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SOME PROPERTIES OF THE DIFFUSION COEFFICIENT
FOR ASYMMETRIC SIMPLE EXCLUSION PROCESSES

BY C. LANDIM, S. OLLA AND H. T. YAU1

Instituo de Matematica Pura e Aplicada, Ecole Polytechnique and
Courant Institute

The hydrodynamical limit of asymmetric simple exclusion processes is
given by an inviscid Burgers equation and its next-order correction is
given by the viscous Burgers equation. The diffusivity can be character-
ized by an abstract formulation in a Hilbert space with the inverse of the
diffusivity characterized by a variational formula. Alternatively, it can be
described by the Green]Kubo formula. We give arguments that these two
formulations are equivalent. We also derive two other variational formu-
las, one for the inverse of the diffusivity and one for the diffusivity itself,
characterizing diffusivity as a supremum and as an infimum. These two
formulas also provide an analytic criterion for deciding whether the
diffusivity as defined by the linear response theory is symmetric. Further-
more, we prove the continuity of the diffusivity and a few other relations
concerning diffusivity and solutions of the Euler]Lagrange equations of
these variational problems.

1. Introduction. The diffusion coefficient of driven lattice gases has long
been characterized by the Green]Kubo formula and discussed in great detail

w x w x w xin many articles; see 10 , 5 and 3 for references. The Green]Kubo formula
contains the time integral of current]current correlation functions which is
finite only if the current]current correlation functions decay sufficiently fast.
For reversible lattice gases, the Green]Kubo formula is proved to be finite in
w x10 . Even with this result, the current]current correlation functions are still

w xvery hard to work with analytically. Recently in 11 a variational formula-
tion of diffusivity was presented which is always well defined and finite. It
avoids the current]current correlation functions and, being a variational
formulation, it provides an excellent starting point for a rigorous analysis of
diffusivity. This formulation was initially given for Ginzburg]Landau dynam-

Žics but can be extended handily to lattice gases with reversible dynamics cf.
w x w x.8 and 10 . It is similar to the homogenization formula for diffusivity in a
random medium except that the setting is now infinite dimensional. This

w xformula is shown in 10 to be equivalent to the Green]Kubo formula for
Žreversible lattice gas dynamics this argument is rigorous for the symmetric

.exclusion process .

Received June 1995; revised January 1996.
1Research partially supported by NSF Grant 94-03462 and a David and Lucile Packard

Foundation Fellowship.
AMS 1991 subject classifications. Primary 60K35; secondary 35Q10, 82A35.
Key words and phrases. Infinite interacting particle systems, bulk diffusion, Green]Kubo

formula, Navier]Stokes equations, asymmetric simple exclusion processes.

1779



C. LANDIM, S. OLLA AND H. T. YAU1780

The first question encountered for nonreversible dynamics is that models
with known invariant measures are very limited. We shall restrict ourselves
in this article to simple exclusion processes on the lattice except in Section 2,
where general results on particle systems are considered.

� 4Z d
Simple exclusion processes are Markov processes on 0, 1 whose genera-

tor L acts on cylinder functions as
x , y1.1 Lf h s p x , y h x 1 y h y f h y f h .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ý

x , y

� 4Z d Ž .Here h denotes a configuration of 0, 1 so that h x is equal to 1 if site x is
occupied and is equal to 0 otherwise; h x, y stands for the configuration
obtained from h by letting one particle jump from x to y:

¡h z , if z / x , y ,Ž .
x , y ~h x y 1, if z s x ,Ž .h z sŽ . ¢h y q 1, if z s y.Ž .

Ž . Ž . dMoreover, p x, y s p y y x is a positive finite range function on Z such
that

p x s dŽ .Ý
x

and
< <p z s 0 if z G R for some R g N.Ž .

Most of the time, to keep the notation simple, we shall restrict ourselves to
Ž . < <nearest-neighbor simple exclusion processes: p z s 0 unless z s 1 and

Ž . Ž .p e q p ye s 1, where e denotes the ith element of the canonical basisi i i
of R d.

w x � 4Z d
For each r in 0, 1 , denote by n the Bernoulli product measure on 0, 1r

with density r. These measures are invariant for simple exclusion processes.
² :Hereafter ? denotes expectation with respect to n . Moreover, for twor r

² :cylinder functions f , g and a density r, denote by f ; g the covariance of fr

and g with respect to n :r

² : ² : ² : ² :f ; g s fg y f g .r r r r

Let x be the compressibility given by

² :x s x r s h ; h .Ž . Ý rx 0
x

Ž . Ž .In our setting, x r s r 1 y r .
The asymmetric simple exclusion process is the most simple example of a

driven diffusive lattice gas. Under hyperbolic scaling of space and time,
Rezakhanlou proved that the empirical density of particles converges to the

Ž w x.entropic solution of the Burgers equation cf. 9 :

1.2 ­ r q g ? = r 1 y r s 0 where g s zp z .Ž . Ž . Ž .Ž . Ýt
z

The convergence is intended here as a law of large numbers.
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w xIn 7 we proved the so-called Navier]Stokes corrections to this hydrody-
Ž w x w x.namic limit cf. 10 and 3 . That is, the first-order corrections to this limit

are given by the solution of a viscous Burgers equation

1.3 ­ r q g ? = r 1 y r s Ny1 ­ ai , j r ­ r .Ž . Ž . Ž .Ž . Ý ž /t u ui j
i , j

Ž .This correction is obtained only in the smooth regime of 1.2 and in a certain
Ž w x .weak sense cf. 7 for a precise formulation . Furthermore, the diffusion

w xcoefficient can be characterized as in 2 .
For a configuration h and a density r, denote respectively by P and P theh r

