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Rates of convergence of the distribution of the extreme order statistic
to its limit distribution are given in the uniform metric and the total vari-
ation metric. A second-order regular variation condition is imposed by sup-
posing a von Mises type condition which allows a unified treatment. Rates
are constructed from the parameters of the second-order regular variation
condition. Some connections with Poisson processes are discussed.

1. Introduction. Let {X,, n > 1} be independent, identically distributed
(iid) random variables with common distribution function

F(x)=P[X; < x], x € R.

Denote the extreme value by

M,=\/ X,

i=1
and suppose F is in the domain of attraction of an extreme-value distribution
(1.1)  G(x) = G,(x) = exp{—(1+yx)/"}, yeR, 14+ yx >0,

which means there exist normalizing constants a, > 0 and b, € R such that
as n — oo we have weak convergence

(1.2) P(M, <a,x+b,] > G,(x).

A basic fact of extreme-value theory is that the only possible limits in (1.2)
are of the form G, given in (1.1) [see de Haan (1970), Leadbetter, Lindgren
and Rootzen (1983) or Resnick (1987)]. The focus of this paper is on rates of
convergence in (1.2), and in the future we hope to consider the multivariate
generalizations of (1.2).

There have been two common ways to measure the rate of convergence of
the distribution of the sample maximum. The first is to use the uniform metric
between the distribution functions F"(a,x + b,) and G,

d, =sup |F"(anx + by) — Gy(x)|.
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98 L. DE HAAN AND S. RESNICK

This metric has been considered by many authors, including Davis (1982),
Hall and Wellner (1979), Hall (1979), Smith (1982), Resnick (1986, 1987),
Omey and Rachev (1988), Balkema and de Haan (1990) and Beirlant and
Willekens (1990). Smith’s paper, in particular, has been seminal. While this
metric has some appeal for one-dimensional extreme-value theory, it is some-
what artificial since it is not clear why special attention should be devoted to
probabilities of semiinfinite intervals. For higher-dimensional extremes, the
multivariate distribution function is awkward to deal with and the analogue
of the uniform metric d, loses intuitive appeal and seems to be not very useful
or informative. .
The second metric is the total variation metric

D, = sup |Pla,"(M,—b,)cAl-G(A),
Aec4(R)

where the supremum is taken over the Borel sets and G(A) is the measure
of A corresponding to the distribution function in (1.2). This metric has been
emphasized by Reiss and coworkers [Drees and Kaufmann (1993), Kaufmann
and Reiss (1993), Reiss (1989) and Falk and Reiss (1992)]. This is a strong in-
formative metric since it says all events determined by M, have probabilities
which are close to the limiting probabilities under G. In case F has a density
F’ we can evaluate this by Scheffé’s theorem [Billingsley (1968), page 224] as
one-half the L, distance between the densities

1 0o

2 /..
This metric generalizes without difficulty to higher dimensions without losing
its appeal and, as long as densities exist, turns out to be reasonably tractable.
We discuss the uniform metric briefly in Section 3 and then concentrate on
the total variation metric.

Necessary and sufficient conditions for (1.2) are well known and discussed
in detail, for example, in de Haan (1970) and Resnick (1987). These conditions
always involve the theory of regular variation and its extensions. To get a rate
of convergence to zero for d, or D,, one must make assumptions about how
fast certain ratios of regularly varying functions derived from the distribution
function F converge to their limits. This can be done either by the theory of
regularly varying functions with remainder [Smith (1982), Goldie and Smith
(1987) and Bingham, Goldie and Teugels (1987)] or by use of the theory of
second-order regular variation [de Haan and Stadtmiiller (1993)]. We choose
the latter since it gives us an exact rate of convergence to zero rather than
just a bound. Smith (1982) considered both approaches and, using second-
order theory, obtained an exact rate.

In discussing the applicability of second-order regular variation to the
rates, of convergence problem, there are two approaches that could be taken.
The first option would be to proceed in complete generality, bringing to bear
the abstract formulation of the second-order theory completely developed in
de Haan and Stadmiiller (1993). However, this involves the analysis of seven

iF”(anx +b,) — G (x)|dx.
dx
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different cases and would be rather tedious. The other option is to give up
full generality, suppose the existence of derivatives as needed and proceed by
means of one single von Mises condition. This is a much simpler and more
elegant approach and gives a unified treatment. Furthermore, rate functions
can be explicitly expressed in terms of F and its derivatives. So we have
chosen to follow this second option. :

Section 2 discusses the von Mises condition and its second-order counter-
part, which is necessary for the later work. Section 3 discusses the rate of
convergence to zero of the uniform metric d,,. The rate at which the total vari-
ation metric D, converges to 0 is explained in Section 4. Section 5 discusses
point processes. Point processes have proven a very useful tool in the study of
extreme values but it appears that attempting to study the rate of convergence
of extremal distributions to their limits by discussing how fast an associated
point process converges to a limiting Poisson process [see Resnick (1987) for
background] is a problematic procedure. In particular, the upper bound for D,
obtained from a point process argument [e.g., in Drees and Kaufmann (1993),
Falk and Reiss (1992) and Reiss (1989)] has an extra O(1/n) term which
makes the upper bound too large in many cases. Comments on the O(1/n)
term in the bound are given in Resnick [(1987), page 110] and Resnick (1986).
A recent paper by Falk and Marohn (1993) has a convergence rate bounded
below by O(1/n). -

Our conditions depend heavily on the theory of regularly varying functions.
Recall that an ultimately positive function g with domain (0, c0) is regularly
varying with index « € R (written g € RV ,,) if, for x > 0,

. gltx)
(1.3) tll)rg 200 x
[de Haan (1970), Geluk and de Haan (1987), Resnick (1987) and Bingham,
Goldie and Teugels (1987)].
A commonly used notation is that if U: R — I is nondecreasing with do-
main R and range I, an interval subset of R, then the left-continuous inverse
U<: I - R is defined by

U“(x)=inf{s: U(s) > x}, xel.

