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CYCLE STRUCTURE OF RIFFLE SHUFFLES1

By Steven P. Lalley

Purdue University

A class of models for riffle shuffles (“f-shuffles”) related to certain ex-

pansive mappings of the unit interval is studied. The main result concerns

the cycle structure of the resulting random permutations in Sn when n

is large. It describes the asymptotic distribution of the number of cycles

of a given length, relating this distribution to dynamical properties of the

associated mapping. This result generalizes a recent result of Diaconis,

McGrath and Pitman.

1. Introduction. The cycle structure of a random permutation chosen

from the uniform distribution on the permutation group Sn is reasonably

well understood. When n → ∞, the joint distribution of the “large cycles” is

governed by “Poisson–Dirichlet” asymptotics (see [7] and [9]), and the num-

ber of “short cycles” of a given length j is approximately Poisson. Recently,

Diaconis, McGrath and Pitman [3] obtained analogous results for random per-

mutations from a class of nonuniform distributions, the so-called a-shuffles.

These are random permutations obtained by cutting a deck of n cards into

a packets and then randomly riffling the packets together. Using a bijection

discovered by Gessel [4], they obtained an exact formula for the joint distri-

bution of the numbers Nj, j = 1, 2, . . . ,n, of cycles of length j and used this

formula to describe the asymptotics of both the large cycles and the small

cycles as n → ∞. The behavior of the large cycles is governed by the same

Poisson–Dirichlet asymptotics that apply for random permutations from the

uniform distribution. The asymptotic behavior of the short cycles, however,

is markedly different than that of uniform random permutations: for large

n and fixed j, the distribution of Nj is approximately the negative binomial

distribution with parameters (fja,a−j), where fja is the number of aperiodic

“necklaces” of length j from an alphabet with a letters.

The purpose of this paper is to shed light on this last result by generalizing

it to a larger class of random permutations, which we dub “f-shuffles.” Here

f is an expanding, piecewise C2-mapping of the unit interval onto itself; the

a-shuffle (where a is an integer greater than or equal to 2) is the special case

where f(x) = {ax} and { } denotes fractional part. The random permutation

is constructed as follows: n points are dropped randomly in the unit inter-

val, according to the uniform distribution. These are then labelled 1, 2, . . . ,n

in accordance with their relative order in [0, 1]. The n points x(i) are then

mapped to the points f(x(i)), and these are labelled 1, 2, . . . ,n in accordance
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with their relative order in [0, 1]. The f-shuffle is the (random) permutation

that takes each label i to the label of f(x(i)) in the transformed sample. This

construction was suggested by the dynamical representation of the a-shuffle

in [1]. Another interesting special case (a biased riffle shuffle) is discussed in

Example 2 in Section 2.2.

Our main result relates the cycle structure of the f-shuffle Π to the dy-

namics of the mapping f. We will show that, for large n, cycles of Π may be

associated with periodic orbits of f in a natural way; in particular, the length

of each cycle will agree with the minimal period of the associated periodic

orbit. Then we will show the following: that, for each periodic orbit ω of f,

the number of cycles of Π associated with ω is, for large n, approximately a

geometric random variable with parameter σ(ω), where σ(ω), the “weight”

of orbit ω, is the inverse of the product of the values of f′ at the points of

the orbit; and that these counts are approximately independent for different

periodic orbits. The result of Diaconis, McGrath and Pitman [3] concerning

the asymptotics of the “short” cycles follows as an immediate corollary.

Our proof, like that of [3], uses a form of “symbolic dynamics,” using se-

quences from the alphabet {1, 2, . . . ,a} to represent the orbits of individual

cards. The similarity ends there, however. For the a-shuffles studied in [3],

the induced probability measure on Sn is uniform on a subset of Sn, namely,

the set of all permutations with no more than a − 1 descents; consequently,

questions about the distribution of cycles may be attacked by essentially com-

binatorial methods. In contrast, the probability measure induced by the f-

shuffle for nonlinear f is not uniform (even approximately so) on a subset

of Sn.

Unfortunately, our methods do not lead to definitive results concerning the

asymptotic distribution of large cycles. We conjecture that the joint distribu-

tion of the large cycles follows the same asymptotic behavior as for a-shuffles

and completely random permutations. By [5], this would follow from the fol-

lowing apparently weaker conjecture.

Conjecture. If k points are picked by random sampling without replace-

ment from {1, . . . ,n}, then for large n, with high probability, the permutation

on Sk derived from the action of Π on the k sample points has a distribution

that is close to uniform.

Although we have not been able to establish this, we have proved a similar

statement for the action of Π on k randomly chosen neighboring points.

2. f-shuffles.

2.1. Definition. Let f: [0, 1] → [0, 1] be a piecewise C2, measure-

preserving transformation of the unit interval. (Throughout the paper, the

term measure-preserving refers to the Lebesgue measure on [0, 1]. Sufficient

conditions for a mapping f to be measure-preserving are given below.) The

f-shuffle of a deck of n cards is the random permutation Π ∈ Sn obtained
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as follows: let ξ1,ξ2, . . . ,ξn be a random sample of size n from the uniform

distribution on [0, 1], with order statistics ξ(1),ξ(2), . . . ,ξ(n); let ζi = f(ξi) for

i = 1, 2, . . . ,n; and let ζ(1),ζ(2), . . . ,ζ(n) be the order statistics of the sample

ζ1,ζ2, . . . ,ζn. Define Π to be the permutation such that

ζ(Π(i)) = f(ξ(i)) ∀ i = 1, 2, . . . ,n.(1)

See Figure 1 for an example.

Note 1. By “piecewise C2” we mean that the left and right derivatives

exist everywhere, are finite and C1, and agree except at those points where f

is discontinuous.

Fig. 1.
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Note 2. There is no reason why the f-shuffle could not be similarly de-

fined for mappings f that are not measure-preserving, provided, for exam-

ple, that if U is a uniform-[0, 1] random variable, then f(U) has a positive

density. However, for any such f, there is a (unique) monotone increasing

homeomorphism T of [0, 1] such that T ◦f is measure-preserving. (This is an

elementary consequence of the “quantile transform.” In order that T ◦ f be

measure-preserving, it is necessary and sufficient that T(f(U)) be uniformly

distributed on [0, 1].) For this homeomorphism T, the T◦f-shuffle is the same

as the f-shuffle. Hence, there is no loss of generality in restricting attention

to f-shuffles with f measure-preserving. Observe that when f is taken to be

measure-preserving, the transformed sample ζ1,ζ2, . . . ,ζn is distributed as a

sample of n iid uniform random variables.

Note 3. In general, performing an f-shuffle and then an independent

g-shuffle is not the same as performing a single (g ◦f)-shuffle, even if g = f,

unless both f and g are piecewise-linear functions. Nevertheless, the dy-

namical system consisting of the iterates f(n) of f does contain information

about the behavior of the random walk obtained by performing independent

f-shuffles repeatedly (see [6]).

2.2. Examples.

Example 1. For f(x) = {ax}, where a ≥ 2 is an integer and { } de-

notes fractional part, the f-shuffle coincides with the a-shuffle studied in

[3]. This admits the following alternative description. Break the deck into

a piles, with the vector of pile sizes having the multinomial distribution

M(n,a−1,a−1, . . . ,a−1). Then “riffle” the a piles together in an unbiased

manner: drop cards one at a time from the bottoms of the piles, with the

(conditional) probability that the next card comes from the ith pile being

proportional to the number of cards remaining in that pile.

Example 2. Let

f(x) =



















Hp ◦M1/v ◦L
(

p− x

p

)

, for x ∈ [0,p],

Hp ◦M1/u ◦L
(

1 − x

1 − p

)

, for x ∈ (p, 1],

where

L(y) = − log y,

Mα(y) = αy,

Hα(y) = 1 − α exp(−vy)− (1 − α) exp(−uy).

To see that f is a measure-preserving mapping, consider its action on a

uniform-[0, 1] random variable U. Conditional on U ∈ [0,p], U is uniformly

distributed on [0,p], so L(U) is a unit exponential random variable, and
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hence M1/v(L(U)) is an exponential with mean 1/v. Similarly, conditional

on U ∈ (p, 1], M1/u(L(U)) is an exponential with mean 1/u. However, the

mapping Hp is chosen precisely to take the (p,q)-mixture of mean 1/v and

mean 1/u exponentials to a uniform-[0, 1]. Thus, f(U) has the uniform-[0, 1]

distribution; that is, f is measure-preserving.

