The Annals of Probability
1996, Vol. 24, No. 1, 346-376

DIFFUSION APPROXIMATION FOR THE ADVECTION
OF PARTICLES IN A STRONGLY TURBULENT
RANDOM ENVIRONMENT
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In this paper we prove several theorems concerning the motion of
a particle in a random environment. The trajectory of a particle is the
solution of the differential equation dx(¢)/dt = V(x(¢)), where V(x) =
v+&l"*F(x), 0 < a < 1, v is a constant vector, F is a mean-zero fluctua-
tion field and £17% is a parameter measuring the size of the fluctuations.
We show that both in case of a motion of a single particle and of a parti-
cle system considered in the macroscopic coerdinate system moving along
with velocity v [i.e., x ~ (x — vt)/e%, t ~ t/£?] the diffusion approximation
holds provided that F is divergence free. Moreover we show how to renor-
malize trajectories to obtain a similar result for non-divergence-free fields.
These results generalize theorems due to Khasminskii and to Kesten and
Papanicolaou.

1. Introduction. Let V(x) be a d-dimensional random velocity field, and
let x(¢) be the particle trajectory in R? satisfying

B =vaw),  x0)-x

The following question arises naturally. Under what hypotheses on the field
V does the particle have diffusive behavior observed over a long time? More
specifically, assume that time ¢ ~ £~2 and

V(x) = v+ &' "F(x).

Here v € R? is a constant nonzero vector, F is a mean-zero, stationary random
field and 0 < a < 1 is a fixed parameter with £!~¢ measuring the size of the
fluctuations given by F when & « 1. Since the field F is stationary we can
assume, with no loss of generality, that initially the particle is at the origin.
Define the “scaled” process

(1) x.(t) = a"[x(g—tz) - va—tz:l

It satisfies the differential equation

dx, . 1_(x.(t) t
@ @ D= (— +”sz)-
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CLT FOR MOTIONS IN RANDOM FIELDS 347

We will show that if F = (Fy, ..., F) is divergence free, that is, ¥¢_,3,F , =
0, and sufficiently smooth, then x, behaves, for ¢ small and « < 1, like a
diffusion process. In general if

dx, 1 (t %)
(3) dt (t)_ev<e2’ & )

x,(0)=x

and V is a random velocity field stationary in time, we will show (see The-
orem 3) how to scale x, properly in order to obtain diffusive behavior in the
limit. These results generalize theorems of Khasminskii [8] and Kesten and
Papanicolaou [7] which cover the case when a = 0.

In addition we study the limiting behavior of stochastic flows correspond-
ing to (3), when V is a divergence-free velocity field. More specifically, let us
consider the solutions 7',(¢, x) of the advection equations

9,T (¢, x) = %(V( ! i), V)Ts(t, %),

(4) &2 g

T.(0,x) = Ty(x)

as stochastic processes in the space of tempered distributions. Using Mitoma’s
characterization of weak compactness in that space, we will prove weak con-
vergence of T', as ¢ | 0 to a solution T of a diffusion equation

if 0 < @ < 1, and to a solution of the Itd stochastic differential equation

d
dT(t) =1 Y ap’qai,qT(t)dtwLKIT/(Zt)dB(t),

p,q=1
T(0) = T,,
for @ = 0. Here {B(¢)}. is a cylindrical Brownian motion in L2(R?); K%‘i) is

the square root of a nonnegative definite trace class operator K T(t): L*(R?) —
L%(R?) given by the formula

KT(,)f(x)
(5) e r = 2/ pd
= Y [Tpglx =)0, T(t, %) 3, T(t, Nf(3)dy, [ eLARY).
P-q=1
Coefficients a, , and functions I', ;, p,q¢ = 1,...,d, are given explicitly in

formulas (6) and (25), respectively.
In order to be able to define the operator by means of formula (5), we will
also need to prove that the process {T'(¢)},., takes its values in H'(R?) space.
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The results mentioned above are related to the problem of a diffusion in a
turbulent medium treated by a different method in [4].

Our paper is divided into three parts. In Sections 2—7 we deal with the
case of a single particle. In Sections 8-11 we discuss the problem of a flow
of particles. Sections 2 and 8 briefly outline the proofs for both situations.
The last part of this work consists of appendices including the proofs of facts
omitted in the main exposition.

2. Formulation of the main result and sketch of the proof. Below
we formulate precisely the problem for the motion of a single particle, briefly
described in the Introduction, and outline the strategy for its proof. Denote
by (, 7, P) a probability space. Let {x.(¢)};-o be given by (3), where «a is
assumed to belong to the interval [0, 1). Throughout this article we will let N
denote the greatest integer less than or equal to 1/(1 — @). We formulate the
following conditions, which are assumed to be fulfilled by the random field V.

(C1) The random field V is strictly stationary in time and space; that is, for
any t{,...,t, € R, x1,...,%,, € R? and each 2 € R and k € R%, the
joint distribution of

Vi, +h,x1+k),....,V(t, + h,x,, + &)
is the same as that of
V(t1, %1), o os V(t, Xpp)-

(C2) For C, 0 > 0, let Vab(C, o) denote the o-algebra generated by the sets of
the form

[w: V(t, x;0) € A,
where a <t <b, | x |< C(1+t°) and A is a Borel set in R%. Let

| P(AN B) — P(A)P(B) |
P(B) '

B(h;C, 0) = sup sup
¢ Ae%%,(C,0), Be¥{(C,0)
We will assume that there exist such 0 < ¢ < 1 and C > 0 that for any
m > 0 there is a C,, such that

h™B(h;C, 0) < C,, forall k> 0.

The above restriction on g is essential for the application of our main the-
orem (formulated below) to the situation described in the first paragraph
of the introduction. See also Remark 4 after Lemma 1.

(C3) The random field V has N + 1 spatial derivatives and there is a constant
C > 0 so that

” > [ D*V(t,x)|<C < 40

0<|k|<N+1

Here DXV (¢,x) = ! - st V(t,x) and k = (ky, ..., ky), |k |= X2_, k.
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(C4) The random field V is divergence free; that is,

d
divV(t,x) = 3 9, V(¢ x)=0.

p=1

The following theorem holds.

THEOREM 1. Suppose that V satisfies the assumptions made in conditions
(C1)—(CA4). Then the family of processes {x.(¢)};=9, € > 0, is weakly convergent
as € | 0 to a Brownian motion with a covariance matrix whose entries are
given by the following formulas:

6) a,, = /0 E{V ,(t,0)V (0,0) + V,(t,0)V,(0,0)}dt,  p,g=1,...,d.

Theorem 1 implies the following result for the “scaled” trajectories described
by (2).

THEOREM 2. Suppose that F is a strictly stationary random field with mean
zero satisfying the following properties:

(i) The uniform mixing coefficient
| P(ANB) — P(A)P(B) |

B(h;v) = sup sup
20 AeF35,(v), BeF(v) P(B)

is decaying faster than any power; that is, for any m > 0 thereis a C,, > 0
such that

B(h)R™ < C,,.
Here 7'(v) denotes the o-algebra generated by the sets of the form
[w: F(y, w) € A, A is Borel measurable in R?, y satisfies s < (‘ly;l;) <t,

where (-, -) stands for the usual Euclidean inner product of vectors.
(i) The field F has N + 1 derivatives,

> |DXF|<C <+o0
0<|k|<N+1

and div F = 0. Here DXF(y) = dy! -+ 33 F for k= (ky, ..., ky).