Žw x � 4Z d.probability on the path space D 0, T , 0, 1 corresponding to the Markov
process with generator L starting from h, n . Expectations with respect to Phr

w� Ž . Ž .4 Ž .xor P are respectively denoted by E and E . Thus E h x y h x h 0r h r r t 0 0
stands for the time-dependent correlation functions of a general driven
diffusive system in equilibrium with density r. Suppose these correlation

Ž .functions are noncentered Gaussian. Then one obtains the diffusion coeffi-
Ž .cient the bulk diffusion coefficient as the following limit:

1 1
Ž1.D r s lim x x E h x y h x h 0� 4Ž . Ž . Ž . Ž .Ýi , j i j r t 0 0½t 2 xtª` dxgZ1.4Ž .

yx v t v t ,Ž . Ž .i j 5
where h in R d is the velocity defined by

1
1.5 vt s xE h x y h x h 0 .� 4Ž . Ž . Ž . Ž .Ý r t 0 0x dxgZ

Ž w x.The velocity can be explicitly computed cf. 10 :

1.6 v s 1 y 2 r g .Ž . Ž .
Ž . Ž .We shall take 1.4 and 1.5 as the first definition of the diffusion coefficient

Ž . Ž1.in this article, hence the superscript 1. From 1.4 , D is automatically
Ž .symmetric. Note that, in principle, 1.4 may not be finite. In the special case

of simple exclusion processes, a simple coupling argument involving a
� < < 4second-class particle shows that the expectation decays as exp yc x rt and

therefore that the sum is finite for each fixed t.
Another definition of the diffusion coefficient is through the linear response

theory. To fix ideas, consider the nearest-neighbor simple exclusion process.
ŽDenote the instantaneous current i.e., the difference between the rate at

which a particle jumps from x to x q e and the rate at which a particlei
.jumps from x q e to x by W :i x, xqe i

1.7 W s p e h x 1 y h x q e y p ye h x q e 1 y h xŽ . Ž . Ž . Ž . Ž . Ž . Ž .x , xqe i i i ii

so that

Lh 0 s W y W .� 4Ž . Ý ye , 0 0, ei i
i
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Ž . Ž .Let w r, h s w h , 1 F i F d, denote the normalized current in the ithi i
direction:

d
² : ² :1.8 w h s W y W y W h 0 y r .Ž . Ž . Ž .Ž .r ui 0, e 0, e 0, ei i idu usp

Similarly, we can define the current W U of the reversed process charac-x, xqe i

terized by the generator LU which is the formal adjoint of L with respect to
n , or the generator of the reversed dynamics. The generator LU is givenr

explicitly by
U x , yL f h s p x , y h x 1 y h y f h y f h ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .ˇÝ

x , y

Ž . Ž . Uwhere p x, y s p y, x and the current W is given byˇ x, xqe i

UW s p e h x 1 y h x q e y p ye h x q e 1 y h x .Ž . Ž . Ž . Ž . Ž . Ž .ˇ ˇx , xqe i i i ii

U Ž . U Ž .Similarly, w r, h s w h is defined byi i

d
U U U U² : ² :1.9 w s W y W y W h 0 y r .Ž . Ž .Ž .r ui 0, e 0, e 0, ei i iDu usr

Ž2.Ž . Ž Ž2.Ž ..Then the diffusion coefficient, D r s D r , obtained throughi, j 1F i, jF d
w xthe linear response theory is given by the Green]Kubo formula as 3

1 1
Ž2.D r s y d h e y h 0 W² :Ž . Ž . Ž .i , j i , j i 0, e ri½x r 2Ž .

` U UtL² :y dt w h ; e t w h .Ž . Ž .ÝH ri x j 50 x

1.10Ž .

Ž .In this formula and below d or d stands for the Kronecker delta and isi, j x, y
tL Ž tLU .equal to 1 if i s j and 0 otherwise. Moreover, e e represents the

Ž U .semigroup of the Markov process withe generator L L . Unlike in the
reversible case, there is no argument suggesting that the time integration in

Ž .the Green]Kubo formula 1.10 is finite.
Finally, one can define the diffusion coefficient via the formal equation

1.11 w s ai , j r = h 0 q Lh ,Ž . Ž . Ž .Ýi e ij
j

where h is some function of the configuration, L is the generator of thei
Ž . Ž . Ž .dynamics and = h 0 is the gradient h e y h 0 for 1 F j F d. The densitye jj

Ž .dependence of the diffusion coefficient indicates that 1.11 should be under-
stood with respect to the invariant measure n . The diffusivity a is ther

i, j Ž .proportionality constant such that w y Ý a = h 0 can be inverted by theei j j

generator of the dynamics. We stress that this formulation is formal because
Ž .in 1.11 the generator L is acting on an infinite-dimensional space which we

Ž .do not even specify here. The precise meaning of 1.11 will be given in
w x w x w x Ž .Section 5, following 11 , 13 and 2 . We shall take 1.11 as the definition of

diffusivity.
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Ž . Ž .The diffusivities as defined by 1.10 and 1.11 might not be symmetric.
Ž .For the bulk diffusion coefficient appearing in 1.2 , only the symmetric part

of the diffusion coefficient is relevant. The relations between various defini-
tions and properties of the diffusion coefficients are the main subject of this
article.

As remarked previously, DŽ2. is not well defined due to the possible
divergence of the time integration. We have no solution to this problem. With
a heuristic argument at one step of our derivation, in Section 2 we shall
‘‘prove’’ that DŽ2. s a. Also, assuming DŽ2. to be finite, we shall prove that

Ž1. Ž Ž2.. s Ž2.D s D , the symmetric part of D . This has already been proved in
w x w x10 for the reversible case and in 3 for the general case. Our proof is based
entirely on Ito’s formula. This is the content of Section 2. The argumentˆ
presented there holds for a larger class of processes.