For this mapping f, the f-shuffle is the “(u,v)-weighted” riffle shuffle de-

fined in [6]. In this shuffle the deck is divided into two stacks which are then

riffled; however, this riffle is biased so that cards from one of the stacks are

more likely to drop than cards from the other. Specifically, if at some stage of

the riffle the top stack has A cards remaining and the bottom stack has B

cards remaining, then the probability that the next card dropped comes from

the top stack is uA/(uA + vB). The division of the deck into top and bottom

stacks is such that the number of cards in the top stack has the binomial-

(n,p) distribution. See [6] for a proof that the (u,v)-weighted riffle shuffle is

an f-shuffle with the mapping f given above.

2.3. The inverse construction. Our main result and the arguments re-

quired to prove it hold generally for f-shuffles such that f has a Markov

partition. That is, there exists a finite partition J of [0, 1] into intervals

J1,J2, . . . ,Ja such that f maps each Ji monotonically onto the union of the

intervals in some subset of J (possibly with some of the endpoints removed).

For simplicity, we shall restrict our discussion to transformations f satisfying

the following assumption.

Assumption 1. The mapping f: [0, 1] → [0, 1] is a piecewise C2 (Lebesgue)

measure-preserving mapping for which there exists a partition J of the unit

interval into a intervals Ji = (xi,xi+1], with 0 = x1 < x2 < · · · < xa < xa+1 =
1, such that f maps each Ji monotonically ↑ onto the unit interval, and such

that f is C2 in each (xi,xi+1).

Assumption 1 implies that f is a-to-1 and that f−1 has a distinct branches

f−1
i , with f−1

i mapping the open unit interval (0, 1) monotonically onto the

interior of Ji. By our convention concerning C2-mappings f of the unit inter-

val, the derivative f′ is well defined and continuous at every x except those

x such that f(x) = 0 or f(x) = 1. A necessary and sufficient condition for a

piecewise C2 function f satisfying Assumption 1 to be measure-preserving is

that, for almost every y ∈ [0, 1],

∑

x∈f−1(y)

1

f′(x)
= 1.(2)

Observe that since the inverse image f−1(y) contains a > 1 points and since f′

is piecewise continuous and bounded above, (2) implies that inf x∈[0,1] f
′(x) > 1,

that is, that f is an expanding map of the unit interval.

The function f has a multivalued inverse function f−1 with a distinct

branches f−1
i , i ∈ [a]. Here and throughout the paper [a] = {1, 2, . . . ,a}.
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Each branch f−1
i maps the unit interval homeomorphically onto the corre-

sponding interval Ji. By (2), for almost every y the numbers 1/f′(f−1
i (y))

define a probability distribution on [a]. These distributions allow one to “in-

vert” the measure-preserving transformation f, in the following sense. Let Y

be uniformly distributed on [0, 1] and, conditional on Y = y, let W = f−1
I (y),

where I ∈ [a] is chosen at random according to the distribution 1/f′(f−1
i (y)),

i ∈ [a]. Then W is also uniformly distributed on [0, 1], and f(W) = Y. The

proof is straightforward.

The inverse construction. A version of the random permutation Π may

be constructed as follows. Let ζ1,ζ2, . . . ,ζn be a random sample of size n from

the uniform distribution on [0, 1]. For each i, choose one of the a branches of

f−1 according to the discrete probability measure (2), with y = ζi (conditional

on the values ζ1,ζ2, . . . ,ζn, these choices are to be made independently). Let

the resulting collection of points f−1
j (ζi) be ξ(1) ≤ ξ(2) ≤ · · · ≤ ξ(n). Define Π

to be the unique permutation satisfying (1).

That Π is a version of the f-shuffle defined earlier follows easily from the

fact that for Y uniformly distributed on [0, 1], W = f−1
I (Y) is also uniform-

[0, 1]. The independence of the branch choices βj (conditional on the sample

ζ1,ζ2, . . . ,ζn) in this construction will be of crucial importance.

Although (1) involves the order statistics ζ(j), the permutation Π is actually

a function only of the branch choices βj. The inverse permutation Π−1 may be

described directly in terms of the sequence β = β1,β2, . . . ,βn as follows (this

was known to Reeds [8] in the case of the a-shuffle). Think of the integers

1, 2, . . . ,n as the labels of cards, stacked in increasing order (top card equals

1, bottom card equals n). Permute the cards as follows: first, remove all the

cards j such that βj = a−1 and move them, in order, to the top; then remove

all cards j such that βj = a − 2, and move them, in order, to the top ( just

above the stack of cards with βj = a − 1) and so on; then, finally, remove all

cards labelled βj = 1 and move them to the top. The resulting permutation of

the cards 1, 2, . . . ,n is Π−1.

In the arguments below, it will be necessary to know the effect on Π of

switching two adjacent entries of the sequence β = β1,β2, . . . ,βn.

Lemma 1. Let j′ = j+1 for some 1 ≤ j < n, and suppose that βj 6= βj′ . Let

β′ = (β′
1,β′

2, . . . ,β′
n) be the sequence obtained from β by switching the entries

βj and βj′ , and let Π′ be the permutation determined by the sequence β′. Then

Π′ = Πσj,(3)

where σj is the permutation that transposes j and j′.

Note 4. In particular, (3) implies the following relation between Π and Π′:
(a) if j and j′ are in different cycles C = (j, . . . ,j∗) and C′ = (j′, . . . ,j′

∗) of Π,

then the switch merges them into a single cycle C′′ = (j, . . . ,j∗,j′, . . . ,j′
∗) of



RIFFLE SHUFFLES 55

Π′ and leaves all other cycles unchanged; and (b) if j and j′ are in the same

cycle C′′ = (j, . . . ,j∗,j′, . . . ,j′
∗) of Π, then the switch splits it into the two

cycles C = (j, . . . ,j∗) and C′ = (j′, . . . ,j′
∗) of Π′ and leaves all other cycles

unchanged.

Proof. Compare the steps of the construction of Π−1 and (Π′)−1. Cards

labelled a − 1 are removed and moved to the top; then cards labelled a − 2

are removed and moved to the top and so on. The same cards are removed

at each step for the label sequences β and β′ except for cards j and j′. Since

j′ = j + 1, the final positions of cards j and j′ are switched, and all other

cards are moved to the same positions. 2

3. Cycles and periodic orbits of f.

3.1. First-order asymptotics. We will need to have a rough idea of what an

f-shuffle “looks like” for large n. Let Π be the random permutation generated

by the f-shuffle of a deck of size n, and let F = FΠ be the right-continuous

step function with jumps at the points i/n such that

FΠ(i/n) = Π(i)/n.(4)

Note that the action of Π is mirrored in the dynamics of FΠ. In particular, the

cycles of Π correspond to the periodic orbits of FΠ: (j1,j2, . . . ,jl) is a cycle of

Π iff (n−1j1,n−1j2, . . . ,n−1jl) is a periodic orbit of FΠ with minimal period l.

Lemma 2. As n → ∞, the random function FΠ converges in probability to

f in the Skorohod topology.

Proof. This is a routine consequence of the Glivenko–Cantelli theorem

and the fact that f is measure-preserving and continuous at all but those

points of [0, 1] where f(x) = 0 or 1. (The reason for using the Skorohod topol-

ogy rather than the sup norm topology is that f has points of discontinuity.) 2

The following corollary is an immediate consequence.

Corollary 1. For each j ≥ 1, the jth iterate F
(j)
Π of FΠ converges in

probability to the jth iterate f(j) of f in the Skorohod topology.

It is clear that f and FΠ may differ by O(1) near the endpoints of the

intervals Ji (the points of discontinuity of f). In the interiors of these intervals,

however, f and FΠ are uniformly close, with high probability as n → ∞.

Lemma 3. Let I be a closed interval contained in the interior of some Ji.