Then the family of processes {x.(t)}:0, € > 0, given by the solutions of (2) is
weakly convergent as € | 0 to.a Brownian motion with a covariance matrix
whose entries are given by the formulas

Gpg = /Ow E{F ,(vt)F,(0) + F,(vt)F ,(0)}dt, p,g=1,...,d.
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In order to conclude Theorem 1 we will prove a more technical result stated
below as our next theorem. It holds for a more general class of random fields
than those satisfying condition (C1); therefore we introduce a weaker version
of this condition as follows:

(C1’) The random field V is strictly stationary in the variable ¢ for each fixed
x € R4,

THEOREM 3. Suppose that a random field V (¢, x) satisfies assumptions
(C1"), (C2) and (C3). Then there exists a family of d-dimensional processes
{B.(t)}s=0, € > 0, weakly convergent as € |, 0 to the standard d-dimensional
Brownian motion and such that

2 = 200 = [ eo Z22) 4 + rrren(242)]
- [o(*42) ap.o)

converges weakly to 0. Here

cn(x)=[0 dulfo 1duz---/o i W, (uy,us, ..., u,,0,x)du,,

(7

Wo(s1, 82, ..., Spy1, %) = i 9%, Woi1(51, 82, -+ Sy )V p(Sp41, X)
(8) ! forn=1,..., N,
Wo(s1, x) = V(sy, x),
W,=EW,,
W,=W,-W,,

o(x) is a symmetric, nonnegative definite d x d-matrix-valued function such
that

9 a?(x) = a(x)

and a = [a,,]4xq is @ matrix whose entries are given by the following formulas:
@ pg(x)

(10)

_ /0°° E{V (£, )V (0, ) + V (t, x)V (0, x)}dt,  p,q=1,...,d.

REMARK 1. According to a well-known result of Oleinik [see [13], Theo-
rem 5.2.3, page 132], there exists a unique Lipschitzian d x d-matrix-valued
function o(x), x € RY, satisfying (9) for a(x) given by (10).

REMARK 2. Theorem 3 says that the solution {x,(¢)},., of (3) behaves as
e | 0 approximately in the weak sense as the solution of the It stochastic
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differential equation

dx, () = b, ( g(t))dt+ ( S(t))dﬂ(t)

x,(0)=0
where
11 1 1
(11) b,(x) = ;co(x) +eet 8—Na—_N—+10N(x)
and ¢y, ..., cy, o are defined as above.

REMARK 3. Notice that if V satisfies the stronger condition (C1), then
Cos---,Cn become constants as well as a,,, p,q = 1, ...,d. Theorem 3 as-
serts then that the scaled processes

1 1
7.0 = 20~ (Sert -+ cmen )t 120,

become eventually as & | 0 a Brownian motion with the covariance matrix
given by (10). When in addition V is divergence free, then

C():'”:CN:O.
Indeed, forn=1,..., N,

W _EW _E{Za Wn 1(31’82’""Snay)Vp(er—l’y)},

o
=—-E{W,_,divV}=0.

The original family of processes {x.(¢)};0, € > 0, is therefore weakly conver-
gent as £ | 0 to a Brownian motion with covariance matrix a, as asserted in
Theorem 1.

The proof of Theorem 3 will be done under the additional, yet not essen-
tial, assumption that a is strongly nondegenerate. As in [13] one can easily
overcome this difficulty.

The main line of the argument contained in the proof can be divided into
three steps. In step 1 we verify that for ¢ > 0 the processes

Ye(t) = x,(2) — / [— o( 8(8)) +eeet SN:NHCN( :(S))] ds, t>0,

are tight. We proceed with this step, proving first a Chentsov-type criterion
for tightness, formulated in Lemma 2 (Section 3). Its application to this fam-
ily is possible by means of Lemma 1. In step 2, carried out in Section 6, we
construct the family of processes {B.(¢)};50, € > 0, approximating the stan-
dard d-dimensional Brownian motion and verify, using the criterion mentioned
abpve, that the integrals

Lo (F) o] o
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form a tight family as ¢ | 0. Identification of the limit is done by means of the
martingale characterization of Brownian motion. The final step is the proof
that the finite-dimensional distributions of {z,(¢)},. defined by (7) tend to 0
as ¢ | 0. This property combined with the results of steps 1 and 2 enables us
to claim that the conclusion of Theorem 3 holds.

3. Basic lemmas. Here we present the basic lemmas needed for the proof
of Theorem 3. The proofs of those facts can be found in Appendix A.

LEMMA 1. Letusfix T > 0andlet 0 <u <s < T. Assume that Y(s) is a

7! gz(C, 0)-measurable random vector function. Let &.(u) be ¥ “(C, o)-
measurable, and let |&.(u)|/e* < C(1 + u®/e%°), for 0 < & < &y(T),
where £o(T) is sufficiently small constant depending on T. Then for any
nonnegative integers k and n there are a constant C(d,k,n, M, ,) de-
pending only on d,k,n, M, , = maxpy ., Sup |DXV (t, y)| and exponents
aj(k,n),...,a,1(k, n) > 0 depending only on k and n such that for a multi-
index k= (ky,...,kg) with |k|=kand0<u<s<s,,;<---<5,<T, 0<
e < g(T),

s (3 ) (2)]
& & &% &€
s
< C(d, k,n, M, ;)% (s; — s5)--- prnilen)(s, , — s)E ’ Y(g) ’

Here
DXV (t, y) =k - dhaV(t, y),

D*W(sy, ..., 8041, ¥) =9 0% W(sy, ..., 8541, 9).

REMARK 4. The function £,(«) is the obvious prototype for x,(z). Notice
that x,(u) is %u/SZ(C, 0)-measurable, if 0 > (1 + a)/2and C >| F | +1. Indeed,

up x.(uq)
V(3250w

u u®
< CE < C<1+—),

EXCIP
0

e - 81+a

g2e

provided that ¢ is sufficiently small. The only reason we have &, in the state-
ment of this lemma is that it will also be needed for ¢,(z) = x, where | x |<
Cu/e., E

The next ingredient of our proof is the following lemma establishing a
weak compactness criterion in C[0, +00) modelled on classical theorems due
to Chentsov and Kolmogorov.
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LEMMA 2. Suppose that & is a family of probabilistic measures on
C[0, +00) satisfying the following:

() limpsyo SUP, s p[x: | X(0) |[> M]=0
(ii) for any T > 0 and v > 0 there is a constant C(T,v) such that, for all
nweF, T>u>t>s>0,
E*{| x(u) — x(8) [*| 2(2) — x(s) '} = C(T, v)(u — )E* | x(t) — x(s) " .
Here E* denotes the expectation with respect to the measure pu.

Then & is weakly compact.

4. Auxiliary computations. In this section we suppress the subscript
¢ on x. Consider a partition 0 = ¢; < t; < -+- < t)y = T such that A¢; =
tip1—t;=¢",i=0,...,M—2, where 1 < y < 21is to be defined later: The last
interval [£,_1, £37] is of length less than or equal to £”. Assuming that s < ¢,
we have

x(8) — x(s)

= —/ (—21 x(u1)>du1
(12) = ;/; c (x(ul))d + - / Wo< x(:il))dm
=%/stc (x(m))d +Z /m W <u1 x(glil))dulﬁLo(l).