We do not prove directly any relation between DŽ1. and a although such a
relation can be obtained through DŽ2.. Another insight on the relation be-
tween DŽ1. and a is obtained through the scaling limit. If the scaling limit of
the fluctuation of the density field is proved to be Gaussian with diffusion
coefficient a, then DŽ1. s a. Though it is believed that the equilibrium fluc-
tuation theory can be obtained without difficulty once the hydrodynamic is

Žw x w x.obtained 2 and 7 , it has not been carried out explicitly.
Ž .The definition of the diffusion coefficient through 1.11 in particle systems

w xis given in 11 , where a variational formula is provided for a reversible
Ž .system. The rigorous meaning of 1.11 for a nonreversible system is given in

w x13 for simple exclusion processes with mean-zero conditions, that is, for
Ž .processes whose transition probabilities appearing in 1.1 satisfy

zp z s 0.Ž .Ý
z

w xThe mean-zero conditions are later removed in 2 for dimension d G 3 and
hence drifts are allowed in the hydrodynamic equation in the incompressible
limit. For d F 2 one conjectures that the dynamics are not diffusive if the
mean-zero conditions are violated. In both articles, variational formulas of
diffusivity are also given via a min]max principle.

w x Ž y1 . sStrictly speaking, the variational formulation of 2 is a formula for a
and not for as s DŽ1., which is the bulk diffusivity appearing in the hydrody-
namic equation. For models with symmetry such that a s as, this provides a
variational formula for the bulk diffusivity. In this paper, we shall give

Ž s.y1 Ž y1 . s Ž y1 . svariational formulas for a as well as a . The formula for a is
w x Ž w x.related to 2 but formulated in a clearer manner cf. also 1 . The diffusion

Ž y1 . s Ž s.y1coefficient is symmetric if and only if a s a . Hence these two
formulas provide at least a numerical way to check the symmetry of a.

Ž y1 . s Ž s.y1Unfortunately, we are not able to prove that a / a for any choice of
Ž .p z .

Ž .The diffusion coefficient defined by 1.11 is believed to be a smooth
function of the density. We are far from proving this property. The best we
can achieve is a proof of the continuity of the diffusivity. The proof is rather
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involved due to the infinite dimensionality and nonreversibility of our prob-
lem. In the reversible setting, our argument proves that the diffusion coeffi-
cient is Lipschitz continuous. This should not be confused with the self-diffu-

w xsion coefficient, proved to be Lipschitz in 12 for d G 3. We also obtain two
variational formulas for the diffusion coefficient that provide an upper bound
and a lower bound for the diffusivity and prove a few technical properties

w xrelated to the diffusion coefficients, filling the gap left in 7 .

2. The Green–Kubo formula. In this section we present a heuristic
Ž .argument to show that the diffusion coefficient defined in 1.11 is equal to

Ž . Ž2.the one given by the Green]Kubo formula 1.10 : a s D . Furthermore, the
bulk diffusion coefficient DŽ1. is equal to the symmetric part of the

Ž1. Ž Ž2.. sGreen]Kubo coefficient: D s D . To fix ideas, consider a nearest-
neighbor asymmetric simple exclusion process on Zd and recall all notation
introduced in the previous section.

U 2Ž . sDenote by L the adjoint of L in L n and by L the symmetric part ofr

the generator L. In our case Ls corresponds to the generator of a nearest-
neighbor symmetric simple exclusion process.

Ž . Ž .Recall from 1.8 and 1.9 the definition of the normalized current w andi
wU. A simple computation shows thati

w s r y p ye = h 0Ž . Ž .i i e i

y p e y p ye h 0 y r h e y r ,Ž . Ž . Ž . Ž .i i i

Uw s r y p e = h 0Ž . Ž .i i e i

2.1Ž .

q p e y p ye h 0 y r h e y r .Ž . Ž . Ž . Ž .i i i

The static term of the Green]Kubo formula is easy to compute. It is equal
Ž .to 1r2 d x so thati, j

`1 1 U UŽ2. tL² :D y d s y dt w ; e t wÝH ri , j i , j i x j2 x 0 x

`1
U rL² :s y dt w ; e t w .ÝH rj x ix 0 x

2.2Ž .

² :For two cylinder functions f and g, denote by f , g the inner productr, 0

defined by

² : ² :f , g s f ; t g .Ýr , 0 rx
x

This sum is well defined since all but a finite number of terms vanish. Notice
� Ž . Ž . Ž . 4that for this inner product the gradients = h 0 s h e y h 0 , 1 F i F de ii

are equal to 0.
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Ž .y1 ` tLFormally, yL s H dt e . We may therefore rewrite the right-hand0
Ž .side of 2.2 as

1 y1U² :y w ; yL w .Ž . r , 0j ix

² :Since, for the inner product ? , ? , the gradients are equivalent to 0,r, 0
Ž . U Ufrom the explicit formulas 2.1 for w and w , we have that w s yw fori j j j

this inner product. In particular, the last expression is equal to

1 y1² :w ; yL w .Ž . r , 0j ix

Recall the definition of the diffusion coefficient a. It is the unique matrix
i, jŽ . i, jŽ . Ž . �a r such that w y Ý a r = h 0 belongs to the space LCC s Lg;i 1F k F d 0, ek

4g is a cylinder function . Denote, in particular, by H the cylinder functioni
such that

w y ai , k r = h 0 s LH .Ž . Ž .Ýi 0, e ik
1FkFd

Of course, such a function may not exist and we have to interpret the last
Ž . Ž .identity as a proper limit cf. Lemma 7.3 . Since the gradients = h 0 are0, e i

² :equal to 0 for the inner product ? , ? , we have thatr, 0

y1 U² : ² :w h , yL w s y LH , H s H , yL H .Ž . Ž . Ž .¦ ; r , 0 r , 0j i j i j ir , 0

Ž .In formula 7.2 we prove that
U 1i , j² :y L H , H s x a r y dŽ .� 4r , 0i j i , j2

Ž2.Ž . i, jŽ .so that D r s a r . This shows that the diffusion coefficient a is giveni, j
Ž .by the current]current correlation formula 1.10 .