Then for any « > 0 and any p > 0,

P
{

sup
x∈I

|FΠ(x)− f(x)| > n1/2+«
}

< n−p,

for sufficiently large n.
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Proof. This follows by standard estimates on large-deviations probabili-

ties for sums of iid Bernoulli r.v.’s. In fact the probability in question decays

exponentially in n1/2−«. 2

Now consider the lth iterates fl and Fl
Π of f and FΠ. The function fl has

al intervals of monotonicity, each of which it maps homeomorphically onto the

whole unit interval. These intervals may be labelled

Ji1i2···il = f−l
i1i2···il((0, 1)),

where f−l
i1i2···il = f−1

i1
◦ · · · ◦ f−1

il
.

Corollary 2. Let I be a closed interval contained in the interior of some

Ji1i2···il . Then, for any « > 0 and any p > 0,

P
{

sup
x∈I

|Fl
Π(x)− fl(x)| > n1/2+«

}

< n−p,

for sufficiently large n.

This follows directly from the preceding lemma.

Note 5. It may also be shown by standard methods that, for points of

continuity t ∈ (0, 1) of f and f(j),
√
n(FΠ(t)−f(t)) and

√
n(F

(j)
Π (t)−f(j)(t))

are asymptotically normal. This will not be needed, however.

Note 6. For large n, the increments of nFΠ for arguments in a neighbor-

hood [distance o(1)] of t, where t is a point of continuity of f, are approximately

independent geometric-plus-1 r.v.’s with parameter 1/f′(t). This follows from

the “inverse construction”: if t = f−1
i (y), then the increments of nFΠ near t

are just the numbers of successive order statistics ζ(j) between “successes,” a

success being a choice of branch i of the inverse function f−1; in a neighbor-

hood of y, the probability of a success for any ζ(j) is approximately 1/f′(t).

3.2. Cycles and signatures. As explained in [3, Section 2], there is a natu-

ral mapping from the set [a]n of sequences with values in [a] = {1, 2, . . . ,a}

onto the set of permutations in Sn with at most a− 1 “descents” (π is said to

have a descent at i if π(i) > π(i+ 1): see [3]). Observe that any permutation

arising from the f-shuffle of a deck of n cards has at most a − 1 descents,

because the “cards” corresponding to the points ξj falling in any one of the in-

tervals Ji must remain in order, as f is increasing in Ji. For a given sequence

x = x1x2 · · ·xn ∈ [a], the inverse of the corresponding permutation π = πx

is obtained as follows. Start with an ordered deck of n cards, with the cards

marked 1, 2, . . . ,n. Put an additional mark on each card; card i is marked with

the symbol xi. Now remove all cards marked 1 and put them in order at the

top; then remove all cards marked 2 and put them in order below the cards

marked 1 and so on. For a permutation π with exactly a − 1 descents, there

is a unique sequence x ∈ [a]n mapped to π.
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Lemma 4. As the deck size n → ∞, the probability that Π has fewer than

a− 1 descents converges to zero.

Proof. In order that the f-shuffle Π have fewer than a− 1 descents, it is

necessary that for some pair of intervals Jj,Jj′ in the partition J,

max
ξi∈Jj

f(ξi) < min
ξi∈Jj′

f(ξi).(5)

However, f maps each of Jj,Jj′ onto the whole unit interval, so by Lemma 2,

(5) can occur only with vanishingly small probability as n → ∞. 2

Any permutation π ∈ Sn can be written as a product of cycles: π =
(C1)(C2) · · · (Ck), where C1 is the orbit of the first card [C1 = (1,π(1),

π(π(1)), . . .)], C2 is the orbit of the first card not in cycle C1 and so on. For

those permutations π with exactly a−1 descents, we will assign to each cycle

Ci an aperiodic sequence of length |Ci| from the alphabet [a]; this sequence

will be called the signature of the cycle. The assignment of signatures to

cycles is as in [3, Section 3] (there they are called cycle words). In geometric

terms, the cycle signatures of a permutation π with exactly a − 1 descents

may be defined as follows:

Let Fπ be as in (4). If π has exactly a − 1 descents, then Fπ is piece-

wise increasing with a intervals Jπ
1 ,Jπ

2 , . . . ,Jπ
a of monotonicity. (For Π = π

these intervals will closely approximate the intervals Ji of the partition J,

by Lemma 2.) For a given cycle Ci, let j be the smallest integer of the cycle;

the signature of Ci is the sequence in [a] = {1, 2, . . . ,a} recording the indices

of the intervals Jπ
i visited by j/n,Fπ(j/n),Fπ(Fπ(j/n)), . . . .

The signature of a cycle is always a Lyndon word (a Lyndon word ω of

length l is an aperiodic sequence in [a]l that is lexicographically smaller than

each of its l − 1 cycle shifts), and all Lyndon words of length less than or

equal to n may occur as cycle signatures in Π (see [3], Section 3). Observe

that Lyndon words of length l correspond naturally to aperiodic necklaces

of length l: for each Lyndon word, one may obtain an aperiodic necklace by

“fastening” the ends of the word; for each aperiodic necklace, one may recover

a Lyndon word by “unfastening” it at the unique point where the resulting

word is lexicographically smaller than each of the other l − 1 possible words

obtained by unfastening the necklace at some other point.

3.3. Signatures; periodic orbits; and weights. Let f satisfy Assumption 1.

Every periodic point x ∈ [0, 1] of f of (minimal) period l ≥ 1 has an itinerary,

namely, the sequence in [a]l giving the indices of the intervals Jj visited

by x,f(x),f(f(x)), . . . ,f(l)(x). The itineraries of the other points f(j)(x) in

the orbit are just the cyclic shifts of the itinerary of x, and the lexicographic

order of these itineraries agrees with the usual [0, 1]-order of the points in

the orbit. (For an elementary discussion of the “symbolic dynamics” of orbits

of mappings f of the unit interval, see [2], Chapter 1.) Each periodic orbit of

f has a minimal point; the itinerary of this point will be called the signature

of the orbit.
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Lemma 5. Every Lyndon word is the signature of a unique periodic orbit

of f.

Proof. This is a special case of a standard result for expansive mappings

of the unit interval with a Markov partition. The argument, in brief, is as

follows:

For each finite sequence x = x1x2 · · ·xn ∈ [a]n, define Jx to be the set of all

points y ∈ [0, 1] whose “itinerary” begins x1x2 · · ·xn [the itinerary of a point y

is the sequence of indices j of the intervals Jj visited by y,f(y),f(f(y)), . . .].

Then, for each x, Jx is an interval of positive length which is mapped mono-

tonically onto [0, 1] by f(n), where n is the length of x. This may be seen by

induction on the length of x, using the fact that f maps each of the intervals

Ji in the partition J onto the entire unit interval. Moreover, the intervals

Jx are nested; that is, if x′ is an extension of x, then Jx contains Jx′ . Finally,

for any infinite sequence x1x2 · · · in [a]∞, the lengths of the intervals Jx1x2···xn

shrink to 0 as n → ∞ because the derivative of f(n) converges uniformly to

∞ as n → ∞, as f′ is bounded away from 1 on [0, 1]. Thus, for each itinerary

x = x1x2 · · ·, there is a unique point y ∈ [0, 1] with itinerary x.

Now let w = w1w2 · · ·wn be a Lyndon word of length n, and let x = x1x2 · · ·
be the infinite sequence obtained by concatenating w with itself infinitely

many times. By the preceding paragraph, there is a unique point y ∈ [0, 1]

with itinerary x. Since x is periodic with minimal period equal to the length

of w, y is a periodic point of f, and its orbit has signature w. Clearly, the orbit

of y is the only periodic orbit with signature w, because y is the only point

with itinerary x. 2

For a given Lyndon word (cycle signature) σ, let Oσ = (x1,x2, . . . ,xk) be the

unique periodic orbit of f with signature σ, written so that x1 is the minimal

point of the orbit. For a cycle C = (i1, i2, . . . , ik) of Π, written so that i1 is the

minimal entry, let O∗
C

= (i1/n, i2/n, . . . , ik/n) be the corresponding periodic

orbit of FΠ. If Oσ and O∗
C

have the same length, define the distance

d(Oσ,O∗
C) = max

1≤j≤k
|xj − ij/n|.

An immediate consequence of Lemma 2 is the following corollary.

Corollary 3. Fix a Lyndon word σ, and let Oσ be the unique periodic orbit

with signature σ. For each « > 0, the probability that there is a cycle C of Π

with signature σ satisfying d(Oσ,O∗
C
) ≥ « converges to 0 as n → ∞.

