]

∣∣∣∣∫ u

0
�(s, ξs/ε) ds

∣∣∣∣
≤ K sup

u∈[0,1]
|λε

u| sup
u∈[0,1]

∣∣∣∣∫ u

0
�(s, ξs/ε) ds

∣∣∣∣
+ K sup

u∈[0,1]
∣∣M̂ε

u

∣∣ sup
u∈[0,1]

∣∣∣∣∫ u

0
�(s, ξs/ε) ds

∣∣∣∣.
Now, by the technique used for the first term of the integration by parts (4.42), we
also obtain, for all δ > 0,

lim
ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]

∣∣∣∣∫ t

0
B̄(x̄u)η̃

ε
u

∫ u

0
�(s, ξs/ε) ds du

∣∣∣∣ > δ

)
= −∞.
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We have thus proved the negligibility of each term of (4.43), which yields the
desired negligibility of IIIε, that is, for all δ > 0,

lim
ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]
|III ε

t | > δ

)
= −∞.

(b) Negligibility of Iεt and IIεt . In fact, we will only establish the negligibility of
IIεt , as the proof for Iεt is absolutely similar. Consequently, we only prove here that,
for all positive δ,

lim sup
ε→0

1

h2(ε)
logP

(
sup

t∈[0,1]
|IIεt | > δ

)
= −∞.(4.44)

Recall that IIεt = ∫ t
0 �(s, ξs/ε)M̂

ε
s ds. First, by Lemma 1, (M̂ε) satisfies an LDP

with good rate function IW , and IW(γ ) = +∞ if γ does not belong to the
Cameron–Martin space. Let L > 0 and δ > 0. As the level set KL = [γ ;
IW (γ ) ≤ L] is compact, we may choose, for any η ∈ (0, δ/(2(‖B‖+‖B̄‖)), a finite
collection of mappings γ1, . . . , γN ∈ KL (with N depending on δ and L) such that
KL ⊂ ⋃N

l=1 B(γl, η/2).
A crucial fact is that each γl is in the Cameron–Martin space and satisfies, by

the Cauchy–Schwarz inequality,

|γl(t) − γl(s)| =
∣∣∣∣∫ t

s
γ̇l(u) du

∣∣∣∣ ≤ √|t − s|
√∫ t

s
γ̇ 2
l (u) du,

which implies, by the absolute continuity of γl ,

lim
ε→0

sup
|s−t|≤ε

|γl(t) − γl(s)|√|t − s| = 0.

Note that it is exactly the last statement in condition (G) of Theorem 3. Then, for
all positive δ,

P

(
sup

t∈[0,1]
|IIεt | > δ

)

= P

(
sup

t∈[0,1]
|IIεt | > δ; M̂ε ∈ B(Kl, η)

)

+ P

(
sup

t∈[0,1]
|IIεt | > δ; M̂ε /∈ B(KL,η)

)
(4.45)

≤
N∑

l=1

P

(
sup

t∈[0,1]
|IIεt | > δ; M̂ε ∈ B(γl, η)

)
+ P

(
M̂ε /∈ B(Kl, η)

)
≤

N∑
l=1

P

(
sup

t∈[0,1]

∣∣∣∣IIεt −
∫ t

0
�(s, ξs/ε)γl(s) ds

∣∣∣∣ >
δ

2
; M̂ε ∈ B(γl, η)

)

+
N∑

l=1

P

(
sup

t∈[0,1]

∣∣∣∣∫ t

0
�(s, ξs/ε)γl(s) ds

∣∣∣∣ >
δ

2

)
+ P

(
M̂ε /∈ B(Kl, η)

)
.
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First observe that for all l, on the event [M̂ε ∈ B(γl, η)],

sup
t∈[0,1]

∣∣∣∣IIεt −
∫ t

0
�(s, ξs/ε)γl(s) ds

∣∣∣∣ ≤ η

∫ 1

0
|�(s, ξs/ε)|ds

≤ η(‖B‖ + ‖B̄‖),
and, for η < δ/(2(‖B‖ + ‖B̄‖)), we have

N∑
l=1

P

(
sup

t∈[0,1]

∣∣∣∣IIεt −
∫ t

0
�(s, ξs/ε)γl(s) ds

∣∣∣∣ >
δ

2
; M̂ε ∈ B(γl, η)

)
= 0.(4.46)

For the second term of (4.45), note that the mapping f̃ , defined by

f̃ (s, ξs/ε) = (
B(x̄s, ξs/ε) − B̄(x̄s)

)
γ (s),

satisfies condition (G) of Theorem 3, since � is Lipschitz continuous and
γ satisfies (G3). Hence, by Theorem 3 and Corollary 1, for each γ ∈ KL, we have

lim sup
ε→0

1

h2(ε)
log P

(
sup

t∈[0,1]

∣∣∣∣∫ t

0
�(s, ξs/ε)γ (s) ds

∣∣∣∣ >
δ

2

)

= lim sup
ε→0

1

h2(ε)
log P

(
sup

t∈[0,1]

∣∣∣∣ 1√
εh(ε)

∫ t

0
f̃ (s, ξs/ε) ds

∣∣∣∣ >
δ

2
√

εh(ε)

)
(4.47)

= −∞.

By Proposition 1, M̂ε satisfies an LDP upper bound. Hence, if ε is sufficiently
small,

lim sup
ε→0

1

h2(ε)
logP

(
M̂ε /∈ B(KL,η)

) ≤ inf
γ /∈KL

IW(γ )

≤ − L.

(4.48)

Then, as all the summations considered in (4.45) are finite sums for given L, taking
the limit in (4.45), combining relations (4.46)–(4.48), we get that, for all positive δ,

lim sup
ε→0

1

h2(ε)
log P

(
sup

t∈[0,1]
|IIεt | > δ

)
≤ −L,

and as L is arbitrary, letting L tend to infinity, we obtain the desired relation (4.44)
and with it relation (4.36).

Finally, η̃ε and η̂ε share the same LDP, and by Step 1, we conclude that
ηε and η̂ε are exponentially equivalent w.r.t. the LDP.
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