We conclude this section by presenting a heuristic argument to show that
the symmetric part of the diffusion coefficient given by the Green]Kubo

Ž1. Ž Ž2.. sformula is equal to the bulk diffusion coefficient: D s D . We start with
a rigorous result relating the bulk diffusion coefficient to the Green]Kubo
formula. Recall from the previous section the definition of P , P , E and E .h r h r

Here PU, PU, EU and EU are defined in an analogous way with respect to theh r h r

time-reversed process with generator LU.

LEMMA 2.1. For each fixed t ) 0,

x x E h x y h x h 0� 4Ž . Ž . Ž .Ý i j n t 0 0r
dxgZ

s yd t h e y h 0 W² :Ž . Ž .i , j i 0, e ri

st U Uy ds dr W h ; E W hŽ . Ž .¦ ;ÝH H 0, e h x , xqe ri j r0 0 x

st U Uy ds dr W h ; E W h .Ž . Ž .¦ ;ÝH H 0, e h x , xqe rj i r0 0 x
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PROOF. Since n is translation invariant, we may rewrite the left-handr

side as
12.3 y x x E h x y h x h 0 y h 0 .� 4 � 4Ž . Ž . Ž . Ž . Ž .Ý i j n t 0 t 02 r

dxgZ

w Ž . Ž .xw Ž . Ž .xComputing the generator applied to h x y h x h 0 y h 0 , we gett 0 t 0
that the expectation in the last formula is equal to

d
t
ds E h 0 y h 0 W h y W hŽ . Ž . Ž . Ž .ÝH n s 0 xye , x s x , xqe sr k k

0 ks1

d
t

q ds E h x y h x W h y W hŽ . Ž . Ž . Ž .ÝH n s 0 ye , 0 s 0, e sr k k
0 ks1

d
t

y ds d E h e y h 0 W hŽ . Ž . Ž .ÝH x , e h s k s 0, e sk r k
0 ks1

d
t

y ds d E h 0 y h ye W h .Ž . Ž . Ž .ÝH x , ye n s s k ye , 0 sk r k
0 ks1

Ž .Replacing the covariance in 2.3 by this last sum, changing variables and
Ž .integrating by parts, we obtain that 2.3 is equal to

t
y ds x E W h h 0 y h 0Ž . Ž . Ž .ÝH ½ j n x , xqe s s 0r i

0 x

qx E W h h 0 y h 0Ž . Ž . Ž . 5i n x , xqe s s 0r j
2.4Ž .

t
qd ds E W h h 0 y h 0Ž . Ž . Ž .ÝHi , j n x , xqe s s 0r i

0 x

yd t h e y h 0 W h .² :Ž . Ž . Ž .i , j i 0, e ri

Consider the first term in this sum. We have
UE W h h 0 y h 0 s E W h E h 0 y h 0Ž . Ž . Ž . Ž . Ž . Ž .n x , xqe s s 0 n x , xqe s h 0 sr i r i s

Us W h E h yx y h yx .² :Ž . Ž . Ž .0, e h 0 s ri

In the last step we used the invariance of n and the dynamics translationr

invariance. Recall that EU indicates we take expectation with respect to the
time-reversed process. Since

d s
U U U UE h yx y h yx s y dr E W h y W h ,Ž . Ž . Ž . Ž .Ý Hh 0 s h yxye r yx , yxqe rk k

0ks1

Ž .after summation by parts the first term in 2.4 can be written as

st U Uy ds dr W h ; E W h .Ž . Ž .² :ÝH H 0, e h x , xqe r ri k
0 0 x
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Proceeding in the same way with the other two terms involving the current,
Ž .we obtain that 2.4 is equal to

st U Uy ds dr W h ; E W hŽ . Ž .¦ ;ÝH H 0, e h x , xqe ri j r0 0 x

st U Uy ds dr W h ; E W hŽ . Ž .¦ ;ÝH H 0, e h x , xqe rj i r0 0 x

y d t h e y h 0 W h .² :Ž . Ž . Ž .i , j i 0, e ri

This concludes the proof of the lemma. I

Recall the definition of the normalized current w . We claim thati

st U UrL² :ds dr w h ; e t w hŽ . Ž .ÝH H ri x j
0 0 x

s xt U UrL² :s ds dr W h ; e t W h q v t v t .Ž . Ž . Ž . Ž .ÝH H r0, e x 0, e i ji j 20 0 x

2.5Ž .

Ž . Ž .From 1.6 and the definition of the current W given in 1.7 , we have0, e i
Ž .that the ith component of the velocity v r is equal to the derivative of

² :W calculated at r:u0, e i

d
² :v r s WŽ . ui 0, e idu usp

and
d

U ² :v r sy WŽ . ui 0, e idu usr

for 1 F i F d. In particular,

² :w s W y W y v r h 0 y p ,Ž . Ž .ri 0, e 0, e ii i

U U U² :w s W y W q v r h 0 y rŽ . Ž .ri 0, e 0, e ii i

Ž .and the left-hand side of 2.5 is equal to

st U UrL2.6 ds dr W y v h 0 ; e t W q v h 0 .Ž . Ž . Ž .� 4¦ ;ÝH H 0, e i x 0, e ji j r0 0 x

We omitted all the constants because we are considering covariances. To
Ž . Ž .prove identity 2.5 , we have to compute the four terms in 2.6 . The first one

Ž .is equal to the first term on the right-hand side of 2.5 . The second one is

st trL sL² : ² :v ds dr e t W ; h 0 s v ds x e t h 0 ; h 0Ž . Ž . Ž .Ý ÝH H r H rj x 0, e j i xi
0 0 0x x

t 2
t

s v ds v sx s x v v .ÝHj i i j 20 x
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The first identity follows from Ito’s formula. This argument was repeatedlyˆ
used in the proof of Lemma 2.1. The second equality follows from the