2. Von Mises conditions and second-order regular variation. As
discussed in Section 1, F is the underlying distribution. We suppose F is
twice differentiable. A sufficient condition for (1.2) can be given in terms of

the function
1 <
f= (—log F) ’

" namely, that (1.2) holds if, for all x > 0,
Flex)

T =

(2.1)
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A necessary and sufficient condition for (1.2) is that, for all x > 0,

. fGx)—f@) =xr-1

(2.2) lim =
t—>00 tf'(t) y

(which is to be interpreted as log x for y = 0). We assume second-order condi-

tions in order to describe the rate of convergence in (2.1) and (2.2), respectively:

for x > 0,

2.3) lim fl(tx)/f(t) — =t

% A(t) = Ky(=),

and

- [f () = FOHf(0) — 577y
(2.4) Lim A0 = K,(x),
where A is a function which does not change sign and is not identically zero,
but lim,_, A(¢) = 0. The function K, (x) should not be a multiple of (x”— 1)/v
[hence K’ (x) should not be a multiple of x?71]. The general form of K, is
discussed in de Haan and Stadtmiiller (1993).

We seek von Mises conditions for (2.3) and (2.4), by which we mean we seek
conditions involving higher derivatives of f which guarantee (2.3) and (2.4).
Such conditions are discussed in the next theorem.

THEOREM 2.1. Suppose f: (0,00) — R is twice differentiable and ' is even-
tually positive. Let y € R. The following two statements are equivalent:

(1) The function
O
f'(¢)

has constant sign near infinity and satisfies

A(t) = y+1
A(t) —> 0, t — 00,
and
|A| € RV, p <0.

(ii) The function f' has the representation

(2.5) £(2) = kt"lexp{flt A) du},

u

where k # 0 and A(-) is a function with the properties that lim;,.o A(t) =0, A
has constant sign near infinity and |A| € RV, for p < 0.
 Furthermore either (i) or (ii) implies

f/(¢x)/f/(#) — 277! i xP -1 .

(2.6)
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and, if y > 0,

[f(tx) — f(t)]/z't()t) — (' -1/y fl uy_1<u"p— 1) du = K,().

(2.7a)

If v < 0, we have
f(o0) = lim f(¢)
t—00
is finite and

[F(tx) — F(00) — y=Yf (&) )/t (8) — (x7 — 1)/
A(t)

(o] P _
— —/ uV“l(u p 1)du:Ky(x).

(2.7b)

If, in addition
£ (y=1)
f(¢) ¢

is monotone, then (2.6) implies either (i) or (ii).

REMARK. The functions K’y(x) and K,(x) are natural limit functions in
second-order regular variation [see de Haan and Stadtmiller (1993)]. Note
that, for x > 0, K, is positive for y > 0 and negative for y < 0.

PRrROOF OF THEOREM 2.1. [(1) — (i1).] We have

£ (t) Alt)+y—-1
=(og fi(t)) = =2 ¥Y— 2
Suppose without loss of generality that f’(1) # 0. Integrating between 1 and
T yields
f’(T)) /T<A(t)+y—1>
1 = — ) dt,
og( f'(1) 1 t
and so

T
£/(T) = f’(l)exp{ | @ dt]T“/‘l.

[{1) — (1).] From (2.5) we get, by differentiation,
()
f(¢)
[(ii) — (2.6).] From (2.5) we have, for x > 0,

f'x) 4 { tx A(u) ]

., 0N x7""exp /t‘ ” du
=1 exp{/x Altw) du]

1

u

(2.8) =A(t)+vy-—-1.
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so that

f];/((t:)) —x7 = x"l[exp[flx A(lju) du] - 1].

Since A(t) — 0 as t — oo, we have

lim /x Altu) du=0 '
t—o0 J1 u

exp{/lx A(lju) du} 1~ /:‘ A(lfu) d

as t — oo. Since A € RV ,, we have by Karamata’s theorem that, as ¢t — oo,

/x Alw) 40 A(t)/x sPlds = A(t)(xp - 1),
1 u 1 p

and we conclude

and

frtx) 1 y_l(x”—l)
T A(t)x )

[(2.6) — (2.7a).] Write

flx) = f@) x7—1_ = f(s) 0 x7—1
tf'(t) y  Je tf(t) y
Fits) 1>
ds
/ ( f'(t)
and since the convergence in (2.3) is locally uniform [Geluk and de Haan
(1987), page 21, and Bingham, Goldie and Teugels (1987), page 139], the result

follows. The proof of (2.7b) is similar.
[(2.6) — (i) under monotonicity.] Now suppose that (2.6) holds. Then

A x)/f ()] -1 xf -1
A(t) p

and

L)

10 1-0,

so that, as t — oo,

1 [ (tx) 17f(tx) 1~A xf -1
e T R ® O
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Therefore
log f'(tx) —log f'(t) — (y —1)log x
A(t)

_ (log f'(tx) — (y — 1) log ¢x) — (log f'(¢) — (y — 1) log ?)

a A(t)

N xP—1

p /

Set

V(t)=log f'(t) — (v —1)logt.
Then we have
Vitx) — V(¢t) N xP—1
A(t) p
which immediately implies |A| € RV, [Geluk and de Haan (1987)]. Note that

o fU) (y=1)
YO=TFo t
and
oy @)
V(1) = Ty~ (= 1.