Let x = x1,x2, . . . ,xl be a periodic orbit of f [f(xi) = xi+1, f(xl) = x1] with

minimal period l. Define the weight of x by

ω = ω(x) =
{ l

∏

i=1

f′(xi)

}−1

.(6)
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[The derivative f′ exists at every x ∈ [0, 1] except those x such that f(x) = 0

or 1, so ω(x) is well defined for every periodic orbit x except the orbits {0} and

{1}. At x = 0 use the left derivative, and at x = 1 use the right derivative.]

The weight (more precisely, its inverse) of a periodic orbit is a natural and

important “dynamical” quantity, measuring the degree of expansion in the

vicinity of a point of the orbit after one cycle.

Since there is a one-to-one correspondence between periodic orbits and cycle

signatures (by the previous lemma) we may define the weight ω(σ) of a cycle

signature σ to be the weight of the unique periodic orbit with signature σ.

Example 3. Consider the 2-shuffle. The associated mapping f of [0, 1] is

x → 2x mod 1. For each Lyndon word x of length l, there is a periodic orbit

of f with signature x (and, consequently, period l). The weight of this orbit is

2−l.

Example 4. Consider the (u,v)-weighted riffle shuffle with p = 0.3, v = 1

and u = 2.5. The associated mapping f of [0, 1] is given in Section 2.2. There

are two periodic orbits with period 3: one with signature 001, the other with

signature 011. The orbit with signature 001 is

0.007437 → 0.050019 → 0.306346 → 0.007437

(accurate to five decimal places); its weight is 0.0250127. The orbit with sig-

nature 011 is

0.122844 → 0.635265 → 0.404126 → 0.122844;

its weight is 0.231448. This shows that in general the weight of a periodic

orbit is not a function of just its period.

4. Short cycle asymptotics: the main result. For a given cycle signa-

ture σ, define Nσ = Nσ(Π) to be the number of cycles of Π with signature σ.

Note that as n → ∞ the probability that Nσ(Π) is not defined converges to

0, by Lemma 4.

Theorem 1. For each Lyndon word (cycle signature) σ, the distribution of

Nσ(Π) converges weakly as n → ∞ to the geometric distribution with param-

eter ω = ω(σ); that is, for each k = 0, 1, 2, . . . ,

lim
n→∞

P{Nσ(Π) = k} = (1 − ω)ωk.(7)

Moreover, for any fixed finite collection of Lyndon words σ1,σ2, . . . ,σr, the

joint distribution of the counts Nσi
converges as n → ∞ to the product of

the appropriate geometric distributions; that is, the random variables Nσi
are

asymptotically independent.

Note 7. In the special case of an a-shuffle, this was proved in [3].



60 S. P. LALLEY

Corollary 4. For each j = 1, 2, . . . , let Mj be the number of cycles of

Π with length j. Then, for each k ≥ 1, as n → ∞ the random variables

M1,M2, . . . ,Mk are asymptotically independent, and, for each j ≥ 1, the

asymptotic distribution of Mj is that of a sum of independent geometric r.v.’s

with parameters ω(σ), one for each Lyndon word σ of length j.

This is an immediate consequence of Theorem 1.

The rest of the paper will be devoted to the proof of Theorem 1. The cycle

signatures σ = 1 and σ = a must be treated separately, because the mapping

f is discontinuous at the periodic points 0 and 1 with these signatures.

Proof of Theorem 1 (for σ = 1,a). Consider the case σ = 1; this is the

signature of the periodic orbit 0. In order that Π have a cycle of signature 1,

the top card of the deck must remain on top; that is, the preimage of the first

order statistic ζ(1) must be in JΠ
1 . The number N1 of cycles with signature 1 is

the number of cards at the top of the deck that retain their positions after the

shuffle. Equivalently, N1 is the maximum integer k such that the preimages

of the first k order statistics ζ(1),ζ(2), . . . ,ζ(k) all lie in JΠ
1 . When n is large, the

intervals JΠ
1 and J1 are with high probability nearly the same, by Lemma 2.

Consequently, with high probability, N1 is the same as the maximum integer

k such that the preimages of the first k order statistics ζ(1),ζ(2), . . . ,ζ(k) all lie

in J1.

Conditional on the values of the first k order statistics ζ(i), the probability

that their preimages all lie in J1 is
∏k

i=1(1/f
′(f−1

1 (ζ(i)))), where f1 denotes the

first branch of the inverse function f−1. With high probability, all of the first

k order statistics ζ(i) are very close to 0, so all of the preimages f−1
1 (ζ(i)) are

also close to 0. Hence, by the continuity of f′,
∏k

i=1(1/f
′(f−1

1 (ζ(i)))) ≈ f′(0)−k.

However, ω(σ) = f′(0)−1. Therefore,

lim
n→∞

P{N1 ≥ k} = ω(1)k.

A similar argument applies for the signature σ = a. 2

The proof of Theorem 1 will be given in Section 6, following some auxiliary

results concerning inhomogeneous multinomial processes in Section 5. In the

remainder of this section, we will give an asymptotic characterization of the

random variable Nσ and a heuristic argument for (7). Let σ be an arbitrary

cycle signature of length l, but σ 6= 1,a. Recall (Lemma 5) that there is a

unique periodic orbit x = x1x2 · · ·xl of f with signature σ. Here x1,x2, . . . ,xl

are the points of the orbit, ordered so that x1 is the least element and so

that f(xi) = xi+1 for each i = 1, 2, . . . , l − 1. Thus, x1 is a fixed point of the

mapping f(l), but is not fixed by f(j) for any j < l. Fix « > 0 (small), and

define N«
σ = N«

σ(Π) to be the number of solutions x′
1 = j/n, j ∈ Z, of

F
(l)
Π (x′

1) = x′
1(8)

such that |x′
1 − x1| < «.
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Lemma 6. For each cycle signature σ = r1r2 · · · rl, there exists « = «σ > 0

sufficiently small that

lim
n→∞

P{Nσ 6= N«
σ} = 0.

Proof. Consider C = (j1,j2, . . . ,jl), where j1 < ji for i = 2, 3, . . . , l; set

x′
k
= jk/n and x′

l+1
= x′

1. Then C is a cycle of Π with signature σ iff

FΠ(x
′
k) = x′

k+1 ∀ 1 ≤ k ≤ l(9)

and

x′
k ∈ JΠ

rk
∀ 1 ≤ k ≤ l.(10)

By Corollary 3, if C is a cycle of Π with signature σ, then for any « > 0 the

probability that max1≤i≤l |xi −x′
i| ≥ « converges to 0 as n → ∞; consequently,

x′
1 = j1/n is counted in N«

σ.

It remains to be shown that, for sufficiently small « > 0, if j/n is a solution

of (8) such that |x1 − j/n| < «, then j is the smallest element of a cycle C of

Π with signature σ. Clearly, if (8) holds, then j is contained in a cycle whose

length divides l, so (9) will hold. Take δ > 0 so small that, for each point

xi of the periodic orbit x, the distance to the nearest endpoint of one of the

intervals Jj is at least 2δ. (Recall that Jj are the intervals of monotonicity of

f.) By Corollary 1 and the continuity of f at x1,x2, . . . ,xl, there exists « > 0

sufficiently small that if |j/n − x1| < «, then |F(i)
Π (j/n) − xi| < δ, for all

j = 2, 3, . . . , l, with probability approaching 1 as n → ∞, and consequently,

F
(k)
Π (j/n) ∈ Jrk ,

for all k = 1, 2, . . . , l. Since, by Lemma 2, the intervals JΠ
k

closely approximate

the corresponding intervals Jk with high probability as n → ∞, it follows that

if |j/n − x1| < «, then with high probability (10) will hold. Consequently, if

j/n is a solution of (8) such that |x1 − j/n| < «, then with high probability j

is the smallest element of a cycle of Π with signature σ. 2

Using the characterization in Lemma 6, we may now give a heuristic ar-

gument for (7). For simplicity, consider the case of a cycle signature σ = i of

length 1 for some i 6= 1,a. (Note that this case does not occur when a = 2.)

By Lemma 5, there is a unique fixed point x∗ of f in the interior of Ji. By

Lemma 6, Nσ is with high probability equal to the number N«
σ of solutions

j ∈ Z of

FΠ(j/n) = j/n(11)

such that |x∗ − j/n| < « for some sufficiently small « > 0. Recall that in a

neighborhood of x∗ the increments of nFΠ are approximately iid geometric

(plus 1) r.v.’s with parameter 1/f′(x∗) = ω(σ) (see Note 6, in Section 3.1).