The summation is taken over those i’s for which s < ¢; < ¢;,; < ¢. So the
left-hand side of (12) up to a quantity of magnitude o(1) is equal to

%/st‘?o(x(ul))d +Z [.+1 W (ul x(8u1)>d "
=_/ (x(ul)) 1+Z [tﬂ W <u1 M)dul
+Zgz%ft ulf Wl(ul Us x(lff))duz
) o 5
+2g / W (ul x(t’ 1))d u

o
1 &
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Applying the procedure of “freezing” time at ¢; ; and expanding Wl around
t;_1, we get a formula involving W,. Centering W2 by subtracting its average,
we arrive at an analogue of (12) involving, in addition to all the terms on the

right-hand side of (12), the mean W, and the fluctuation W2 Repeating this
procedure N times we get

x(t) — x(s)
(e

1 tit1 “e (U Uy x(Uy)
d / w (L Bz X)),
+ ; g2+a 4 U 1( &2 ev Uz +

iy g2’
1 tit1
+Z eN+1+Na /t du,
i i
d uN a7 uN+1 x(uN+1) d
Ug Wy 82,---, T2 ' pa ) %¥Nn

tio1

(13) +Z f‘“ W (”1 @)duﬁ
1 tt+l
+zi: eN+1+Na /ti du,

UN = Unir x(t;_1)
/ du, - WN(az,...,—+ = ) duy,,

s
ti—1 i1 82

1 l+l
+ Z eN+2+(N+1)a /t du,
i i

uy UN+1 u u 2(Upnyo)

1 N+2 N+2

X du2"‘/ LDNI T ey T, ————— duNZ
tiy i1 I g2 T g2 &« +

+o(1).

Denote

_ 1/t x(uq)
L = x(t) — x(s) — ;/; co( p )dul
1 tia Yo (U ugy x(ug)
_;—82+ali dul/tH W1<82, . pe d Ug — -
1 tiv1
- 4? eN+1+Na /t,» du,y

“ . uyi %ya)

+1 N+1

X dug--- Wa 2,..., 2 ” dupy,:.
tic 7 € € &

Our first claim is that L is, up to a quantity of order o(1), equal to

'x(t)—x(S) f[ ( (S)) +"'+8Na}N+lcN(x§))}d
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Applying a change of variables and condition (C1’) on V, we obtain the follow-
ing string of equalities for 1 < n < N + 1 and any admissible i:

1 tie1 uy Un_1 uy u, x(u,)
n n
m[ dulf duZ[ Wn—l SRR = dun
€ t; tios i £ € £
1 tiv1
=) — du
Z ght(n—1)a ‘/ti 1

i
U Un-1 — u;—u Up,_1— U x(u,)
1 n n—1 n n

X duz---/t Wn_1< e , 0, du,

2
ti1 i1 €

1 2 tiv1
:Z 8n+(n—1)ag fti dul ¢

i

(14) Uy Up—2
duz .. [ dun_l

i-1 i1

(n-a=n-1)/e* W Uy —Upg Up—g —Up_1
X A n—1 oo

Un-15 O’ %) dvn—l'

Repeating this procedure n — 1 times and taking into account that the first
iterated integral is taken from ¢; to ¢;,; not from ¢;_; to ¢;, we get that the
right-hand side of (14) is equal to

) o 2
1 2(n—1) /tz dul [(tz+1 uy)/€ dvl
i1 (

— ¢
gnt(n—1)a ti—up)/ e

2 o ()
X A dvz.---/(; Wn_l(Ul,..., Un_l,O, oo dvn_l

1 2n-1) tiv1 (tip1—u1)/82
+ m&‘ -/t dulj(; dl)l

: o ()
A dvz.../0 Wn_l(vl,...,vn_l,O, e dv,_;.

Summing the right-hand side of (14) over all admissible i’s, we get, up to a
term of order o(1),

1 2(n—1) /ti (tiy1—u1)/ €8
— & du f dU
Z gnt(n—1)a ti 1 0 1

i
Y1 Un-2 — x(uq)
X ) dvz-..‘/(; Wn_1<Ul,...,Un_1,O,T dvn_l.

. The absolute value of the difference between this term and

1 ! xe(u)
8(n—1)a—n+2[; c”_l( e )du
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is again, up to a term of magnitude o(1), less than or equal to

O “aun [T d
- u /‘ v
—~ g(n—1)a—n+2 /ti_l ! (Bip1—u1)/&2 '

12
vy Vnog | — x(uq)
X b dUz.../(; Wn_]_(vl,-v-,vn_lgoy oa

Observe that, according to Lemma 1, there exist a constant C and positive
exponents «ay, ..., a,_; > 0 such that, for all x € R?,

= X
Wn_]_(l)l, cees Up1, 0, ;&)

So the expression given in (15) is less than or equal to
C tiv1 +00
g(n—la—nt2 Z/t du, /SH dv,
1 12

x /0 dvy - '/0 N B (vy — vg) - B 2(Vy_g — V1) B (V,_1) AU, ;.

Thus it is of order of magnitude o(1)(¢ — s) and the claimn we made about L is
indeed true.

The second claim we make here is that the last term before o(1) in (13),
that is,

1 tiv1
Z eN+2+(N+1)a [t du,

a6’ ( )
Uy UN+1 u u x\u
o duz'"/t WN+1< 1 .”,M,ﬂ)dulwz’

(15)

dUn_l.

< CB*(vy —vg) -+ B*2(Vp_g — Uy 1) B (V1)

9
s - g2 g2 &

is itself of order o(1). This follows from the fact that Wy, is bounded and
thus the multiple integral is of order O(£(?+2)7), Taking into account the fact
that the sum has less than [(¢ — s)/&”] + 1 terms, we get that (16) is of order

0(8(N+1)y—(N+2+(N+1)a)) — 0(1),

ifonly 2 > y > (N +2+ (N +1)a)/(N + 1), which is possible since & < 1 —
1/(N +1).

5. Tightness of y.(£). Now we proceed with step 1 of the proof of Theo-
rem 2. According to what we have stated so far and Lemma 2, it is enough to
prove that there is a C(T') such that

1 tiv1
E{[Z ghtl+na /t.- du,

i

an. R o T N () ’
' X/; ‘/t Wn(g,...,?—,T)dun_;_l:l Y}

i-1 i-1

<C(T)t—-s)EY,



CLT FOR MOTIONS IN RANDOM FIELDS 357

for0 <n<NandY 7/05/ *_measurable and nonnegative (here and in the
sequel we will omit writing C and ¢ in the notation of o-algebras). Notice
that the left-hand side of (17) is equal to

J+1

2 tiv1 Uy u, t

/

2n+2+2na Z_[ dul/ T du”+1[ dul
£ = t i1 t

i-1 i

u Uy ~ (u u x(t;_1)
(18) g W<__1_n+1_1)
8 /tjq '/;j—l { "\ &2 &2 e

~ (U ' t
XW”(ﬂ e M)Y} Uy

g2’ g2 7 ga

We will distinguish three terms I, I, and I5 in the expression described by
formula (18), corresponding to the summation ranges i < j —2,i = j—1 and
i = j, respectively.

By Lemma 1, term I; can be estimated as follows:

2C tit1 Uy Un tiv
I < e 2 / dulf / dun+1/ du)
€ i<j—2’ti ticy tic1 tj

uj u, u, —u u —t;
1 -1
X/ / 3“1 _12_2 ...Ban+1 Lz_‘]_ du;H_lE’Y
tia o Yt &€ €

c 2ny gmina, [ 287 2
< gmiziaa® BT k<m EY(t- ),

since at least one u), —u},; > (t;41 —t;_1)/(n+1) = 2¢”/(n + 1). Hence it is
of order o(1).