If p=0and A > 0, then V is II-varying. If also V' is monotone, then V' €
RV _; and

tV'(t) ~ A(t)

[Geluk and de Haan (1987), page 27]. If p < 0 and A > 0, then V(c0) -V (t) €
RV ,, and if V' is monotone, we apply the monotone density theorem [Bingham,
Goldie and Teugels (1987), Theorem 1.7.2] to get

tV'(t) R
Vieo)—vV() ”
Since also

V(o) = V(t) ~ —%A(t)

[Geluk and de Haan (1987), page 17ff], we conclude
tLf"(¢)/f'(t) — (y —1)/¢]
A(t)

_ - -n1
B A(2) '

tV'(t)/A(t) =

The case A < 0 is similar. O
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A function f: (0,00) — R satisfies a second-order von Mises condition with
first-order parameter y € R and second-order parameter p < 0 [written [ €
2—von Mises(vy, p)]if f is twice differentiable, f” is eventually positive and the
function

tf"(¢)
f'(¢)
has constant sign near infinity and satisfies lim;_, A(¢) = 0 and |A] €
RV ,. The importance of Theorem 2.1 stems from the fact that if / € 2-von
Mises(y, p), then second-order regular variation conditions (2.6) and (2.7) hold.
Assume that F is a twice differentiable distribution function, and define
1
h= g 7
S = —log(—1log F) =log A,

A(t) ;= v+1

f=hv,

so that & = f< = eS. Assume f € 2—von Mises(y, p) so that A ultimately has
constant sign, and

tf"(¢)
and
(2.10) A(t) = 0.

We now express the second-order von Mises property in terms of F and its
derivatives.

PROPOSITION 2.2. If condition (2.10) holds, then F € D(G,). Moreover if
(2.10) holds, then condition (2.9) is equivalent to
(1/8")(s+x/S'(s)) =y
(1/8')(s) — v
locally uniformly for x such that 1+ yx > 0, where xo = sup{u: F(u) < 1}.
Furthermore,

(2.11) — (1+yx)P", st xo

1 ’
a0 = (g ) (ren-r
REMARK. As noted below in the proof, condition (2.10) is equivalent to

(é) (’8) -, s 1 xo.

ir

‘PROOF OF PROPOSITION 2.2. Observe first that
S(f(¢)) =logt
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and, therefore,

SO0 =5

or
1
(t) = .
FO= 5w
Therefore, if we differentiate again, we obtain 1
() _ =S
i) (S(f(8)?
Since (1/8’) = —S”/(8’)? we see that
2.12) Ah(s) = () )=
Hence A(t) — 0, t — o0, is equivalent to
. 1Y
(2.13) llTl'xr;(—S—7> (8) = .

With q := 1/S’, this implies q’(s) — y and, hence,
q(s+ xq(s))

q(s)
locally uniformly. That is,

—1=f0 q'(s+uq(s))du — yx, s 1 xo,

lim S'(s+x/5'(s)) 1
stx0 S’(s) T 14 yx

locally uniformly, and this implies, as s 1 x, that

x _[fSGtuSs) 1
S<s+ - (S)> - () = [ G du > = log(1+ yx).
That is,
(2.14) lim PEFE/SG) 4y,

s1%o h(s)
Replacing s by f(¢), we get

I h(f(t) +x/S'(f(2)))
im
t—00 t

This is a family of monotone functions converging to a continuous function.
) Thus the sequence of inverse functions of the left-hand side converges to the

inverse function of the right-hand side. This yields

. y x7 -1

(2.15) Lim S'(7()(F(¢x) = f(2)) = v x > 0.

= (1+7x)1/“/.
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In (2.14) replace s by b,, = f(n). Setting

1 !/
an = m = nf'(n),
we obtain
h(b, +a,x) _ 1 1/y
Ry nlog Flbn Fapm) ~ TR

for those x for which 1+ yx > 0. This is equivalent to F € D( G,).
If (2.9) and (2.10) hold, we have also (2.14) and hence

A(h(s+x/8'(s)))
A(h(s))

th=<$) -,

(2.11) is established. Conversely, suppose (2.10) and (2.11) hold. Then (2.11),
(2.15) and local uniform convergence yield, for y > 0,

Aty) .. A(h(f(ty)))

B AG) T R AG @)

_ pim AG©O + S PO (ty) - FOYS (F(2))

— (14 yx)?/.

Since

(since h =)

T A(R(f(2)))
— lim A @) + (" = 1)/7)/S'(£(2)))
t=>00 A(R(f(2)))

(from (2.15) and local uniform convergence)

Y1 ply
(o (57) -

and, hence, |A| € RV, as was to be proved. O

Bounds. We now provide bounds on the rate of convergence in (2.6) and
(2.7) which will be useful in Sections 3 and 4. Suppose f € 2~von Mises(y, p).
From (2.3) we see that, as t — oo,

f(tx) —x"1 50

f'(t)
so that f' € RV ,_;, and thus we have
(2.16) [A()If'(¢t) € RV piy_1.

. We use this fact coupled with the Potter bounds [Bingham, Goldie and Teugels
(1987)] to derive the needed bounds.