Condition on the value nFΠ(x−) at a point x− < x∗ within « of x∗ but distant
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enough that nx− − nFΠ(x−)
∆= K > 0 with high probability; then, conditional

on K, the process

Sj
∆= n(FΠ(j/n)−FΠ(x−))− j, nx− < j < nx− + o(n),

is approximately a random walk with geometric-(ω) increments. Now the num-

ber of solutions N«
σ of (11) near x∗ is just the number of visits to the site K

by the random walk Sj, j > nx−. Since Sj is approximately a random walk

with geometric increments, the number of such visits is approximately geo-

metric with parameter ω, by standard renewal theory for random walks with

iid geometric increments.

This argument is not rigorous, because we have not shown that the incre-

ments of nFΠ are (approximately) iid geometric conditional on FΠ(x−). The

difficulty is that conditioning on FΠ(x−) places constraints on the number(s)

of branch choices of the different types i = 1, 2, . . . ,a at the various order

statistics ζ(j). A rigorous argument requires an extension of the standard “re-

newal theory” to pinned, inhomogeneous multinomial processes. This is done

in the following section.

5. A renewal theorem for nearly exchangeable processes. In this

section we shall prove a renewal-type theorem for multinomial processes that

are “nearly exchangeable,” in a sense to be made precise below. Our results

will be formulated as limit theorems for a triangular array of multinomial

processes whose rows are indexed by n = 1, 2, . . . . The dependence of the

various parameters and random variables on n will be suppressed. Let N =
Nn be integers such that N → ∞ as n → ∞; for each n, let

T = (T1,T2, . . . ,TN)

be random variables valued in the finite set [τ] = {1, 2, . . . ,τ}. Here τ ≥ 2 is a

fixed integer not depending on n. We will sometimes refer to the elements of

[τ] as types. We do not assume that the random variables Ti in a given row

are independent or identically distributed.

For each i ∈ [τ] and m = 1, 2, . . . ,N, define

Si
m = #{j ≤ m: Tj = i},

Sm = (S1
m,S2

m, . . . ,Sτ
m).

(12)

Here # denotes cardinality.

Hypothesis 1. There exists a probability distribution π = (πj)j∈[τ] on [τ]

(not depending on n) such that πj > 0 for each j ∈ [τ] and such that, as

n → ∞,

SN

N
→P π.
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Elements t ∈ [τ]N will be called configurations. Say that configurations

t and t′ are neighbors if t′ can be obtained from t by switching two entries

ti and tj. Let N be the set of all pairs (t, t′) that are neighbors. For each

configuration t, define

λ(t) = P{T = t}.

Hypothesis 2. As n → ∞,

max
N

∣

∣

∣

∣

λ(t)

λ(t′)
− 1

∣

∣

∣

∣

→ 0.

This is a weaker hypothesis than exchangeability; we will refer to it as near

exchangeability. Observe that it does not require that the random variables

T1,T2, . . . ,TN be identically distributed. Moreover, it does not require that

the ratios λ(t′)/λ(t) be close to 1 for arbitrary pairs of configurations.

Let Y1,Y2, . . . be independent, identically distributed [τ]-valued random

variables each with distribution π. For any random vector V, let D(V) denote

its distribution, and let D(V|F) denote its conditional distribution given F.

Let dTV denote the total variation distance between probability distributions.

For any sequence W1,W2, . . . of random variables let W[m,m′] denote the vector

(Wm,Wm+1, . . . ,Wm′).

Proposition 1. Under Hypotheses 1 and 2, for each « > 0 and each k ≥ 1,

as n → ∞,

max
1≤m≤N−k

dTV(D(T[m+1,m+k] |SN),D(Y[1,k])) →P 0(13)

and

max
1≤m≤(1−«)N

dTV(D(T[m+1,m+k] |SN;T[1,m]),D(Y[1,k])) →P 0.(14)

Proof. Fix integers j,j′ ∈ {1, 2, . . . ,N}, and define a new configuration

T′ by switching the j,j′ entries in T with conditional probability (given T = t)

min

(

1,
λ(t′)

λ(t)

)

,

where t′ is the configuration obtained by switching the jth and j′th entries

in t. It is easily seen that T′ has the same distribution as T. Moreover, since

the ratios λ(t′)/λ(t) are close to 1 uniformly for all pairs t, t′ of neighboring

configurations, the conditional probability that the switch actually takes place

is close to 1. Also, since this construction is valid for each fixed pair of indices

j,j′, it is also valid if j′ is replaced by a randomly selected index ν from any

subset of {1, 2, . . . ,N} (provided, of course that ν is independent of T).

Now fix m ∈ {1, 2, . . . ,N−k} and define a new configuration T∗ as follows.

Perform the switching operation described in the previous paragraph k times:

first for the pair m + 1,ν1; then for the pair m + 2, ν2 and so on; and finally
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for the pair m + k,νk, where ν1,ν2, . . . are iid random variables uniformly

distributed on the set {1, 2, . . . ,N}. Then T∗ also has the distribution D(T), by

the argument of the preceding paragraph, and with probability approaching 1

as n → ∞, all j switches are actually performed. Since the probability that two

of the random indices ν1,ν2, . . . ,νk are the same is vanishingly small as n → ∞
(recall that N → ∞ as n → ∞), the joint distribution of (T∗

m+1, . . . ,T∗
m+k

)

is nearly the same as that of k iid random variables from the multinomial

distribution π̂ = SN/N. Since with high probability SN/N ≈ π when n is

large, by Hypothesis 1, this proves (13).

The argument for (14) is similar, but now, since the values of T1,T2, . . . ,Tm

are conditioned, the switching operation must be performed with indices ran-

domly chosen from a subset of 1, 2, . . . ,N. Thus, it is necessary to have a “local”

weak law of large numbers.

Lemma 7. Suppose that Hypotheses 1 and 2 are both satisfied. Fix « > 0

and i ∈ [τ]. Then, as n → ∞, the relative frequency of type i in any block

of «N consecutive Tj’s converges in probability to πi, uniformly over all such

blocks. More precisely, for any δ > 0, if N∗ is the greatest integer in «N, then,

as n → ∞,

max
1≤k≤N−«N

P

(∣

∣

∣

∣

(Si
k+N∗ −Si

k
)

N∗ −πi

∣

∣

∣

∣

> δ

)

−→ 0.(15)

Proof. Fix j. Let T′ be the random configuration obtained from T

by switching the entry Tj with the entry Tν at a randomly chosen ν ∈
{1, 2, . . . ,N}. Then, by Hypothesis 2 (see the argument above), the distribu-

tion of T′ differs from that of T by a negligible amount as n → ∞. Moreover, by

Hypothesis 1, the distribution of a randomly chosen entry of T is increasingly

close to π as n → ∞. Consequently, for each j and each type i,

P{Tj = i} −→ πi,(16)

and this holds uniformly in j.

Now fix any pair j,j′ of indices. Let T′′ be the configuration obtained from

T by switching entries Tj,Tj′ with entries Tν,Tν′ , respectively, where ν and

ν′ are independent, randomly chosen indices from 1, 2, . . . ,N. Again, by As-

sumption 2, the distribution of T′′ is nearly identical to that of T. For any

index k, let Zk be the indicator of the event {Tk = i}. Then since ν and ν′ are

independent, each with the uniform distribution on {1, 2, . . . ,N},

E(ZνZν′ |SN) = π̂2
i ,

where π̂ = SN/N is the empirical distribution of types in T. By Hypothesis 1,

π̂ ≈ π with high probability. Consequently,

EZjZj′ ≈ π2
i(17)

uniformly in j,j′ such that j 6= j′.