Terms I, and I can be estimated in the same manner, so we will deal with
the latter one only. By Lemma 1,

2 tiv1 Uy Uy tiv1
/
= grgmm 2 du [ o[ duga [T du
i Vi i-1 i-1 i

x/“/l _“/“;' E[W (ﬂ Untl x(ti—1)>
(19) ti tiy "\g2T g2 7 g
! !
~ (u} Upsr %(ti_1) /
X Wn<'8—2,..., fz—, —32‘_ Y dun+1

< 208(2n+1)y—2n—2—2naEY(t _ S).

Ifn >‘: 0, we choose 2 > y > (2na+ 2n +2)/(2n + 1) so the right-hand side of
(19) is of the form o(1)EY (¢ — s). If n = 0, there can be no such y. Then we
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estimate, using Lemma 1, as follows:
Lot phn (o (uy x(tio)\w (4 *(ti1) /
;;/t £ E{Wo(g, ——ea WO g, —ga Y duldul
i+ o
EYZ/ f ‘ (“1 )duldul
< 4CEY(t —s) [ B(u)du.
0
This proves tightness of {y.(¢)};-0, € > 0, and thus step 1 is concluded.

6. Brownian motion approximation. Let us consider 0 = ¢, < ¢; <
- < t,, <---a partition of [0, +00) such that ¢¥ = A¢; for all i.
Set, for t; <t <t

(B = (Bult)y + Z( e E) [ g (5, 20 ) aw,

o
i+1 €

where o was defined by formulas (9) and (10).

THEOREM 4. The family of processes {B,(t)};>0, € > 0, converges weakly,
as € | 0, to the standard Brownian motion.

PROOF. First we verify tightness of the above family using Lemma 2. Since
the computation is mostly along the lines of Section 4, we will only highlight
its most important points. We need to check that, for any bounded, nonneg-
ative and continuous function (x4, ..., x,,) defined on (R%)™, the following
condition holds for some constant C > 0:

E{I :Bs(t) - Bs(s) |2 d’(ﬂa(sl)’ L] BS(SM))}

(20)
= C(t - S)E‘IJ(Ba(sl)a cee Bs(sM))’

forall0 <s; <---<sy <s<t=<T.Denoting y(B.(51),-.-,B(s5m)) by ¥,
we can write the left-hand side of (20) as, up to a term of magnitude o(1),
equal to

(21) {[Z >3 ‘1)”"( (t))/t.l“w‘)(i’xg)) ”Tq’}’

p=1 i g=1 i

where the summation ranges over those i’s where s < ¢; < t;,; < t. For the
sake of notational clarity let us define U% (u, u’, x) = W{(u, x)W§ (v, x) +
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Wg(u’, x)Wg/(u, x). Then by Lemma 1 we can conclude that (21) equals

22 Z E{( _1)pq< s(t))( _l)pq< s(t))

i p,q,q=1
/ [ qu(“ i xg(f ))du"P}+o(1)(t—s)2E\If

z+1

45§l (1)
[ (355
)

+8—122 i E{(O-—l)pq( x,(2; ))( _1)pq( t;)

i p,g,q'=1 )
x / f EUY
tist 82’ 82’ 801

l+1

(22)
— EU%Y (

]du \I’]
x=x,(t;)

du’ ‘I’}

x=x,(t;)
+o(1)(t — s)2EW¥
= (0(1) + A)EW(t — 5) + o(1)(t — 5)* EV.

The final equality in (22) holds by application of Lemma 1 and the argument
applied in Section 4 that the tails of integrals defining a,,, ¢,¢' = 1,...,d,
go to 0. Thus (22) implies that (20) indeed holds, so {B8.(¢)};50, € > 0, is a
tight family in C[0, +00). As for the second and finishing step of the proof of
Theorem 4, we need to verify the following three conditions:

@ lim E{((B:),(£) = (B:)p(s)1¥} = 0 forall ¢ >

lgg)l E{{[(Bs)p(t) - (Be)p(s)][(ﬂe)q(t) - (Be)q(s)] - apq(t - s)}\If)

=0 forallt>s;

(ii)
(ii) limisoup E(Be)‘;(t) <+oo forall ¢ > 0.

THe computations for each of the above three conditions are rather standard
and once again go along the lines presented in Section 4. We only outline
briefly the arguments for each point.
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(i) By Lemma 1,
E{[(B.)(t) — (B )p(s)]‘l’}

s e (249) 55,52 ] -

i i+1

(ii) By Lemma 1,
E{[(B.)(8) — (Bs)p(s)][(B )q(t) = (Be)g(s)1¥}
—1\pr s(t) +2 u xs(t)
23 [Z- Z( ),,( )[t W<2’ & )

i+1

L35 oy (2402 [ g (1, 2 ) au ) s o0,

r=1 i+1

Now, subtracting and adding the mean of U (u/&2, u'/&2, x/&®) evaluated at
x = x,(t;) and applying the identical computation as in (22), we get easily
that the expression on the right-hand side of (23) is equal to

5 5 Bl (St (20, () ar, 1 ot

i rr'=1

= 8,4(t —8)EV +0(1),

which is precisely what we want.

(1i1) Write
(& H2 o (L
— (o —1)”( *olly ))/t Wo(g, :( ))du.

i+1

Using this notation, we can write

24 d
- (29 E|B.(t) |*= > > Eglglglsgl.
et 11=62<i3<i4 G1,92,93,94=1
We distinguish two terms J; and J, in the expression described by (24) cor-
responding to the summation ranges i; < iy < i3 < iy and iy < iy < i3 = iy,
respectively. By Lemma 1 the first term is of order o(1). The second term is
equal to

24 e q1 92 g3 94
DY 2 Eei'si Bel's]
11<i2<i ¢1,92,93,94=1
' 24 q1 92 93 94 _
t— X > Egilgi(g sl —Eglgl").

i1<i3<i ¢1,92,93,94=1
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Once again the second term can be estimated by o(1) by means of Lemma 1.
The first term is treated by an argument identical to that used for proving (ii)
of order O(1), which ends the proof of (iii).

Using the classical characterization of Wiener measure in terms of martin-
gales (see [13]) both parts of our argument prove that {B:(£)}ts0, € > 0, is
weakly convergent to a standard Brownian motion as ¢ tends to 0. O

7. The end of the proof of Theorem 3. We want to see that the family
of processes {z.(t)};»9, & > 0, defined by (7) weakly converges to 0 as & | 0.
It will be done in two steps. First, of course, we check tightness and then we
will make a simple observation that

lim E 2= 0.
im B | 2,(0)|
This of course guarantees that the finite-dimensional distributions of

{z:(t)}+>0, € > 0, tend to 0 as ¢ |, 0, so our proof will be completed.
To prove tightness, notice that we already know that the family of processes

EXCRYRXEXE) as| . e=o,

t>0

where b, is defined by (11), is tight. Thus we only need to verify tightness of
{f(f o(x.(s)/e%) dB(8)}:20, € > 0. Since o is Lipschitzian we get, for ¢, < s <

tiv1s
() -()

< ng_l_a = 0(1)

xe(s) - xe(ti)

Writing o(s) = a(x.(¢;)/&%), for ¢; < s < t;,,, we can write

B ] | Hi@) - a(s)] dB.(s)

=F i[ il/ [700(222) = a(0)] (o) (=2)

i

2

1
€
~ 2% . 2
v Wg(ﬁ;—, f—(t—)) ds} +o(1) = o(1),
& Foa

by means of Lemma 1. The summation goes over those i’s for which ¢, < t.
Thus only tightness of {; 5(s) dB.(s)}s0, € > 0, needs to be shown. Observe
that "

([[56148.5)) =55 o0 Z)i(8.000000, - (BultD,1 + o)

p i q=1
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R L, ( s(t))( _l)qq< g(t))

i q,q=1
tive ~ u x.(¢;)
x/t W0(2, - )d +o(1)

- 12/:”2 WO(‘;, xe(j ))d +o(1).