We begin by reviewing the Potter bounds. Suppose g is an ultimately pos-
itive function defined on a neighborhood of + co which is regularly varying
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with index a € R. Then, given &, there exists ¢y = to(¢) such that, for all £ > ¢o

and tx > to, we have

8(tx)
g(t) ~

The proof is standard and readily accomplished using the Karamata repre-

sentation of a regularly varying function.
Before stating our bounds we remind the reader of the definition of K ,: for

x>0,
x P_1
/ uH(u )du, y >0,
1 p

(o] P_1
—f u7_1<u )du, vy < 0.
x P

THEOREM 2.3. Suppose f € 2-von Mises(y, p) so that (2.2) and (2.3) hold.
Then, given & > 0, there exists to = to(e) such that if t > to and tx > to, we
have:

(2.17)  (1—e)x“exp(—e|logx|) < === < (1+ £)x*exp(e|log x|).

K,(x)=

B B f'(tx)/f/(8) — %7
2.18) (1 - ¢)exp(—¢|logx|) < AWK, (%)

< (1+ &) exp(e|log x|);
and, for y > 0,

(tx) = f@®) 1/t (8) — (x¥ = 1)
2109 (7O R(ellogl) = et Agi)];f(y(x) : -
< (1+ &) exp(e|log x|);
and, for y <0,
(1 - &)exp(—e|logx|)

_ [f(ex) — f(o0) =y 1tf'(O)1/8'(2) — (&7 — 1)/
- A(t)Ky(x)

< (1+ ¢)exp(e|log x|).

(2.19b)

PrROOF. For (2.18) write
FlE0)/F(8) — 7t 8l () — tl"f’(t)]
A(2) =0 -7 (£)A(E)

- x d
_ ol /t" sIYF(s) + (1 — y)s"f’(S)tT_y_f/(jﬁm]

! /1 s (tsf"(ts) — (y — 1)F'(ts))

1_ x __A(ts)f'(ts) ]
L Form %)

f’(t)A(t)]
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The function g = |A|f’ € RV ,1,_1 as in (2.16), so given ¢ there exists ¢y =
to(e) such that if ¢ > o and ¢x > ¢, then the Potter bounds on

A(ts)f"(¢s)
A()f'(2)

apply. We therefore conclude [note that K ’y(x) changes sign at x = 1]
/ / -1 -1 /
')/ f'(t) —xr" & * oy A (ts) 4

AWK,(x) K, h ° TADF©
< xr] JCs‘”’s’”""""l(l—|—¢<:)exp(3|10gs|)ds
T K (x) )1
%71 x o1
=% @ s 11+ &) exp(e|logs|) ds
£7-1

-1
par )<1+a)exp(e|logx|>( . )

= (1 + &) exp(e|log x|).

The lower bound is obtained in the same way.
To obtain (2.19a), write

[f(tx) — f(O)]1/ef"(8) — (x¥ = 1))y _ f(tx) — f(¢) —tf'(¢)((x” — 1)/v)

ADE,(x) - A DK@
_ [ wtdu — i (0)(x7 ~ 1))
AW (DK (x)
[P e K,
AOK, @ Ky

and applying the upper bound in (2.18) yields the upper bound (¢ > ¢g, tx > ¢¢)

Ji K\ (u)(1+ &) exp(e|log u|)du
K,(x)

The lower bound is derived in the same way. O

< (1+ &) exp(&|log x|).

For use in Section 3, we reformulate an additive version of Theorem 2.3.
The relationship between the function v in Corollary 2.4 and the function in
Theorem 2.3 is

v(t) = f(e").

~ COROLLARY 2.4. Let v be a twice-differentiable function such that v’ is pos-
itive, and define, for some y € R,
v//(t)

A(et) = v’(t) —
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Suppose A is of constant sign,
t—o00

and
im A(tx)
t—o00 A(t)

where p is a nonpositive constant. Define the function H, by

/ e’ /u e dsdu, for v >0,
Hy(x):=

/e"”f e*dsdu, fory<O.

=x? for x > 0,

Then, given & > 0, there exists tg = to(&) such that, for t > tg and t+ x > ty,
we have
V(t+x)/V(E) — e
A(e‘)H’y(x)

(2.20) (1-¢g)e ¥ < < (14 &)efM™,

Moreover, for vy > 0,

[v(t+x)—v(t)]/v'(¢) — (e = 1)/y

< elx|
A(e) Hy(x) (1+e)e™.

(221) (1-g)e " <

and for y < 0 [note that then v(oco) < o]

(1 — s)eell < Lo+ x) —v(o0) =y W(D)]/v'(e) — (7 — 1)/y
(2.22) A(et)H, (x)

< (14 &)et™l,

Note that A is of constant sign, positive or negative, H', changes sign at
x = 0and H, is of constant sign (positive for y > 0 and negative for y < 0).

REMARKS. (i) The reason for using a different normalization for y < 0 will
become clear in the proof of Theorem 3.1.
(ii) A result in the spirit of Theorem 2.3 is the following. For y > 0, set

_
. 4=

Under the conditions of the theorem (for A; instead of A) one has, for suffi-
ciently large ¢ and x,

f(tx)/f(2) — x

,
ALK, o~ LT explellogzl).

(1—¢&)exp(—ellogx|) <

£

However, for p + y < 0 this result does not follow from the result of Theo-
rem 3.1. [See also de Haan and Stadtmiiller (1993), Remark 5.]
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3. Rate of convergence for the uniform metric. Recall that {X,,
n > 1} are iid with common distribution F(x) and that the domain of at-
traction condition (1.2) holds. We set

1 \" . -
f=(—pgr) »  v=(-log(-log )",
so that

f(y)=v(log y),
and we suppose f € 2-von Mises(y, p) so that A is ultimately of constant sign
and
3.1) A(t) - 0, (t > 00), |Al € RV, p=<0,

where
v// ( t)

A(t) .= 0 -y

We will see that
dn=sup|P[M, <a,x+b,]— Gy(x)l
x

is of the order A(n). Set
a, =U'(logn)
and

_ |v(logn), for y > 0,
"7 lv(oo)+y ' (logn), fory <O.