RIFFLE SHUFFLES 65

The weak law (15) now follows from Chebyshev’s inequality, as (16) and (17)

give asymptotic convergence of the mean and the right order-of-magnitude

bound on the variance of
∑k+N∗

j=k+1 Zj/N
∗. 2

The proof of (14) may now be completed. Construct a new configuration T∗∗

from T, with the same distribution as T, by switching pairs of entries in T as

follows. Let ν′1,ν′2, . . . be independent, identically distributed random indices

uniformly distributed on {j: N(1−«) ≤ j ≤ N}. Perform the switching oper-

ation described in the proof of (13) k times: first for the pair m+1,ν′1; then for

m+2,ν′2 and so on; and finally for m+k,ν′
k
. That the resulting configuration

has the same distribution as T and that all k switches are actually performed

(with probability approaching 1) follows from Hypothesis 2, as above. How-

ever, the joint distribution of Tν′
1
, . . . ,Tν′

k
, conditional on T, is approximately

that of an iid sample of k items taken from the last «N entries of T. Since

for each i ∈ [τ] the relative frequency of type i in this block is with high

probability close to πi, by the preceding lemma, (14) now follows. 2

Proposition 1 implies that for each type i ∈ [τ] the “renewal” process con-

sisting of successive indices j at which Tj = i is, at least locally, close to a

Bernoulli process with success probability parameter πi. The following corol-

lary makes this precise. For any k = 1, 2, . . ., let

Ni
k = #{1 ≤ m ≤ N: m = k+Si

m and Tm = i}.

Corollary 5. Under Hypotheses 1 and 2, for each « > 0, each type i ∈ [τ]

and each j = 0, 1, 2, . . . ,

max
1≤k≤N(1−πi−«)

∣

∣P(Ni
k = j |SN)− (1 −πi)π

j

i

∣

∣ −→ 0(18)

in probability as n → ∞.

Proof. Let Gm = {m = k + Si
m}. When k ≤ N(1 − «) and N is large

(as it is when n is large), P(
⋃

m>N(1−«) Gm) is negligible, since, by Lemma 7,

Si
m/m ≈ πi with high probability for large m. Consequently, to prove (18), it

suffices to show that, for any k,

P(Tm+1 = · · · = Tm+j = i |SN; 1Gm
= 1; T[1,m−1]; Tm = 0) →P π

j

i

as n → ∞, uniformly for k ≤ N(1 −πi − «) and 1 ≤ m ≤ N(1 − «). However,

this is an immediate consequence of (14). 2

6. Proof of Theorem 1. Theorem 1 will be deduced from Corollary 5.

This will be done in three steps: first, (7) will be proved for cycle signatures of

length 1; second, for cycle signatures of length greater than or equal to 2; and

finally it will be proved that, for distinct cycle signatures σ,σ′, . . . , the random

variables Nσ,Nσ′ , . . . are asymptotically independent. In using the machinery

of the previous section, the set of types will be [a]l, where l is the length of the
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cycle signature being considered. Each type represents a sequence of possible

branch choices; to each j = 1, 2, . . . ,n is attached the type

βl
j

∆= (βj,βΠ−1(j), . . . ,βΠ−l+1(j))

that describes the sequence of branch choices at the order statistics ζ(j),

ζ(Π−1(j)), . . . along the backward Π-orbit of j. The random variables Tj will

be the types attached to the indices j in various subsets of {1, 2, . . . ,n}. The

connection with Theorem 1, specifically, with (8), is that in the interval JΠ
i1i2···il ,

the increments of nFl
Π are precisely the differences j′ −j between successive

indices j,j′ with type t = i1i2 · · · il.
To apply the results of the preceding section, we will have to verify Hy-

potheses 1 and 2.

6.1. Cycle signatures of length 1. Let β = (β1,β2, . . . ,βn) be the sequence

of branch choices, and let ζ = (ζ(1), . . . ,ζ(n)) be the vector of order statistics

in the inverse construction of Π.

Lemma 8. For each configuration t ∈ [a]n let λ(t) = P(β = t |ζ) be the

conditional probability that the sequence β of branch choices takes the con-

figuration t given the values of the order statistics ζ. There exists a constant

C < ∞, independent of n, with the following property: for any pair t, t′ of con-

figurations such that t′ is obtained from t by switching the jth and the j′th
entries,

∣

∣

∣

∣

λ(t)

λ(t′)
− 1

∣

∣

∣

∣

≤ C|ζ(j) − ζ(j′)|.(19)

Note 8. This is where the hypothesis that f ∈ C2 is used; see also

Lemma 11.

Proof of Lemma 8. Conditional on ζ, the branch choices β are indepen-

dent and, for each j, the distribution of βj is {1/f′(f−1
i (ζ(j)))}1≤i≤a. Conse-

quently, the likelihoods λ(t) and λ(t′) are products, with all factors equal

except for the jth and the j′th; in particular, if the jth and the j′th entries

of t are i and i′, respectively, then

λ(t)

λ(t′)
=

f′(f−1
i (ζ(j′)))

f′(f−1
i (ζ(j)))

f′(f−1
i′ (ζ(j)))

f′(f−1
i′ (ζ(j′)))

.

The result (19) therefore follows from the standing assumptions about the

mapping f, in particular, that f′′ is continuous and bounded and that f′ is

bounded away from zero and infinity. 2

Proof of (7) when |σ| = 1. Let σ = i∗, where 1 < i∗ < a (recall that the

cycle signatures σ = 1,a have already been disposed of ). By Lemma 5, there

is a unique fixed point of f in (the interior of ) Ji∗ ; call this fixed point x∗. By
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Lemma 6, to prove (7) it suffices to prove (7) with Nσ replaced by N«
σ for some

small « > 0, where N«
σ is the number of integers j such that

FΠ

(

j

n

)

= j

n
and

∣

∣

∣

∣

x∗ −
j

n

∣

∣

∣

∣

< «.(20)

We will show that, conditional on certain random variables to be specified

shortly, the distribution of N«
σ is the same as that of the random variable Ni∗

k

in Corollary 5, for a suitable k.

Fix (nonrandom) integers K− and K+, depending on n, so that K− < nx∗ <
K+ and nx∗−K− ≈ K+−nx∗ ≈ n2/3. Then, with probability approaching 1 (as

n → ∞), the order statistics ζ(K−) and ζ(K+) are within distance n−1/4 of x∗.
Hence, all the order statistics ζ(j) indexed by K− ≤ j ≤ K+ are within distance

n−1/4 of x∗. Moreover, with probability approaching 1, FΠ(K−/n) < K−/n
and FΠ(K+/n) > K+/n. This follows from Lemma 3, because the graph of

f crosses the straight line y = x at (x∗,x∗) from below, transversely, since

f′(x∗) > 1. Consequently, with high probability, any solution j of (20) is be-

tween K− and K+.

Let N = K+−K− ≈ 2n2/3, and, for 1 ≤ j ≤ N, let Tj = βj+K− . Let Sr be de-

fined in terms of the random variables Tj as in (12). Observe that Hypothesis 1

holds; this is because, conditional on ζ, the random variables T1,T2, . . . ,TN

are independent, with each Tj having a distribution {1/f′(f−1
i (ζ(j+K−)))}1≤i≤a

that is increasingly close (with high probability) to the distribution π on [a]

given by

πi =
1

f′(f−1
i (x∗))

.

[By the previous paragraph, all of the order statistics ζ(j′) indexed by K− ≤
j′ ≤ K+ are within distance o(1) of the fixed point x∗, with high probability.]

Observe also that Hypothesis 2 holds, by Lemma 8.

Now consider the effect of conditioning on the values of all the branch

choices βj indexed by j ≤ K− and j > K+ (and also on ζ). Since the random

variables βj are conditionally independent given ζ, this extra conditioning

does not change the distribution of T = (T1,T2, . . . ,TN), and so Hypotheses 1

and 2 remain valid. However, the branch choices βj, for j ≤ K− and j > K+,

together with the value of SN, determine the value k = K− − nFΠ(K−/n).
Since the number N«

σ of solutions to (20) equals

#{m ∈ [1,J]: m = k+Si∗
m and Tm = 1},

(7) follows from Corollary 5. 2

6.2. Cycle signatures of length greater than or equal to 2. This case is

somewhat more difficult. When l = 1, the types (branch choices) βj are con-

ditionally independent given the order statistics ζ; however, when l ≥ 2, this

is no longer true. In fact, the sequence of types βl = (βl
1,βl

2, . . . ,βl
n) is com-

pletely determined by the sequence β of branch choices, and, in particular, the

sequence of rth entries is a permutation of the sequence of first entries. This
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makes the verification of Hypothesis 1 slightly trickier, as the weak law of

large numbers for sums of independent random variables is no longer directly

applicable, and it also complicates the verification of Hypothesis 2. More im-

portant, the final step in the preceding proof, in which we conditioned on the

branch choices βj for j /∈ (K−,K+], would not be valid for l ≥ 2, because this

conditioning would change the distribution of T.