€ i i+1

However, we have already established tightness of this process in Section 5.
Having that in mind we may notice that, according to the auxiliary computa-
tions made in Section 4,

E | z,(t) I’= o(1),

which by our previous remark ends the proof.

8. Formulation of the result for flows, and sketch of the proof. In
what follows we will assume that the field V satisfies conditions (C1)—(C4)
stated in Section 2. Let

R, (t,x) = E{V,(t, x)V,(0,0)}, p,q=1,...,d,

denote the autocorrelation matrix of the field. Let
400
(25) T, q(x) = f R, (u,x)du, p,q=1,...,d.

Let .#(R?) denote the space of Schwartz test functions with the Frechét space
structure imposed by the norms (see [5])

Iflgy= X [1£D%f(x) [P da.
k|<k, |I|<I
Here we adopt customary notation for powers, derivatives and norms with
multiindices:

k=(ky,....,kg), 1=(ly,...,1,),

1 __ I Iy
x—x1~' xd,

DEf=gi ...k F,
=1 |k|=Y k.

For a Hilbert space H let Lloc »([0, +00); H) denote the space of H-valued,
locally square integrable functions equipped with the topology which is the
direct limit of weak topologies on L2([0, T']; H), for T > 0 (as in [10]). The
. symbol 7c¢(H) stands for the space of trace class operators on the Hilbert space
H'(see [1]), and ¢ (H) denotes all positive definite trace class operators.
" For each ¢ > 0 let T,(¢, x) denote the solution of the advection equation
(4). It can be viewed as a stochastic process with values in .’ the space of
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tempered distributions or, equivalently, as a Borel measure on the topological
vector space C([0, +00), ).
The theorem we aim to prove is as follows.

THEOREM 5. Under the assumptions made about V the family of processes
{T.(t)}s>0, € > 0, is weakly convergent in C([0,+0), .”")-space as € | 0 to a

process T such that the following hold:

(1) If 0 < a < 1 and lim,_,,, [(x) = 0, then T is deterministic and its
trajectories satisfy the following diffusion equation:

d
w1 2
‘9tT- 2 Z ap,qo-‘p qT’
p,q=1

T(0)=T,.
@(ii) If @ = 0 and the matrix [a,,]ixq defined by (6) is positive definite, then
the law of T in C([0, +0), #)NLE_ . ([0, +00); HY(R?)) is identical with that

loc,w
of the solution of the Ito stochastic differential equation

’ d
dT(t) =} 3 apq % T(t)dt + Ki; dB(2),
(26) p.g=1

T(O) = TO’

where B is a cylindrical L?(R%)-valued Brownian motion in the sense of [14,
page 60].

REMARK 5. Forany g € HY(R?), K i/ ? is a Hilbert—Schmidt operator, being
the unique square root of K, € rct(L%(R?)) given by

d
Kef(@)= 3 [T, 0(x~ )9, 8(x)3, 8(0)f(y)dy.
psq=1

The proof that K, is indeed nonnegative definite is presented in Appendix B.

The proof of Theorem 5, as is usual in the case of weak convergence
results, will be done in two steps. First we verify tightness of the family
{T (t)}4>0, € > 0, in C([0, +0), ") and then we go about the identification
of its limit. As for the first step, according to [11], it is enough to show that
{[ T.(t, x)p(x)dx};s0, € > 0, is a tight family of processes in C([0, +o0), R).
This is again obtained by an application of Lemma 2. In order to put our-
selves in a position of being able to use that lemma we have to do some
preparatory computations in the spirit of Section 4. This step is carried out
in Section 9. Now tightness becomes a direct consequence of Lemma 1 stated
earlier. Identification of the limit will be done in two stages. First we prove
. the, uniqueness of the limiting measure in C([0, +00), ') by proving that the
moments

E{(T(¢1), ¢1) - (T(tn), dm)}>
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forany t; <--- < t,,, #1,..., ®,, €7 are uniquely determined. Here we use
the notation

(f.8) = [ f()e(x) dx,

for any f, g € L2%(R?).

Having established this fact we will proceed with proving that the limiting
measure is supported in Lloc ([0, +00); HY(R?)). Thus it is possible to apply
Yor’s martingale representation theorems in Hilbert spaces (see [14]) and es-
tablish It6’s stochastic differential equation corresponding to the distribution
law of our limiting measure.

9. Auxiliary computations. Write
Y.(8) = [ T.(t, x)(x) dx.
The following computation will enable us to estimate

27 E|Y(8)=Ys) P¢(Yo(51), -, Yo(5m));

for y: R™ — R nonnegative, continuous and s; < --- < s,, < s. The estimate
of (27) by C(¢t — s)E¢ is, according to Lemma 2, everything we need to claim
tightness of {Y ,(¢)}s=0, € > 0, in C[0, +00).

Divide [0,T] with 0 = ¢3 < -+ < tyy < T < tpy,; and A¢; = &¥ as in
Section 4. Using (4) we can write that [[T,(¢, x) — T,(s, x)]¢(x) dx equals, up
to a term of order o(1), to

5 [T (ti41, ) = Tolts, )1 (x) dx

(28)
__22/ du [ T,(u, )@} (u, %) dx,

i p=1
where
. (u x
(I)p(u> x) = Vp<§5 ;;)é’xp(ﬁ(X)
Replacing u in T',(u, x) by ¢;_; and using (4) again to express the error, we

get that the left-hand side of (28) is equal to

——Z Z / du/T (t;-1, ©)®5, (u, x) dx

i pp=1

> > / du/ duy [ T (g, 205, ,, (0, 4y, %) dx,

i p1,pe=1

where

£ u x &
D (U u,x)=V (—21 —;)(9 @7 (u, x).
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Repeating the above procedure N times, we get that the right-hand side of
(28) is equal to

(-1
Z en Z Z / stf dul / du’n—l
(29) n=1 i pps.. pn—l tia
X /Ts(ti—l’ x)¢;1,m’pn(u, Uy, oo Up_1s x)dx+R,
where
£ Un— x £
O teeerttn ) =V (M5 2 ) oy 05, (et 0,

and the remainder term R in (29) has a form identical to any term of the
sum with n = N 4+ 1 and ¢;_; replaced by u,;. Because T, are solutions of
an advection equation which can be written in a divergence form, one notices
that

sup | T.(¢, x) |< sup | To(x) | .
x x

By this fact and consecutive applications of the product formula for deriva-
tives, the integrand appearing in the nth term of the sum on the right-hand
side of (29) can be written down as a sum of n terms, each estimated by
O(1/e*), k=0,1,...,n — 1. Performing multiple integration, taking into ac-
count that A¢; = &” and adding along all intervals [¢;, ;,,], one can estimate
each term as O(s(” Dy-ka=n) Since @ < 1 the magnitude of each term is o(1)
aslongas k<n—-2,n>2.
If k=n — 1, we get the expression