If we define a new variable u by

an,x+b, =v(u+logn), u>0,

then
1 —Yn
d, = sup |exp{nlog F(v(u +logn))} — Gy(v(u + Zgn) b )
u>0 n
= sup Go(u) _ Gy<v(u + IOgn) - bn) .

u>0 ap

Noting that R
Gy (x) = Go(y™ ' log(1 + yx)),

we obtain

{v(u +logn) — bn}))'

n

(8.2) dp,=sup

u>0

Golu) — G0(7_110g<1+7

The following theorem is an extension of results of Smith (1982), Balkema
and de Haan (1990) and Beirlant and Willekens (1990).
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THEOREM 3.1. If f € 2-von Mises(y, p), then

B R

=exp[(—1— y)ulGo(u)H, (1)

uniformly for u € R, so that

’

(3.4) Jim 7 = supexpl(~1 - y)uGo(w) Hy (w)l.

Relation (3.3) can be expressed as an Edgeworth type expansion:

lim F*(a,x+b,) — G,(x)
n—oo A(n)

= (—log G,(x))"*7G,(x) H,(—log(—log G,(x)))
uniformly for x € R.

The proof requires two lemmas which will be useful in the next section too.

First we note for reference the following properties of the functions H,(u)
and H’ ’y(u), which follow directly from the definitions of these functions given
in Corollary 2.4.

LEMMA 3.2. For any & > 0, both H,(u) and H’y(u) are
O(exp[(y + &)u]) foru —
and

O(lnexp[(y+p—e)u]) foru—> —oo.

Next, define

v(u+logn)—56, e*-1
pn(u) = - ’
an Y

for u € R. Then, by Corollary 2.4, for each ¢ > 0 there exists ny = n¢(&) such
that, for n > ngy and logn + u > log no,

(3.5) ‘A‘(%‘;{% =1+86W(u)

and

(3.6) __Ph®) g s@y)
A(n)H(u) ¢

with

(1-g)exp[—elul] <1+ 8V (u) < (1+&)exp(slul), i=12
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LEMMA 3.3. For the function p, we have
lim exp(—yu)pn(u) =0
uniformly on the region
~log(—log A%*(n)) < u < —log A%(n),
that is, ’

lim sup exp(—vyu)|pn(u)| = 0.
"% _log(~log A%(n))<us<-—log A%(n)

PROOF. It suffices to choose u, in the interval
[~ log(~ log A%(n)), ~ log A%(n)]
and then show
exp(—Yun) pp(un) — 0.
This convergence follows from the bounds for p,(«) in (3.5) and the bounds

for H, in Lemma 3.2. O

PROOF OF THEOREM 3.1. The proof will be given for the case A > 0. The
case A < 0 is analogous. It is convenient first to explain parts of the proof for
the case y = 0.

For v = 0 we have

v(u+logn)—b, B

pn(u) = o
_ v(u+logn)—v(logn) B
- v'(logn) u
Therefore
Go(v(u +logn) - "“"g”)) — Go() = G(pa() + 1) — Go(u)
v'(logn)
= pa(u)Go(u + 0 pp(u)),
where

0=0(n,u)c[0,1].
For 0 < u < —log A%(n), we get from (3.5) that, for sufficiently large 7,
uU+0pp(u) >u+0An)Ho(u)(1— e)exp[—clu|] > u

and from Lemmas 3.2 and 3.3 that

u+0p,(u)<u-+e.
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Since G|, is decreasing on 6 < u < —log A2%(n),
n G; 0 n
Ho(w)(1 - &) exp(—su)Gi(u + &) < Lr)Gole + 0Pn(w))

(3.7) A(n)
< Ho(u)(1+ &) exp(eu)Gy(u).

On —log(—1log A2%(n)) < u < 0, the function G, is increasing, and in a similar
way we get

’

_ , pr(w)Gi(u + 0py(u))
3.8 Ho(u)(1 - ¢g)exp(ev)Gy(u) < A

< Ho(u)(1+ &) exp(—eu)Gy(u + &).

The suprema of the extreme terms in (3.7) and (3.8) taken over u € R are all
finite. Furthermore the limits as ¢ | 0 all coincide, and it therefore follows
that

lim <G0< v(u +logn) — vilog ")) - Go<u>)/A(n> — Ho(u)Gi(u)
n—>co v'(logn)

uniformly for u € [—log(—log A%(n) < u < —log A2%(n)].
For y # 0 we have to consider
v(u+logn)—b,
an

G0<7_1103{1+7 }) ~ Go(w) = qn(w)Gl( + 0gn(w)),

for 6 € [0,1], where

qn(u) = 7‘110g(1 + y<v(u +I(;gn) — b")) —u

= 7‘1(1 + v<v(u i l(;gn) — bn)) - y_llog<1 + v(ewy_ 1))

_ pn(u)
1+ y((exp(yu) —1)/y + 0pa(u))

= pn(u) exp(—yu)(1 + 0y exp(—yu) pa(u)) ™
for some 0’ = 6'(n,u) € [0,1]. By Lemma 3.3 this is asymptotically equal to
pn(u) exp(—yu)(1+o0(1))™"

uniformly on —log(—log A%(n)) < u < —log A?(n). From here the same line
of proof applies as in the previous case, and we conclude

Jim (A()){ Go (7 tog{ 1+ v E =20 ) Gy |

n

. = exp(—yu)H,(u)Gj(u)

uniformly for —log(—log A%(n)) < u < —log A%(n).