Fix l ≥ 2 and x1 ∈ (0, 1). Let K− and K+ be nonrandom integers, depending

on n, such that nx1−K− ≈ K+−nx1 ≈ n2/3. Define Tj = βl
j+K−

for 1 ≤ j ≤ N,

where N = K+−K−, and let Sm be defined as in (12). For each b = i1i2 · · · il ∈
[a]l, define

πb =
l

∏

r=1

(f′(f−r
i1i2···ir(x1)))

−1,

where f−r
i1i2···ir is the i1i2 · · · ir branch of f−r, that is, f−r

i1i2···ir = f−1
ir

◦ · · · ◦ f−1
i1

.

The following lemma implies that Hypothesis 1, with π as defined above, is

valid for the triangular array Tj.

Lemma 9. For each type b ∈ [a]l, as n → ∞,

Sb
N

N
→P πb.

Proof. Let b = i1i2 · · · il. Consider the value of Sb
N; this is the number

of indices j ∈ [1,N] for which Tj = b, equivalently, the number of indices

j ∈ (K−,K+] such that the first l branch choices along the backward orbit

of j are i1, i2, . . . , il. We will give an alternative representation in terms of

Fl
Π (the lth iterate of FΠ). By Corollary 1, when n is large, Fl

Π is close in

the Skorohod topology to fl (with high probability) and hence has al distinct

intervals of monotonicity, each mapped onto [0, 1] by Fl
Π. (Note that this is

an abuse of terminology, since Fl
Π is really a step function. We mean that on

each of these intervals Fl
Π is monotone when restricted to the points j/n.)

The intervals JΠl

b′ of monotonicity are indexed naturally by the elements b′ of

the type space [a]l. It is easily seen that Sb
N/n is the length of the interval

in JΠl

b
mapped onto (K−/n,K+/n] by Fl

Π (provided that all of the intervals

JΠl

b′ are nonempty, which is the case with probability approaching 1 as n →
∞). However, (K−/n,K+/n] is an interval of length 2n2/3 centered at x1,

so, by Corollary 2 (with « < 1/6), the length of the interval in JΠl

b
mapped

onto (K−/n,K+/n] by Fl
Π is to first order of approximation the same as the

length of the interval in JΠl

b
mapped onto (K−/n,K+/n] by fl. This interval

is of length o(1) and approximately centered at f−l
b
(x1). Consequently, fl is

close to linear in this interval, with derivative π−1
b

. Therefore, with probability

approaching 1, Sb
N/N ≈ πb. 2

We turn next to Hypothesis 2. Verification of this assumption is compli-

cated by the fact that not every possible configuration necessarily occurs with
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positive probability, because the complete vector βl of types is determined by

the vector β of initial entries. In fact, if b = (b1, b2, . . . , bn) is a configuration

(vector of types) such that P{βl = b} > 0 and if b′ is the vector obtained by

switching the jth and j′th entries of b, then it is not necessarily the case that

P{βl = b′} > 0.

Lemma 10. Let b = (b1, b2, . . . , bn) ∈ ([a]l)n be a configuration such that

P{βl = b} > 0, and let b′ be the configuration resulting from a switch of the

branch choices at neighboring indices j,j′ = j+1. Then bi = b′i for all indices

i = 1, 2, . . . ,n except for the 2l indices i ∈ I, where I = {Πr(j)}0≤r<l ∪
{Πr(j′)}0≤r<l. Moreover, if the switch of branch choices is nontrivial (i.e., if the

branch choices at indices j and j′ are different) and if the branch choices at

Πr(j) and Πr(j′) are the same for all 1 ≤ r < l, then, for all 1 ≤ r < l,

b′Πr(j) = bΠr(j′) and b′Πr(j′) = bΠr(j).(21)

Note 9. The last condition, that the branch choices at Πr(j) and Πr(j′)
are the same for all 1 ≤ r ≤ l, will be true provided that (i) FΠ has a distinct

nonempty intervals of monotonicity (equivalently, Π has a − 1 descents) and

(ii) for each 0 ≤ r < l, Πr(j) and Πr(j′) are in the same interval of mono-

tonicity of FΠ [equivalently, Πr(j) < Πr(j′) ∀ 1 ≤ r ≤ l]. Recall that when n

is large, condition (i) holds with probability approaching 1. In the application

of Lemma 10 in Lemma 11 (and Section 6.3) below, the indices j and j′ will

be such that j/n and j′/n are near the first point x1 of a periodic orbit of f.

Consequently, with high probability Πr(j)/n and Πr(j′)/n will remain close

to the points of the periodic orbit for 1 ≤ r ≤ l and, in particular, will remain

in the same interval of monotonicity of FΠ.

Proof of Lemma 10. If the branch choices at j and j′ are the same, then

switching them does not change the configuration, so there is nothing to prove.

Suppose, then, that they are different, and consider the effect of switching

them. Since j′ = j+1, the switch changes Π to Πσ, where σ is the permutation

that transposes j and j′, by Lemma 1. Thus, the switch has no effect on the

orbits (nor, therefore, on the types) at any indices j′′ outside the orbits of j

and j′. Moreover, the change of branch choices at j and j′ can only be “seen”

in the types at indices along the forward orbits of j and j′ for a distance at

most l along these orbits, so the types are unchanged at all j′′ /∈ I.

Consider, then, the effect of the switch on the types at the indices j′′ ∈ I.

Label the indices in the Π-orbits of j and j′ as follows:

· · · → j−1 → j = j0 → j1 → j2 → · · · ;
· · · → j′

−1 → j′ = j′
0 → j′

1 → j′
2 → · · · → j′

l.

Switching the branch choices at j and j′ changes the backward orbit of jr

from

jr → jr−1 → · · ·j1 → j = j0 → j−1 → · · ·
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to

jr → jr−1 → · · ·j1 → j′ = j′
0 → j′

−1 → · · ·
and the backward orbit of j′

r from

j′
r → j′

r−1 → · · ·j′
1 → j′ = j′

0 → j′
−1 → · · ·

to

j′
r → j′

r−1 → · · ·j′
1 → j = j0 → j−1 → · · · .

By hypothesis, jr < j′
r for each 1 ≤ r ≤ l, and the branch choices at jr and

j′
r are the same for each 1 ≤ r ≤ l. Hence, the effect of the switch of branch

choices at j,j′ is to transpose the types at jr and j′
r for each 1 ≤ r ≤ l. 2

For any interval J of integers contained in [1,n] and any type b ∈ [a]l,

define Mb
J to be the number of indices j ∈ J such that βl

j = b, and let

MJ = (Mb
J)b∈[a]l be the vector of type-counts in J. Let x1,K−,K+ be as in

Lemma 9, and let T = (T1,T2, . . . ,TN), where Tj = βl
j+K−

as above. For a

given configuration t ∈ ([a]l)N of types, define

λ(t) = P(T = t |ζ;M[1,K−],M(K−,K+],M(K+,n]).

Note that conditioning on M[1,K−], M(K−,K+] and M(K+,n] determines the value

of K− −Fl
Π(K−).