——(_1)n+1 Xi:/ttm du- --/tuniz du,_;

1
gntltna ; -

xan_l Yot ) e, (¢, x) d,
g2 g2’ go

where W, has precisely the same meaning as given in formula (8). As shown
in Section 5, all these terms are insignificant in further computations provided
that n > 1, since they all are of order o(1) for those n. Thus in the sequel we
will deal with the W, term only. An easy observation made using the formula
for the remainder term in (29) yields immediately that it is of order o(1) since
a <1—1/(N +1). Thus one can write (28) as

/ du/ < —) Vé(x)T,(¢;_y, x) dx

+>° Z / u/tu du,

g qu i1

/ 1% (82, ;;) v, (% :;;) c?ip’xqu(x)Ta(ti_l, x)dx + o(1).
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10. Tightness and properties of limiting measure. We can estimate
(30) E[Y () = Y ($)P¥(Y o(51)s - > Y o(5))

in a fashion identical to that in Section 5. There is a constant C such that
(30) is less than or equal to C(¢ — s)EY, where ¥ = (Y ,(51), ..., Y .(5p,)).
Hence {Y .(¢)}»0, € > 0, is tight in C[0, +o0) space according to Lemma 2,
and therefore {T',(¢)};59, € > 0, is tight in C([0, +-00), »'(R?)) by Mitoma’s
theorem (see [11]). Let T denote the possible weak limit. Notice that since
IT,llzz < [|Tollz2 the limiting measure is actually supported in

C([0, +00), ' (R%)) N L, ([0, +00); L*(R%)).
Therefore we can assume that the trajectories of {T(t)}tzo are in L?(R?) al-
most surely. Moreover they are weakly continuous in L2(R%); that is, ¢ —

(T(t), ¢) is continuous for any ¢ € L2(R<). Reasoning along the lines of Sec-
tion 6, one finds immediately that

d t .
My(t) = (T(2), )~ (To, ) =3 3 [ a,q(T(s), 0% ,0)ds

p,g=1

is a mean-zero martingale for any ¢ € .#(R?). Consider two cases.

CASE 1 (0 < a <1). In this case we have

d
x—y 2
B0 <t 3 [[T,0(X22) 10,0112, | dudy(supTo(o)
p,g=1
+ o(1).
The right-hand side of this estimate vanishes as we allow ¢ | 0, so we get the
first part of our theorem.

CASE 2 (e =0). For any g € L%(R%) and ¢, ¢ € .~ (R%), write

: d
Bl Ky )= ¥ [[T)e(x =)0, 8(x)3,,6(y) 8(x)8(y) dx dy.

p,q=1
For fixed ¢ and v,

. ¢ ¢
(52) 151%1/0 Kr, (b, ¥)ds = /0 K7, (¢, ¥)ds

(the proof is contained in Appendix C). Thus we see that {T(t)}tzo satisfies
the following conditions:

(DD T(t) € LA(R?), t > 0, [T(t)|| < | T;

(D2) ¢t (T(t), ), t > 0 is continuous for any ¢ € L%(R?);

(D3) M is a zero-mean martingale for any ¢ € H%(R?);

(D4) M ,(t)M ,(t) —fot K7, (¢, ¢) ds is a zero-mean martingale for any ¢, ¢ €
S (R?).
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Our next claim is that there is a umque probability measure u generated
by T(¢) on C([0, +0), .~ (R%)) N Lloc »([0, +00); L2(R?)) satisfying (D1)—~(D4)
and supported in C([0, +00), /" (R))1 L, , ([0, +00), H'(R%)). Before going
any further let us introduce some additional notation. Let J;° denote the o-
algebra generated by T(¢), 0 < ¢ < b. Notice that the above conditions imply
the following lemma.

LEMMA 3. Let 04(t, x), ..., 0,,(¢, x) be random fields, such that (a) 6,(s, x)
are {Jy'}-measurable for all t >s>0and x € R?, k=1,...,m, and (b)
0, € C°(R x R%), 0,(t,-), 3,0,(¢, )eHz(Rd)foreach teR, k— 1,....m

Then the following hold:

(i) (Ng,,..., Ny ) is a continuous martingale with respect to {7y };

(ii) the joint quadratic variation (see [9], page 46) is

(Ng,, Ng,): = /Ot K7(5)(62(5), 0,(s)) ds.
Here
No(t) = (T(2), O(t)) — (T, 6(0))

_/{

For the proof of this lemma see Appendix D. The claim made above, if
proven, implies, as shown in the next section, that {T,(¢)};.¢, € > 0 are
indeed weakly convergent as £ | 0. Moreover since {T(t)}t>0 is supported
in L2([0, +o00); H(R?)), there is a cylindrical Brownian motion {B(#)}>0 in
L?(R?) such that

ap o(T(s), 3% ,0(5)) + (T(s), 3 0(s))] ds.

p,q=1

No(®) = [ (K22 (), dBO)]gsca

(for the definition of the stochastic integral with respect to a cylindrical Brow-
nian motion see [14]). It is worthwhile to notice here that for g € H1(R?) the
bilinear form K, given by (31) defines an operator in rc*(L2(R%))

K b()= ¥ J Toa(x = 9) 0., 8(x) 9, 8(3)$() dy.

p,q=1

Hence {T(t)}tzo satisfies Itd’s stochastic differential equation (26).

11. Uniqueness. To show uniqueness of the distribution law for T, we
will establish uniqueness of the conditional moments

(33) ., E{T(t,%1) - T(t, %) | I3’} = up(t, %q,...,%,,), t>s.

This, in turn, easily implies that all finite-dimensional distributions of
{(T(t), $)}:>0 are uniquely defined so the uniqueness of the distributions of
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T(t) will follow. To simplify formulas, we will prove (33) only for s = 0, that
is, when .Z;O is trivial. We conduct the proof inductively on m. For m = 1 it is
obvious since u(¢, x;) satisfies

deuy = Z apq pq
A p =1
u1(0, x) = To(x).
Assume now that all u,(¢, x4, ..., x;) are uniquely determined for 2 < m — 1.
For ¢4, ..., ¢,, € A(R?) define functions 6;: [0,¢] - #(R%), 1 <1 <m, by
d
0,(¢) = ¢4, Is0/(s)+3 Y a,,d%,0/(s)= s<t.
p.g=1 .

Letting G(¢, x) denote the fundamental solutions of the equation

du(t, x) = 3 Z apqda oz, V(T %),
p,g=1

we can express 6; using convolution of G(¢ — s) with ¢, that is,
0,(s) = G(t — s) * ¢y, I=1,....m

By Lemma 3 and Itd’s formula for bounded quadratic variation martingales
(see [9], page 64, Theorem 2.3.11),

E{[(T(2), 61(2)) = (T, 62(0)]- - [(T(2), 6,u(2)) = (T, 6, (0))]}

=3 [ E{ @), 0065 T, 05D+ (T2, 0,(5)

k<l

(34) - (T(1), 0(5)) K5y (0 (5), 91(3))} ds

t
=Z/Odsfmme(t—s,xl——yl,...,xm~ym)um(s,x1,...,xm)
k<l

Xr(yk_yl) Vyk®Vyl(01®"'®0m)(y1""’ym)dxl"'dxmdyl"'dyM'

Here the overbrace stands for skipping the factor in multiplication, G,,(t,
Xisenes Xm) = G(t, x1) - G(¢, xp,) and I'(y, — ;) V,, ® V,, denotes

d
Z lﬂp,q(yk - yl)ayiayf’
pq=1

,yk—(yk,...,yk) k=1,.