114 L. DE HAAN AND S. RESNICK

We finish by removing the restrictions — log(— log A%(n)) <u <—log A2%(n).

We have
Go(y‘l Iog(l + y(v(u tlogn) - bn))) — Go(u)

an

A(n)!  sup
u>—log A%(n)

< A(n)7Y1 - Go(—log A%(n))]

v(—1log A%(n) #logn) — bn)))‘

an

+A(n) Y1 - G0<'y_1 log(l + 7(

< 2A(n)Y1 - Go(—log A*(n))|

+ A(n) M Go(—log A%(n))

Y CC L L UL DR AN

Qn

From the first part of the proof, the second term goes to zero. The. first term
goes to zero because Go(u) = exp{—e~*}. The proof for u < —log(—log A%(n))
is similar. O

4. Rate of convergence in the total variation metric. Asin Section 3,
{X,, n> 1} are iid with common distribution F(x). Set f = (1/(—1log F))*,
v:=(—log(—1log F))< and

Alexpt) = %(%) _y,

and suppose [ € 2-von Mises(y, p), v € R, p < 0. Recall that the function H,
is defined by

x v
/ eXP(W)/ exp(ps) dsdv, for y > 0,
0 0
H,y(x) = o ’
—/ eXP()’U)/ exp(ps)dsdv, fory <O0.
x 0

We now consider

D, := sup |P[a;1(M,, —-b,) e A]l-G,(A)]
AeB(R)

1ol d ,
= 5/_00’3;1? (@nx +by) — G, (x)| dx.

The constants a, and b, are a, := v'(logn) and

b — v(logn), for y > 0,
"7 | v(oo) + vy ' (logn), fory <O.
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THEOREM 4.1. If f € 2-von Mises(vy,p), y €R, p <0, then

n 1 =
nlggolALin)—l = 5/_00 exp[(—y — 1)u]exp[—exp(—u)]

x |H (u) = (y+1)H,(u) + exp(—u)H,(u)| du.

PROOF. For brevity, we write

_ v(u+logn)-b,
Qn(u) = o ,

n

so that
@n(u) = pulu) + —_GXP(V:) -1

We first write D, in a more convenient way. Take

X = Qn(u)
so that
apx +b, =v(u+logn), —log(—log F™*(anx + b,)) = u.

Then we have
/- L P (ans+b,) - G ()| dx

_[eld ., vV(u+logn) ,, (v(u+logn)—b,

_/_oo ZF"(v(u +logn)) - oz ) G7< o ) du

= [” |@(w) - Q)& (Qu(w)| du

= [7|6b@) - L6,(Quun|au

= [ |64 ~ 2 Go(y M og1 + ¥@u(w)D) | du

Y P Qulw) .

=/ Gy(u) — mGo(Y log{1+4+yQr(u)})|du

= [ Jexp(-u)Go(w)
— QLWL+ yQn(w) V7 1Go(y  log(1 + yQu(w)))| du,

* for y # 0. For y = 0, the expression becomes

/_°° Gy (1) — Gh(Qu(w))| du.
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We will give the proof for y £ 0 and A(n) > 0. The other cases are similar.
Note that, by (3.6),
(4.1) Q,,(u) = exp(yu)(1+ A(n) exp(—yu) H,(u)(1+ 62 (u))),
and by (3.6), for some 6 = 6(n,u) € [0,1],

(1+y@Qn(u)) 1

exp(yu) — 1\ Y71 ,
=<1+7 p(vy) )

_ —-1/y-2
+(-1- v)pn(u)<1 + y(ip(—yyi)—l + 0pn(u)))

4.2
- =exp[(—1 - y)ul+ (-1 — y) pa(u)(exp(yu) + 0y pa(u)) /772
=exp[(-1—7y)u]
+ (=1~ y)pa(u) exp[ (=1 — 2y)u](1 4 6y pn(u) exp(—yu))
=exp[(-1 - y)ul{l - (14 y)A(n)H,(u)exp(—yu)(1+ 6 (u))}.
Finally, by Theorem 3.1 [see (3.3)],
Go(y 'log{1+ y@n(u)})
= Go(u) + A(n)exp[(—1 - y)u]Go(u)H,(u)(1+ o(1))
= Go(u)(1+ A(n)exp[ (-1 — y)u]H,(u)(1+ o(1)))

—1/y-2

uniformly for u € R.
It follows that

Q, (W) (14 yQn(1)) /" Go(y ' log(1+ yQn(u))) — exp(—u)Go(u)
=exp(yu)(1+ A(n) exp(—yu)H',(u)(1+ 82 (u)))
x exp[(—1 - y)ul(1 - (1+ v)A(n) exp(—yu)H,(u)(1+ 6 (u)))
x Go(u)(1+ A(n)exp[ (-1 - y)ulH,(u)(1+ 0(1))) — exp(—u)Go(u)
= A(n)Gy(u) exp(—yu)(H (1) — (v + 1)H,(u)
+ exp(—u)H, (1)) (1 + 6.(u))
+ (A(n))?Gy(u)
x (exp(—yu)H'(u)(—1—y) exp(—yu)H,(u)
+exp(—yu)H' (u) exp[(—y — Du]H,(u)
+ (=1 —y) exp(—yu)H,(u)? exp[ (—y — Du])(1 + 8.(u))?
+ (A(n))*Gy(u)
x (exp(—yu)H'(u)(—1 - y) exp(—yu) H',(u)? exp[(—y — 1)u]),
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where
(1—¢)exp(—elul) <1+ 6,(u) < (1+ ¢)exp(slul),

for —log(—log A%2(n)) < u < —log A%(n). Since |A(n)| < 1 for sufficiently
large n, the right-hand side provides an integrable dominating function.
Lebesgue’s theorem then gives

—log A%(n)

Goy(u) - %GY(Qn(lf)) du

Tim (A(n))™! /

—log(—log A%(n))

= f_z exp[(—1— y)u]exp[—exp(—u)]
x |H (u) — (v + 1) H,(u) + exp(—u)H,y(u)| du.