Ž .definition of the velocity given in 1.5 . A similar argument shows that the
Ž .third term in 2.6 is equal to

s 2tt U U UrL² :yv ds dr h 0 ; e t W s yx v v .Ž .ÝH H ri x 0, e i jj 20 0 x

U Ž 2 .Since v s yv , this expression is equal to x v v t r2 . Finally, the fourthj j i j
term is

s st tUrL² :yv v ds dr h 0 ; e t h 0 s yv v ds dr xŽ . Ž .ÝH H r H Hi j x i j
0 0 0 0x

Ž .because the total number of particles is conserved. This proves 2.5 .
Ž . Ž . ²w Ž . Ž .x :Since p e q p ye s 1, h e y h 0 W s yx . In particular, iden-r0, ei i i i

Ž . Ž1.tity 2.5 and Lemma 2.1 show that the bulk diffusion coefficient D is such
that

s1 1 t U UŽ1. rL² :D y d s lim y ds dr w ; e t wÝH H ri , j i , j i x j½2 2 txtª` 0 0 x

st U UrL² :y ds dr w ; e t w .ÝH H rj x i 5
0 0 x

Assume that the time correlations decay fast enough so that the limit as
t­` of

t U UsL² :ds w ; e t wÝH ri x j
0 x

exists and is equal to
` U UsL² :ds w ; e t w .ÝH ri x j

0 x

In particular,

` `1 1 U UU UŽ1. tL tL² : ² :D y d s y dt w ; e t w y dt w ; e t wÝ ÝH r H ri , j i , j i x j j x i½ 52 2 x 0 0x x

Ž .and this is exactly the symmetrization of the Green]Kubo formula 1.10 .

3. The Hilbert space of fluctuations. To keep the notation simple,
hereafter for a positive integer K let K s 2 K q 1. Denote by CC the space of

w xcylinder functions. Recall from 7 that for each positive integer K and m in
d� Ž . 40, 1r K , . . . , 1 we denote by L the cube of length 2 K q 1 centered at theK

� 4L Korigin and by n the canonical measure on 0, 1 with density m. Let GGK , m
be the linear space of cylinder functions that have mean 0 with respect to all
canonical measures on a sufficiently large box L :K

w x3.1 GG s g g CC ; n g s 0 for some K ) 0 and all m .� 4Ž . K , m
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Moreover, for a density 0 F m F 1, let GG be the space of cylinder functionsm
such that

w xg m s n g s 0Ž .˜ m

and
< Xw x­ n g s g m s 0.Ž .˜rsmr r

Note that the second condition is equivalent to requiring that the covariance,
Ž .with respect to the measure n , of g and the formal sum Ý h x vanishes:m x

² : ² :g h ; h z s g ; h 0 s 0.Ž . Ž . Ž .Ý m m , 0
z

w xNotice that GG ; GG for all m in 0, 1 . The following definition is taken fromm
w x2 .

Ž .DEFINITION 3.1. Let g be a cylinder function and denote by s g its
support

d� 4s g s min ll g N; supp g ; yll , . . . , ll .Ž . � 4
dŽ . � 4 Ž .For each ll G s g and m in 0, 1rll , . . . , 1 , define the ‘‘variance’’ V g, m ofll

g with respect to n byll , m

1
V g , m s t g y g mŽ . Ž .Ž .˜Ýll x lld¦ll gŽ . < < Ž .x Fll g

y1s= yL t g y g m .Ž .Ž . Ž .˜Ýll x ll ;
< < Ž .x Fll g n ll , m

3.2Ž .

Ž . Ž .In this formula ll g denotes the integer ll y s g such that Ý t g is< x < F ll Ž g . x

� Ž . 4 smeasurable with respect to h x ; x g L . Moreover, L is the restriction toll ll
Ž .L of the symmetric part of the generator L and g m is the expected value˜ll ll

of g with respect to the canonical measure n . Notice that for g g GG thell , m
Ž .subtraction in 3.2 is unnecessary.

If g g GG we also define the ‘‘variance’’ of g bym

llV g s lim sup n V g , h 0 ,Ž . Ž .Ž .m m ll
llª`

llŽ .where h x stands for the empirical density of particles on a box of length
2 ll q 1 centered at x:

1
llh x s h y .Ž . Ž .Ýdll < <yyx Fll

Ž .For any local function g and any integer K G s g fixed, define
K<3.3 g s g y n g h 0 .Ž . Ž .� 4ŽK . r

Notice that, for each K, g belongs to GG since it has mean 0 with respect toŽK .
all canonical measures on boxes of length larger than K.
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w x w x w x w xThe proof of the next result can be found in 8 , 11 , 4 and 6 .

THEOREM 3.2. For each cylinder function g in GG, the finite-volume vari-
ance of g converges to the infinite-volume variance:

llV g s lim n V g , h 0 .Ž . Ž .Ž .m m ll
llª`

Furthermore, for each function g in GG ,m

d 2a 2
V g s sup 2a t g y = h 0Ž . Ž . Ž .Ž .¦ ;Ým i e i½ 5m4agRis1

d 21
² :q sup 2 g , h y = t h .Ý Ým , 0 e xž /¦ ;i½ 54hgCC xis1 m

Ž . ² :In this formula, for 1 F i F d, g in GG and h in CC, t g and g, h arem , 0m i
given by

² : ² : ² :t g s g , x h x , g , h s g , t hŽ . Ž .Ý Ým m , 0 mi i x
x x

² :and ? , ? denotes expectation with respect to h .m m

Notice that the first supremum in the above formula can be computed
explicitly. The slight difference between this formula for the variance and the

w xone obtained in 2 comes from the fact that their generator is accelerated by
2. It is clear that we may replace CC by GG in the second supremum.m

In the asymmetric case we are forced to consider cylinder functions that do
not have mean 0 with respect to all canonical measures. The normalized

w xcurrents w are examples of such functions. In 7 we proved that, for eachi
function g in GG , the finite-volume variance of g converges to them ŽK .
infinite-volume variance.