Because we are only prov1ng uniqueness of u,, satisfying (34) we can drop
all (T, 0,(0)), k=1,..., m, in (34), since by the induction assumption all u,,
k<m-—1, are uniquely determined. Equation (34) written in a differential
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form looks as follows:

d

Y a,,0% u
Pq “xf xim

»q=

Ol = Z I'(xp — x1) ka ® Vxlum + % Z
k 1

k>l p
u,(0)=0.
As is well known (see, e.g., [6]), there is only one weak solution for this problem
in L2((R%)™), namely, u,, = 0.
_The last step of the proof consists of verifying that the measure generated by
{T(t)};>0 is actually supported in leoc’w([O, +00); HY(R%)). This heuristically

follows immediately from Lemma 3, where substituting T in place of 6 we get

¢ d _ _ — _ —
E[ 1} S 0,03, T6).T6) + (0T(:). T(s)) | ds = EITOIF - BT

p,q=1

Since (3,T(s), T(s)) = 3(d/ds)||T(s)||?, integration by parts yields

¢ d _
E[ 3 Y a5,,T:3,T) < §E|To|".
p.g=1

By the fact that T, € L2(R?) and the matrix [a p.q)dxd 18 positive definite, we

can conclude that T e L%([0, t]; H(R?)), for any ¢ > 0. The above argument
is made precise in Appendix E.

COROLLARY. 1. The measure induced by process {T(t)}¢ is supported in

C([0, +00); LA(R%)) N L, ([0, +00); H'(R))

loc,w
and

(35) IT@)| = |Toll almost surely.

PROOF. Since (26) holds we may apply Ité’s formula in Hilbert space to
{IT ()|} (see [14], page 68). As a consequence one can observe that {||7(¢)|*}
is a continuous trajectory martingale, so

E|T@®)|* = IToll*

but at the same time, according to property (D1), |T'(¢)|| < || To|l, ¢ > 0. Hence
(35) follows. O

APPENDIX A

' Proofs of mixing and tightness lemmas. In this appendix we prove
two lemmas formulated in Section 3. To prove Lemma 1, we will need the
following result (based on Lemma 1, page 109 of [7]).
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LEMMA 4. Suppose that U(t, x) is a jointly measurable random field in
R x R% with zero mean, continuous with respect to the variable x and bounded
by a constant K. Assume that it is 7,7°(C, 0)-measurable for | x |< C(1+1¢?),
where 7,7°(C, o) is the g-algebra defined in condition (C2). Let V(s) be 7;-
measurable and let ¢, be as in Lemma 1.

Then for any T > 0 there is an go(T) > 0 sufficiently small that

o ) @) =2 ()2 (5)]

forO0<u<s<t<Tand0<e<gT).

PROOF. We will omit writing C and p in the notation of o-algebras 7. Let
M be a fixed positive integer. Define
kj+1

M

k.
A(k)=[w:HJ§(§8)j(u)< ,j=1,...,d], k=(ky,..., kg);
A(k) is 75/ *_measurable. This follows from 75! *_measurability of &,(«). By
the assumptions made about &, in Lemma 1, one can see that, for large enough
M, A(k) is nonempty provided that

k e
Mee SC(l—i—?E)
Then
t &(u) s
(e 2V
t &.(w) s
- |2 rfu () (G|
(36)

U(é &g)) _ U(é AZQ)]V(:Z)“(“)} ‘
o st ) V(o] |

Notice that U(t/e?, k/Me®) is #,"-measurable. The remark after Lemma 1
from [2, page 171] allows us to estimate the second term on the right-hand

side of (36) by
s s t—s
V()| =eme|v(3) [ o(5)

The first term on the right-hand side of (36) vanishes as we allow M to go to
infinity. The proof of Lemma 4 is therefore concluded. O

k

— 8

t
2 ) > EHXAax)
k

2KB(
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Now we are ready to prove Lemma 1. We will proceed by induction on n.
For n = 0 this is just Lemma 4. Suppose then that Lemma 1 holds for n — 1.
We want to prove it for n. If |1 |=/, then

oo (o e S ()]
<[ w2 B S (2]

1 S1 Snt1 X S
cuf|efow, (S ) y(2))
x=£:(u)

The first term on the right-hand side can be estimated in the following way

e, (22, ) (3)
oo (2 2 40 (5 S )|

(38) M
<d|{|11?j(1 Cd,|pl,n—-1, n—1+1])

x max | D'V, | grmelhnh(s; —s,)... grimelin (s, —s,,1)

Y(3)!

As for the second term, we apply the same estimate. So finally the left-hand
side of (37) can be estimated by twice the right-hand side of (38).
On the other hand, we can apply Lemma 4 to

o (G S0 ()
< sup | D'W IB("“ )E Y(§)+

This fact together with the previous estimate means that the left-hand side
of (36) can be estimated by the geometric mean of the right-hand sides of (38)
and (39). Thus we can conclude the assertion of Lemma 1.

Now we turn to the proof of Lemma 2. It is enough to prove the version
of this lemma on a compact- interval [0, T'] instead of [0, +o0) (see [12] for
details). If v = 0, we get

E* | x(u) —x(t) P<C(u—t) forallpeF, 0<t<u<T.
For v =1,
E* | x(u) — x() 7] x(2) — x(s) | = C(u = )E* | x(2) — x(s) |
' < C(t = w{E* | x(t) — x(s) |*}'?
< C(u —t)(t—s)? < C(u — s)%2.

(37

x E

(39)
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By the classical result of Chentsov (see [2], Theorem 15.6, page 127) this
implies that for any &, n > 0 there is a § > 0 such that, for u € &,

plx: wi(8) > el <n
(see [2], page 129), where
wy(8) = sup sup min[| x(u) — x(¢) |, | x(£) — x(s) |]-

O<u-s<ds<t=u
However, for x € C[0, T] one can prove that
wi(8) < w,(8) < 4wy(9),

where w,(8) = sup[ | x(u) — x(¢) | | 0 <u —t < §]. Thus, by Theorem 8.2 of
[2, page 55], # is weakly compact.

APPENDIX B

The proof that K, is nonnegative definite. First observe that K, is
self-adjoint. Its kernel is clearly symmetric:

d
Z l—“p,q(x - y) axpg(x) ﬁng(y)

p,q=1
d oo
= Y [ BV, 0)V (0, )} ., 8(x) 9y, 8(y) du
pg=1""%

d +00
> [ BV ,0.0)V (4 3)} 0:,8(x)9,,8(y) du

pg=1""

d
Y Tpoly — )0, 8(x) 9, (9)-

p,q=1

Notice also that, for ¢ € L%(R?),

d
Ky, $) = [[ X Tyl = 9)0,,8(x)9,,8(y) $(x)$(y) dx dy

p,g=1

d +00
S [ du f[ Ryl x - 3)9:,8(x)9,,8(3) $(x)(y) dx dy

p,gq=1""

d -
= 3 [ Rpg(0, ©9,86(8)3,8(£) dé = 0,

p,q=1

* where the hat symbol stands for the Fourier transform. We used the fact
that the Fourier transform of the autocorrelation matrix of a process is a
nonnegative definite matrix at any point.