It remains to deal with the parts of the integral near +o00. Now

(A [

—log A2(n)

(e8]

Gi(u) - %Gy(Qn(u»‘du

< (A(n))™H{1 - Go(—1log A%*(n))}
+ (A(n)) (1 - G(Qn(—log A%(n))))
< 2(A(n)) {1 - Go(—log A*(n))}
+ (A(n)) MGy (Qn(—log A*(n)) — Go(—log A%(n))I.

The second part goes to zero by Theorem 3.1. The first part can be seen to go
to zero by using the form of the function Gg. The part of the integral near —oo
is handled similarly. O

REMARK. It is easy to see that our choice of norming constants is optimal
within the present set-up. If one changes the norming constants b, and a,

into b, and d, and if
limy, oo (Gr/an — 1) —c
A(n) -0

and

limneoo(l;n/an) _

A(my P
then this only changes the value of the limit in Theorem 4.1. If any of the
above limits are infinite, then a rate D, = O(A(n)) is no longer possible.
As an example of Theorem 4.1 we note the following: for the standard nor-
mal distribution, one has y = p = 0 and A(¢) ~ —(2logt)~!; hence
lim D, log n = 0.1652795.
n—>oo

Compare to Hall (1979).
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5. Remarks on point process convergence. It is well known that (1.1)
and (1.2) have equivalent formulations in terms of weak convergence of em-
pirical measures to a limiting Poisson process. Let

R,={xeR: 1+ vyx >0},
¢, =inf R,, r,=supR,,
E=(ty,ry]
Then (1.2) is equivalent to

/

(Xl _bn) c

an

(5.1) o = nP[ ] N

where, for y € E,
(5.2) w(y,ry]=(1+yy) "

and “—,” denotes vague convergence of measures in the space M, (E), the
nonnegative Radon measures on E. Furthermore (1.2) is also equivalent to

(5.3) Ny, = N,

or to

(5.4) Ny = Zé‘(xi—bn)/an = Ny,
i=1

where N, and N, are Poisson random measures with mean measures u and
Mn, respectively, and “=” denotes weak convergence of random elements in
M, (E). We will denote a Poisson random measure with mean measure u by
PRM () [see Resnick (1987), pages 154 and 210].

Due to the equivalence of (1.2) with (5.4), it has often been the case that a
study of extremes is initiated by the study of the empirical measure N, and
then transferred to the extreme by a mapping argument. Such an approach
is tempting when studying rates of convergence since if one can calculate

drv(Z(Ny), Z(Ny)),

the total variation distance between the distributions of N, and N, then a
rate of convergence for

drv(Z(Ny), Z(Ny)) —> 0

as n — oo would also imply a rate for

P[M € A] - G(A)l.

an

D, = sup
Ae#(R)
The bounds on dtv(.Z(N,), .Z(N,)) often given in the literature [Drees and
Kaufmann (1993), Kaufmann and Reiss (1993), Reiss (1989) and Falk and
. Reiss (1992)] have a lower bound which is O(1/n). (Actually, the bound is on
the variational distance between the laws of truncated versions of N, and
N ,.) Since it is clear from Section 4 that the convergence rate of D, to zero
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is O(|A(n)|), where |A(n)| € RV ,, p < 0, we conclude that our bound on D,
cannot be obtained from the cited literature. [A similar point is made in the
remark on page 110 of Resnick (1987).]

Some modest perspective on the second-order version of the equivalence
between (5.1) and (5.3) is given in the following result.

PROPOSITION 5.1. Let N, be PRM(u). Suppose pn, u € M (E), pn = p
and 0 < A(n) — 0. Then there exists x € M1(E), the signed measures on E
which are finite on compact subsets of E, such that

Mn — M .
(5.5) A0 —uv X in M (E)

iff

Un,, (f)—¥n,

A0 — —x(1 —exp(—f))exp[—u(1—exp(—1))],

(5.6)

for all f € C%(E), the nonnegative, continuous functions on E with compact
support. Here Yy, (f) is the Laplace functional of PRM(u),

un,(f) = E exp{=N,(f)} = E exp{— i f(x)N,L(dx)]

- exp{ - fa- eXp[—f(x)])u(dx)}~

PROOF. Given (5.5), we have, for f € CL(E),
N, (f) =N, (f)
A(n)
= A(n) ' {exp[—pn(1 — exp(—f))] — exp[—u(1 — exp(—f))1}
= A(n)~' exp[—u(1 — exp(—f)){exp{—(u» — n)(1 —exp(—f))} — 1},

and since (u, — u)(1 — e f) — 0 because of w, —, u, we find the above
asymptotic to
A(n)~'exp[—u(1 — exp(—f))1(—(pn — p)(1 - exp(—£)))
— —x(1—exp(—f)) exp[—u(1 — exp(—f))].