Lemma 11. Assume that x1 does not lie in a periodic orbit of f of period

less than l and that fr(x1) 6= 0, 1 for any 1 ≤ r ≤ l + 1. Then there exists a

constant C < ∞, independent of n, with the following property: for any pair

t, t′ of configurations such that t′ is obtained from t by switching the jth and

the j′th entry ( for any pair 1 ≤ j,j′ ≤ N of indices),
∣

∣

∣

∣

λ(t)

λ(t′)
− 1

∣

∣

∣

∣

≤ Cn−1/4.(22)

Proof. Since x1 does not lie in a periodic orbit of period less than l, there

is a neighborhood of x1 containing none of fr(x1), 1 ≤ r < l, and none of

the points in f−r(x1), 1 ≤ r < l. Consequently, there is a neighborhood N =
(x1 − «,x1 + «) of x1 such that, for each 1 ≤ r < l and each branch f−r

i1i2···ir of

the inverse function f−r, the intervals fr(N) and f−r
i1i2···ir(N) are contained

entirely either in (0,x1 − «) or in (x1 + «, 1). By Corollary 1, it follows that,

with probability approaching 1 as n → ∞, the images Fr
Π([K−/n,K+/n])

and (FΠ)
−r
i1i2···ir([K−/n,K+/n]) for 0 ≤ r < l, are pairwise disjoint intervals,

each entirely contained in either [0,K−/n] or (K+/n, 1]. Moreover, since the

points fr(x1) remain bounded away from the endpoints of the intervals Ji for

1 ≤ r ≤ l, if j and j′ are integers such that j/n and j′/n are close to x1,

then with high probability Fr
Π(j/n) and Fr

Π(j
′/n) are in the same interval of

monotonicity of FΠ for all 1 ≤ r ≤ l, and hence the branch choices at indices

Πr(j) and Πr(j′) are the same for all 1 ≤ r ≤ l.
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Now suppose that j′ = j + 1 and that Tj 6= Tj′ . Let r + 1 be the first

coordinate in which Tj and Tj′ differ. Then the Π−1-orbits of j and j′ re-

main adjacent for r steps, then diverge, in particular, for each 0 ≤ r′ ≤ r,

Π−r′(j′) = Π−r′(j) + 1, and the branch choices at Π−r(j) and Π−r(j′) are

different. Consider the effect of switching the branch choices at Π−r(j) and

Π−r(j′); by Lemma 10, the types are unchanged at all indices except at the in-

dices in the forward orbits of Π−r(j) and Π−r(j′), which are switched in pairs.

By the preceding paragraph, all pairs of indices whose types are switched are

both in [1,K−], both in (K+,n], or both in (K−,K+]. Consequently, switching

the branch choices at Π−r(j) and Π−r(j′) does not affect the totals M[1,K−],

M(K−,K+] and M(K+,n]; furthermore, it has the effect of switching the types Tj

and Tj′ , and leaving all other Tj′′ unchanged. Note that the indices Π−r(j) and

Π−r(j′) where the switch of branch choices takes place are nearest neighbors:

Π−r(j′) = Π−r(j)+ 1.

This shows that the types at nearest neighbors j,j′ ∈ [1,N] can be trans-

posed by a single switch of branch choices at neighboring indices Π−r(j) and

Π−r(j′). Consequently, the types at non-nearest neighbors j,j′ ∈ [1,N] can

be transposed by making a sequence of branch choice switches at neighboring

indices j′′ and j′′′. The indices j′′ and j′′′ at which these switches occur are

all in
⋃l−1

r=0 Π
−r((K−,K+]), and for any such pair j′′,j′′′ there at most two

branch choice switches. Moreover, in this sequence of branch choice switches,

the totals M[1,K−], M(K−,K+] and M(K+,n] are unchanged.

Finally, consider the change in likelihood caused by any one of these nearest

neighbor branch choice switches. If the switch occurs at neighboring indices

j′′ and j′′′, if the branches switched are i and i′ and if the switch changes the

original configuration b ∈ [a]n of branch choices to the new configuration b′,
then

P(β = b |ζ)
P(β = b′ |ζ) =

f′(f−1
i (ζ(j′′′)))

f′(f−1
i (ζ(j′′)))

f′(f−1
i′ (ζ(j′′′)))

f′(f−1
i′ (ζ(j′′)))

.

As in the proof of Lemma 8, the right-hand side differs from 1 by an amount

bounded by C|ζ(j′′) − ζ(j′′′)|. Consequently, for any pair j,j′ ∈ [1,N], if t ∈
([a]l)N is a configuration of types such that P{T = t} > 0 and if t′ is the

configuration obtained by switching the types at j,j′, then

∣

∣

∣

∣

λ(t)

λ(t′)
− 1

∣

∣

∣

∣

≤ 2C
l

∑

r=1

j′
∑

ν=j

|ζ(Π−r+1(ν+K−)) − ζ(Π−r+1(ν+1+K−))|

≤ 2C
l

∑

r=1

|ζ(Π−r+1(K+)) − ζ(Π−r+1(K−))|.

That the last sum is of smaller order of magnitude than n−1/4 follows from

the assumption that K+ −K− = N ≈ n2/3 and Corollary 2. 2

Proof of (7) when |σ| ≥ 2. By Lemma 5, f has a unique periodic orbit

x = x1x2 · · ·xl of signature σ, with x1 < xr for all 2 ≤ r ≤ l and f(xr) =
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xr+1 ∀ r. This orbit has minimal period l, so its elements xr are distinct. By

Lemma 6, with probability approaching 1 as n → ∞, Nσ = N«
σ for sufficiently

small «, where N«
σ is the number of solutions of (8).

As in Lemmas 9 and 11, fix (nonrandom) integers K− and K+, depending on

n, so that K− < nx1 < K+ and nx1 −K− ≈ K+−nx1 ≈ n2/3. With probability

approaching 1, the order statistics ζ(K−) and ζ(K+) are within distance n−1/4

of x1, and hence the order statistics ζ(j) indexed by K− ≤ j ≤ K+ are within

distance n−1/4 of x1. Also, with probability approaching 1, F
(l)
Π (K−/n) < K−/n

and F
(l)
Π (K+/n) > K+/n. (This follows from Lemma 3.) Consequently, any j

for which (8) holds must be between K− and K+ (with high probability).

Lemma 11 implies that the conditional distribution of T given the order

statistics ζ and the totals M[1,K−], M(K−,K+] and M(K+,n] satisfies Hypothesis

2 of Section 5. Lemma 9 implies that Hypothesis 1 is satisfied. Consequently,

the conclusion of Corollary 5 holds. Now consider the increments of nFl
Π near

x1: they are precisely the differences j′ − j between successive indices j < j′

where Tj = Tj′ = t, where t = t1t2 · · · tl is the signature σ “run backward,”

that is, σ = tltl−1 · · · t1. Consequently, the number of solutions of (8) is just

#{1 ≤ m ≤ N: m = k+St
m and Tm = t},

where k = K− − nFl
Π(K−). Since the conditioning (on the totals M[1,K−],

M(K−,K+] and M(K+,n]) determines the value of k, (7) now follows from

Corollary 5. [Note that since with high probability both nFl
Π(K−) − K−

and nFl
Π(K+) − K+ are of size approximately 1

2
(N − St

N), the condition

k < N(1 −πt − «) will be met with probability approaching 1.] 2

6.3. Asymptotic independence of Nσ,Nσ′ , . . . . The argument is an aug-

mentation of the proof for cycle signatures of length greater than or equal to

2. We shall give only a brief sketch, considering only the case of two distinct

cycle signatures σ and σ′. A straightforward induction extends the result to

an arbitrary finite set of distinct cycle signatures.

Let x = (x1,x2, . . . ,xl) and y = (y1,y2, . . . ,yl′) be the unique periodic orbits

of f with signatures σ and σ′, respectively. Observe that these orbits do not

intersect and, furthermore, that the inverse images of x1 and y1 under f−r,

for 1 ≤ r ≤ max(l, l′) do not intersect. Take integers K−,K+ and K′
−,K′

+,

depending on n, so that

nx1 −K− ≈ n2/3 ≈ K+ − nx1,

ny1 −K′
− ≈ n2/3 ≈ K′

+ − ny1.

For definiteness suppose that K− < K+ < K′
− < K′

+. Condition on (i) the order

statistics ζ, (ii) the totals M[0,K−], M(K−,K+], M(K+,K′
−]

, M(K′
−,K′

+]
and M(K′

+,n]

and (iii) the values βl
j of the l-types for K− < j ≤ K+. [Note that the totals

MJ should be computed for types b ∈ [a]l
′′
, where l′′ = max(l, l′).] Observe

that (i)–(iii) determine the value N«
σ and consequently (with high probability)

the value of Nσ. Now repeat the argument of Section 6.2 for Nσ′ , conditional
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on (i)–(iii). The only part of the argument that may be affected by the extra

condition (iii) is the argument in the proof of Lemma 11 that the type-totals (ii)

are unchanged after switching l′-types at indices j,j′ ∈ (K′
−,K′

+]. However,

this may be redone along the same lines, using the fact that the inverse images

f−r(x1) and f−r(y1) are distinct. The upshot is that

P(Nσ′ = k |Nσ) → (1 − ω(σ′))ω(σ′)k,

proving that Nσ and Nσ′ are asymptotically independent as n → ∞. 2
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