CLT FOR MOTIONS IN RANDOM FIELDS 373

APPENDIX C
Weak continuity of the map g+ K,. Observe that the functional

B Z / ds//rpq(x y)a 6(x)dy, 6(y) h(s, x, y) dx dy
p.q=1

is continuous in L2 ([0, T']; L2(R??)). The map
L3([0, T}, L(R%)) > g(s, ) > &(s, ) ® &(s, -) € L%([0, T]; L*(R*))
is also continuous. Since {T',(¢)},-¢, € > 0, are weakly convergentto T as ¢ | 0

in L2 ([0, T); L?(R?)), therefore (32) is true.

APPENDIX D

The proof of the martingale property. We present here the proof of
Lemma 3. First we verify that for any A which is 7,°-measurable,

E{(T(t), 0(2)) — (T(s), 6(s))

_/[

The left-hand side is equal to

0 o (T (), 7, ,0(u)) + (T(u), o 0(u))] du]xA —o.

p,g=1

{(T(t) o) ~ T(6), o) - [ 3 T ay T ,,,,e(s))du}

$  pg=1
+ BT 000) - @), 0)) - [ (Tw),2,0(u)) du

¢ d _
— [} % @ [(T(w), & ,6(w)) - (T(w), pqe(s))ldu}

$  pg=1

— B{ [ 1070, 0,0)) ~ (T(@).2,0(5))] du

-3/ [ 2 [ (T, 72,000 du | dufx
-/ {E[(T(t),m(u»—(T(u),amu»
S T g, e(u))du/]xA}dwo

“ pg=1
This verifies that (Ny, ,..., N, ) is indeed a martingale. To end the proof of
) Lemma 3, we need only to prove the fact that

No (N (0~ [ Kro(64(5), 6,(5)) ds
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is a martingale. The statement about the quadratic variation will follow from
Theorem 2.2.12 of [9, page 52].

Let us partition [0, ¢] with 0 = ¢, < --- < ¢y = ¢. By the foregoing compu-
tation we get for any A, J;°-measurable,

E[Ng, () — Ng,(s)I[Ng,(2) — Ny,(s)Ixa
= Z E[Ng (ti11) — No, ()N, (2iv1) — No,(2:)]xa

-2 E“M"k(ti)(tm) — Mo, 0y(%)
i

(40) tiv1
= [ Mt = Mo (@)du

X {Mel(ti)(ti+l) — M,.)(¢:)

tiv1
— [ UMt = M@ dufxa |

As max A¢; — 0 one easily sees that the only significant part of the right-hand
side of (40) is

Z E[Mg,,)(¢i11) — Mo, (&) Mg, (ti1) — Mg,eplxa
liv1
= B{ [ Kr(0u(t), 0t du s
¢
- E[/ K7,y (0r(w), 6,(x)) du]XA as maxAz; — 0.

APPENDIX E

The support of the limiting measure. Consider T, , = (¢,¥,) * T,
where

1 _ 42
Do(t) = \/——2—77——6 eXP({Q—),

yo(x) = (le_w;)dexp(—;: '2).

One can apply now Lemma 3 with 6 = T', , and get

t 4 — —
“E[ § Y pg(05,Tae(s). T(s))ds
4D | pa=t :

= E{(T (0. 0) = T T() ~ [ (0.T..o(6). T ds}.
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Letting T(t, ¢) denote the Fourier transform of T with respect to spatial vari-
ables, the left-hand side of (41) can be rewritten as

33 [ 3 ang [t ex( 5 E )0 e, o)TCE 5 e} s

Since ¢, * T, s) > TC, s) as o | 0, passing to the limit with respect to o,
one gets

1 ¢ d —e| & 2 R
(42) §EA{/p£1ap,q§p§qexp( 812 l )IT(E, s I? dg}ds.

Using Fatou’s lemma (applicable since the integrand is nonnegative), we pass
to the limit with £ | 0 and get that the limit of (42) is greater than or equal
to

43) 1[5 a6 17060 ae} s
p,q=1

Expression (43) therefore will be estimated from above by whatever we ob-
tain on the right-hand side of (41) making passages to the limit in the order
mentioned above.

After taking the appropriate limits on the right-hand side of (41), the two
first terms can be easily estimated by E| T, ||? since | T(¢)|| < || T,| [see prop-
erty (D1) from Section 10]. The remaining last term can be written as

/ds/+mdu/2«/_g3/2 Xp(_(s;Qu)Z)eXp(_gl§I2)T(u’ OT(s, £)de.

Substituting v = (s — ©)2/20, we get

Jexp(—c1 €y [ ds [ J_éexp( 0)[T(s - /200, ¢)
—T(s++/20v, &)]T(s, &) dv
00 11/2
@ = Re/exp(—s | & |2)d§f+ vTexp(—v)dv

\/ZQv{/ NerT (s — /200, §)T(s, &) ds

V200 —
_fo T(s ++/20v, &)T(s, §)ds}.
. Notice that

< I Tol,

[exp(—e 1€ TG+ V200, TG
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since

[17(s, &) 2 dé = T(s)|* < | Toll*

The right-hand side of (44) therefore can be estimated by 2|7,||?> indepen-
dently of o and . Hence our claim is proven.

(1]
[2]
[3]

[4

fua)

[5]
(6]
{71
[8]

[9

-

[10]
[11]
[12]
[13]

[14]

REFERENCES

BALAKRISHNAN, A. V. (1991). Applied Functional Analysis. Springer, New York.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

BORODIN, A. N. (1977). A limit theorem for solutions of differential equations with a random
right hand side. Teor. Veroyatnost. i Primenen. 22 498-512.

CARMONA, R. A. and FOUQUE, J. P. (1995). Diffusion approximation for the advection diffu-
sion of a passive scalar by a space-time Gaussian velocity field. In Seminar on Stochas-
tic Analysis, Random Fields and Applications (E. Bolthausen, M. Dozzi and F. Russo,
eds.) 37-52. Birkhauser, Boston.

DUNFORD, N. and SCHWARTZ, J. (1958). Linear Operators Part I. Interscience, New York.

HENRY, D. (1981). Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin.

KESTEN, H. and PAPANICOLAOU, G. C. (1979). A limit theorem for turbulent diffusion. Comm.
Math. Phys. 65 97-128.

KHASMINSKIL, R. Z. (1966). A limit theorem for solutions of differential equations with a
random right hand side. Theory Probab. Appl. 11 390-406.

KUNITA, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge Univ.
Press.

KUSHNER, H. J. and HUANG, H. (1985). Limits for parabolic partial differential equations
with wide band stochastic coefficients and an application to filtering theory. Stochastics
14 115-148.

MiToMA, I. (1983). Tightness of probabilities on C([0, 1];#). Ann. Probab. 11 989-999.

STONE, C. (1963). Weak convergence of stochastic processes defined on semi-infinite time
intervals. Proc. Amer. Math. Soc. 14 694-696.

STROOCK, D. and VARADHAN, S. R. S. (1979). Multidimensional Diffusion Processes. Springer,
Berlin.

YOR, M. (1974). Existence et unicité de diffusions a valeurs dans un espace de Hilbert. Ann.
Inst. H. Poincaré Probab. Statist. 10 55-88.

DEPARTMENT OF MATHEMATICS
MICHIGAN STATE UNIVERSITY
WELLS HALL

EAST LANSING, MICHIGAN 48824
E-mail: komorow@math.msu.edu