Conversely, suppose there exists for each f € C}(E) a quantity L(f) # 0 such
~that :

N, () =N, (f)
A(n)

— L(f) #0.
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Then
—exp[—m—exp(—f))](l‘e"p[—% - 53)(1 —exp(—f))])
~ —expl—u(1 - exp(— ) LGP
so that
(Mn_ﬂ)(l_exp(_f)) — _eXP[M(l—exp(—f))]L(f)_ 0

A(n)

The point is that the second-order condition (5.5) is not equivalent to a rate
for drv(£(N,,), £ (N,)) to go to zero. For the latter, one would need (5.5)
replaced by a condition on the variation distance between w, and u [cf. Falk
and Reiss (1992)].

COROLLARY 5.2. Under the conditions of Proposition 5.1, we have, for any
Aec #B(E)and k>0,
P[N,,(A)=k] - P[N,(A) = k]
A(n)
—exp[—u(A)]x(A), k=0,
[PO(k—1) — PO(k)]x(A), k=1,

— L(k)

where

pA p(A)
PO(k —1) — PO(k) = exp[—,u(A)][ (E—1)! R :,

_ exp[—u(A)]u(A)* [1 B M(A)]
- k! E

PROOF. Repeat the argument of the previous result using generating func-
tions instead of Laplace functionals. O

The second-order modification of (1.2) can be expressed as a variant of (2.5):
there exist a, > 0 and b,, € R such that, as n — oo for x > 0,

— — Y — x [
A(n) 1 p
where f = (1/ —log F)*. It is possible to invert (5.7) and express it in terms of

F by using Vervaat’s lemma [Vervaat (1972) and deHaan and Resnick (1993),
Lemma A.1] and the result is that (5.7) is equivalent to

nQ(any +bn) — (14 yy)™1/”
’ A(n)

for yﬂ € R,, where @ = —log F'. In many applications we would like to replace
Q by 1—F =: F. However, F can replace @ in (5.8) without cost iffnA(n) — oo
(which is implied by —1 < p < 0 since A € RV ,). To check this, note that since

(5.8) = (L4 yy) Y 1H((1 + yy)Y7),
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F(a,y +b,) = 0 we have
n _
A—(n')'[Q(any +b,) — Fla,y + bn)]
——[—1log(1— F(any +bn)) — Flany +b,)].

A( )
If nA(n) — oo, then the above is

i“’: any+b ) nF‘(any+bn)iI7'(any+bn)f"1

A(n) s An) I J
nF(a,y + b,) N (1 +yy)17)?
< ——m)——nQ(any+bn) TRAG)

— 0.

Conversely, if A(n)"'n[Q — F]— 0, we have
n (Q n nF? _ (nF)2
An) Y T AmMG T T = 24(n) _ 2nA(n)’

and since nF — (1 + yy)~?/? we conclude nA(n) — oo [cf. Resnick (1987),

page 112, Proposition 2.1.6].
If we may replace @ by F in (5.8), then we can define the measures u, and

w by
wn =nF(a, - +by),
w(y,ryl=Q+yy)™, by <y<ry,
and then (5.5) becomes

Mn — :
A(n) —>p ¥ 1M M:i:(E)’

where
x(y,ry]= 1+ yy) T H((L+ yy) ).
We show this implies (5.6) with the empirical process N, replacing the Poisson

process N,,, when nA(n) — oo.

PROPOSITION 5.3. If A(n) — 0, nA(n) — oo, then

(5.9) ’-‘i(:# X in My(E)
i
1 DIV 1 exp(—f)) expl—u(1 — exp(—1)]

A(n)
for all f € CL(E).
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REMARK. Again, the point is that the second-order condition is not equiv-
alent to convergence in the total variation metric in (5.10).

PROOF OF PROPOSITION 5.3. Since

() = Eexp(— [ den)

- (mee 1 (552))
_ (1 _ nE(1 - exp[-f((X —bn>/an>]>)"

n

_ (1 ~ ma(l- exp(—f)))”
= — ,
we have
UN,(f) = ¥n,(f)
_ <1 _ “n(l“;"f’(‘f))) — exp[—p(1 - exp(~f))]

= exp[—n(— log(l _ 1= exp(—f))))] —exp[—u(1 —exp(—f))]

n

= exp[—u(1l - eXp(—f))][exp[—n<_ ]0g<1 _ (- exp(—f))))

n

—,u(l—exp(—f))} - 1].
Now if w, =, u, then
_n10g<1 _ l"n(l - exp(_f))) - nl‘*n(l —eXP("‘f))

n n

= un(1l—exp(—f)) - u(l—exp(—f))

and so

v, (F) = o, (F)
~ —expl—p(1 - exp(—f))]{n(—log(l

n

_ ka1 exp(—f))))

el —exp(—f))}

2
= exp[—p(1 - exp(—f))]{n<p‘n(1 — e;xp(—f)) + O(M,,(l - exp(—f)))

n

- M(l—eXP(—f))}
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= exp[—u(1 - eXp(—f))]{Mn(l —exp(—f)) — n(1—exp(—f))

+ %omn(l—exp(—f)))?}.

Therefore,
UN,(f) =N, (f)
A(n)
~ —exp[—u(1l— exp(—f))]{ (#n — 'U‘)(Al(;)eXP(—f))
n (un(1—exp(—£)))? ]
nA(n)

— —exp[—u(1 —exp(—f))]x(1 —exp(-f)),

provided nA(n) — oo. The converse is similar. O

The analogue of Corollary 5.2 with N, replacing N, can now be written
down.
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