PROPOSITION 3.3. For each cylinder function g in GG , the finite-volumem
variance of g converges to the infinite-volume variance:ŽK .

lim V g s V gŽ . Ž .m ŽK . m
Kª`

uniformly in m.

4. Regularity of variances. In this section we prove that the variance
Ž .V g is Lipschitz continuous as a function of the density m for each cylinderm

function g in GG. We start by introducing some notation.
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� 4d Ž .Fix a cube L s yll , . . . , ll . For a bond b s b , b in L , consider thell 1 2 ll
operator T that transforms a configuration h to a configuration with theb

Ž . Ž .values of the occupation variables h b and h b interchanged:1 2

¡h z , if z / b , b ,Ž . 1 2~h b , if z s b ,Ž .T h z sŽ . Ž . 2 1b ¢h b , if z s b .Ž .1 2

For each bond b and each cylinder function u, denote by = u the functionb
Ž .Ž . Ž . Ž .defined by = u h s u T h y u h .b b

For each x g L denote by s h the configuration h with the occupationll x
variable at x flipped:

1 y h x , y s x ,Ž .
s h y sŽ .x ½ h y , y / x .Ž .

dLet n be the total number of particles: n s m ll . To keep the notation simple,
² :in this section we shall denote by ? , ? the inner product with respect toll , n

the measure n .ll , m
Define the operators s and sq on the cylinder functions u byll , n ll , n

1
ys u h s u s h h ,Ž . Ž .Ž . Ýll , n x xn xgL ll

1
qs u h s u s h 1 y h .Ž . Ž . Ž .Ž . Ýll , n x xdll y n xgL ll

One can check directly that s " and = commute:ll , n b

"s ; = s 0ll , n b

w xfor any bond b g L , where ; denotes the commutator. Furthermore, forll
any cylinder functions u and h,

² q : ² y :4.1 u , s h s h , s u .Ž . ll , n ll , nq1ll , n ll , nq1

In particular, since the total number of particles is equal to n, we have
sq 1 s 1 andll , n

² : ² y :u s s u .ll , n ll , nq1ll , nq1

Therefore, since sy and = commute, by the Schwarz inequality,ll , n b

2 2y y= s u s s = u² :Ž . Ž .¦ ;Ž .b ll , nq1 ll , nq1 b ll , nq1ll , nq14.2Ž .
2 2yF s = u s = u .Ž . Ž .² : ² :ll , nq1 b bll , nq1 ll , n

Ž . yMoreover, by 4.1 and since s and = commute, we also have the identity:ll , n b

y q² : ² :4.3 t h , = s u y t h , = u s s y 1 t h , = u .² :Ž . Ž .ll , nq1 ll , n ll , nb b ll , nq1 b b ll , n b b
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Ž .LEMMA 4.1 Integration-by-parts formula for functions in GG . For 1 F i F
Ž .d, denote by BB the set of bonds b s b , b such that b y b s "e . Fori 1 2 2 1 i

each function g in GG, there exist cylinder functions h such thati

d
1² : ² :t g , u s t h , = uÝ Ý Ýll , n ll , nx b i b4

Ž . is1 bgBBxgL g ill

d 2Ž . Ž .dfor all positive integers ll , 0 F n F 2 ll q 1 , and u in L n .ll , n r ll

PROOF. Since g belongs to GG, there exists a positive integer k such that
g has mean 0 with respect to all canonical measures n for m ink , m

d s� 40, 1rk , . . . , 1 . In particular, g belongs to the image of L . Therefore,k

y1s s² : ² :t g , u s t L L g , u .Ž .Ý Ýll , n ll , nx x k k
xŽ .xgL gll

Denote by Ls the symmetric part of the generator L restricted to the setxqL k

x q L . Since we have that t Ls s Ls t , the right-hand side is equal tok x k xqL xk

y1 y11s s s² : ² :L t L g , u s = t yL g , = u .Ž . Ž .Ý Ý Ýll , n ll , nxqL x k b x k b4k
x x bgxqL k

A standard computation shows that = t s t = so that the right-hand sideb x x byx
is equal to

y11 st t = yL g , = u .Ž .Ý Ýb xyb byx k b4 ¦ ;
b x ; byxgL k ll , n

Ž s .y1Of course, Ý t = yL g depends on the bond b only throughx ; byx g L xyb byx kk

the direction b y b . This is shown by a change of variables. To conclude the2 1
proof of the lemma, we just have to define h , for 1 F i F d, byi

y1sh s t = yL g if b s b " e . IŽ .Ýi xyb byx k 2 1 i
x ; byxgL k

Ž .LEMMA 4.2. For each g g GG, the variance V g is Lipschitz continuous inm
Ž .m uniformly on compact sets of 0, 1 .

PROOF. Fix a cylinder function g in GG. From Definition 3.1 it suffices to
Ž .prove that V g, m is Lipschitz continuous uniformly in ll . By definition,ll

1 1 2² :4.4 V g , m s sup 2 t g , u y =b .Ž . Ž . Ž .Ý Ý ll , nll x u¦ ;d ½ 54ll u < < Ž . bgLx Fll g llll , n

Ž .Here the second summation is carried out over all bounds b s b , b of L1 2 ll
and the supremum is taken over all functions on L .ll

By the integration-by-parts formula, the linear term is equal to
d

1 ² :4.5 t h , = uŽ . Ý Ý ll , nb i b2
is1 bgBBi
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for some cylinder functions h . By the Schwarz inequality, this expression isi
bounded above by

2d 1 ² :C g ll q = uŽ . Ž .Ý ll , nb4
bgL ll

for some constant C that depends only on g. In particular, we may restrict
Ž .the supremum on the right-hand side of 4.4 to functions with global Dirich-

dŽ .let form bounded by C g ll .1
Ž . Ž .Fix 1 F i F d and a bond b in BB . From inequalities 4.2 and 4.3 , addingi

² y :and subtracting t h, = s u , we obtainll , nq1b b ll , nq1
21 1 1 y² : ² : ² :t h , = u y = u F t h , = s uŽ .ll , n ll , n ll , nq1b i b b b i b ll , nq12 4 2

21 yy = s uŽ .¦ ;b ll , nq14 ll , nq1
4.6Ž .

1 q² :y s y 1 t h , = u .Ž . ll , nll , n b i b2

Since h is a local function,i

1
qs y 1 t h h s t h s h y t h h 1 y h xŽ . Ž . Ž . Ž .Ž .Ž . Ýll , n b i b i x b idll y n x

1 C1F .
d 1 y mll

With this upper bound and the elementary inequality 2 ab F a2 q b2, we may
Ž .estimate the last term on the right-hand side of 4.6 as follows:

q² :s y 1 t h , = uŽ .Ý ll , n b i b ll , n
bgBBi

A C g 1Ž .3 2d ² :F ll q = u .Ž .Ý ll , nb2 2 d2 2 A1 y m llŽ . bgBBi

4.7Ž .

Since we consider in the supremum only functions u with global Dirichlet
Ž . dform bounded by C g ll , optimizing in A, we obtain that the last expression

Ž .Ž .y1is bounded above by C g 1 y m .4
Ž . Ž . Ž .In conclusion, in view of 4.5 and estimates 4.6 and 4.7 , the right-hand

Ž .side of 4.4 is bounded above by
d1 1

y² :sup t h , = s uŽ .Ý Ý ll , nq1b i b ll , nq1d ½ 2ll u is1 bgBBi

1 C gŽ .42yy = s u qŽ .¦ ;Ž .Ý b ll , nq1 ll , nq1 D54 ll 1 y mŽ .bgL l

1
y² :s sup 2 t g , s uÝ ll , nq1x ll , nq1d ½ll u Ž .xgL gll

1 C gŽ .42yy = s u q .Ž .¦ ;Ž .Ý b ll , nq1 ll , nq1 d54 ll 1 y mŽ .bgL ll
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Since the first term in the last expression is, by definition, bounded by
ydŽ .V g, m q ll , we proved thatll

g , m q 1 1 C gŽ .4
V g , m F V q .Ž .ll ll d dž / l y mll ll

From the particle]hole duality,

g , m q 1 1 C gŽ .4
V F V g , m q .Ž .ll lld dž / 1 y mll ll

This proves the Lipschitz continuity. I

w x � 4Z d
Denote by F the space of functions F: 0, 1 = 0, 1 ª R such that:

w x Ž .1. For each r g 0, 1 , F r, ? is a cylinder function with uniform support.
w xThat is, there exists a finite set L such that for each r in 0, 1 the support

Ž .of F r, ? is contained in L.
Ž .2. For each configuration h, F ?, h is a smooth function.

Ž .3. For each density r, the cylinder function F r, ? has mean 0 with respect
to n and the derivative with respect to the parameter u of the expectedr

w Ž .xvalue n F r, h vanishes at u s r:u

n F r , h s 0Ž .r

and

d
n F r , h s 0.Ž .udu usr

Ž Ž ..The next result concerns the regularity in m of the function V F m, ? .m

Ž . Ž Ž ..LEMMA 4.3. For each function F m, h in F, V F m, ? is continuous inm
Ž .m in 0, 1 .

Ž . Ž .PROOF. From Proposition 3.3 we have that V F converges to V Fm ŽL. m
Ž .uniformly. Hence it suffices to prove that V F is continuous. However,m ŽL.

this is a corollary of Lemma 4.2. I

Ž Ž .. w xIn fact, a little more work shows that V F m, ? is continuous in 0, 1 .m

5. The diffusioncoefficient. Recall from Section 3 the definitions of the
space GG and the variance V for 0 F m F 1. From the definition of V wem m m

Ž .may introduce the bilinear form V ?, ? on GG by polarizationm m

1V g , h s V g q h y V g y h .� 4Ž . Ž . Ž .m m m4

Denote by GG the closure of GG with respect to V and by NN the kernel ofm m m m
Ž < .V . Hence GG , V is a Hilbert space. The following relations, valid forNNm m mm
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every 1 F i F d and all cylinder functions g and h in GG , are easily obtainedm
from the definition of V :m

U ² :V L g , = h 0 s y2 w , g ,Ž .Ž . m , 0m e ii

² U :V Lg , = h 0 s y2 w , g ,Ž .Ž . m , 0m e ii

V = h 0 , L g s 0,Ž .Ž .m e si
5.1Ž .

² :V L g , h s y g , h ,Ž . m , 0m s

V = h 0 , = h 0 s 2 xd .Ž . Ž .Ž .m e e i , ji j

Ž .Recall that x s m 1 y m stands for the static compressibility and that
wU, w represent the normalized currents defined byi i

1w s = h 0 y g h e y m h 0 y m ,Ž . Ž . Ž .i e i i2 i

U 1w s = h 0 q g h e y m h 0 y mŽ . Ž . Ž .i e i i2 i

5.2Ž .

Ž .for 1 F i F d. Here g is the mean drift of each particle, defined in 1.2 . Notice
that we changed the coefficient in front of the gradient to keep the notation
simple.

We start this section by investigating the structure of the Hilbert space GG .m
The next result follows straightforwardly from the definition of the inner

Ž . w x w Ž .xproduct V ?, ? . The proof can be found in 2 cf. Theorem 5.9 i .m

LEMMA 5.1. Denote by GG the space generated by the gradients: GG sg g
� Ž . d4Ý a = h 0 ; a g R . Furthermore, denote by GG , GG the space gener-i i e c c, )i

� d4 � Uated by the normalized currents: GG s Ý a w ; a g R , GG s Ý a w ;c i i i c, ) i i i
d4a g R . Then

U
GG s LGG q GG s L GG q GG s L GG q GG ,m m g m g s m g

GG s LGG q GG s L GG q GG ,m m c s m c

U
GG s L GG q GG s L GG q GG .m m c , ) s m c , )

Ž .From this lemma we obtain that there exists a unique matrix a m such
that

d
UU i , k5.3 w y a m = h 0 g L GG .Ž . Ž . Ž .Ýi e mk

ks1

Ž . Ž .Here a m is the diffusion coefficient of the Navier]Stokes equation 1.3 .
Alternatively, the diffusion coefficient can be characterized by the following
lemma.

Ž .LEMMA 5.2. The diffusion coefficient a m is such that
d

i , j5.4 w y a m = h 0 g LGG .Ž . Ž . Ž .Ýi e mj
js1
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PROOF. Denote by u : Z ª Z the reflection with respect to the origin:
Ž .u x s yx. We may extend u to the space of configurations in the natural

Ž .Ž . Ž Ž ..way: uh x s h u x . Similarly, we may extend u to the space of continu-
� 4Z d Ž .Ž . Ž . Ž .ous functions on 0, 1 : u f h s f uh . Notice that u GG s GG and thatm m

u wU s yt w ,Ž .j ye jj

u = h 0 s yt = h 0 ,Ž . Ž .Ž .e ye ej j j

u LU f s L u fŽ . Ž .
Ž . Ž .for 1 F j F d and f g GG . In particular, 5.4 follows from 5.3 . Im

In Lemma 5.3 below we prove that in the isotropic case the diffusion
i, jŽ . j, iŽ .coefficient is symmetric: a m s a m . An example is the totally asym-

Ž .metric case where p e s 1 for 1 F i F d.i

i, jŽ .LEMMA 5.3. The diffusion coefficient, a m , is symmetric in the isotropic
case.

PROOF. Fix 1 F i, j F d and define u : Zd ª Zd as the transformationi, j
Ž . Ž .that interchanges coordinates i and j: u x s x for k / i, j, u x s xi, j k k i, j i j

Ž .and u x s x . We may extend u to the space of configurations and to thei, j j i i, j

� 4Z d Ž .Ž .space of continuous functions on 0, 1 in a natural way setting u h x si, j
Ž . Ž .Ž . Ž .h u x , u f h s f u h . Since the process is rotationally invariant,i, j i, j i, j

u wU s wU , u LU f h s LU u fŽ . Ž . Ž .i , j i j i , j i , j

and

¡= h 0 , if k / i , j,Ž .ek

~= h 0 , if k s j,Ž .u = h 0 s = h 0 sŽ . Ž . e ii , j e u ek i , j k ¢= h 0 , if k s i .Ž .e j

Ž . Ž .Since u GG s GG , applying the transformation u to 5.3 , we obtaini, j m m i, j

d
UU i , kw y a m = h 0 g L GG .Ž . Ž .Ýj u e mi , j k

ks1

i, kŽ . j, kŽ . i, jŽ .From the uniqueness we then get that a m s a m for k / i, j; a m
j, iŽ . i, iŽ . j, jŽ . dŽ . ndŽ .s a m and a m s a m . Therefore, there exist a m and a m

i, iŽ . dŽ . i, jŽ . ndŽ .such that a m s a m for every 1 F i F d and a m s a m for i / j.
I

To keep the notation simple, for 1 F i F d, define the cylinder functions
Ž . U Ž .s h and s h byi i

s h s 2w h , s U h s 2wU h .Ž . Ž . Ž . Ž .i i i i
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Let T be the linear transformation from GG to GG such thatm m

d d
sT a s q Lh s a = h 0 q L h.Ž .Ý Ýi i i e iž /

is1 is1

In the next lemma we recall a few properties of T. The inverse of T,
w xdenoted by R, was introduced in 2 . It was claimed there that R is bounded.

The proof is in fact incorrect. We shall not use R in this article. The next
w xlemma and its proof are taken from 2 .

LEMMA 5.4. The linear transformation T has norm bounded above by 1.
The linear transformation TU : GG ª GG , defined bym m

d d
U U U sT a s q L h s a = h 0 q L h ,Ž .Ý Ýi i i e iž /

is1 is1

Ž .is the adjoint of T with respect to the inner product V ?, ? . Moreover,m
UŽ .T = h 0 is orthogonal to the space L GG :e mi

U
T = h 0 H L GGŽ .e mi

and

V s U h , T = h 0 s 2 xd .Ž . Ž .Ž .m i e i , jj

PROOF. We start by proving that T has norm bounded above by 1. By
Lemma 5.1, it is enough to show that

d d

5.5 V a s q Lh G V a = h 0 q L hŽ . Ž .Ý Ým i i m i e siž / ž /
is1 is1

for all a in R d and h and GG . The right-hand side is easy to compute becausem
Ž . 2 ² s := h 0 is orthogonal to L GG . It is enough to 2 xÝ a y h, L h . Tom , 0e s m i ii

estimate the left-hand side, notice that

d 2a x 2 2U² :sup 2a t a s q Lh y s a x y h , w .Ž .Ý m , 0i j j i i½ 5ž / 2 xagR js1

On the other hand, choosing g s yh, we get that

d
s² :sup 2 a s q Lh, g q g , L gÝ m , 0i i¦ ;½ 5

ggCC is1 m , 0

d

² : ² :G y2 a s , h y h , L h .Ý m , 0 m , 0i i s
is1

Ž .It is now easy to conclude the proof of inequality 5.5 if we recall that
² : ² U :s s 2w and that w , h s y w , h .m , 0 m , 0i i i i
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To very that TU is the adjoint of T, by Lemma 5.1 we just need to check
that

d d
U UV T a s q Lh , b s q L gÝ Ým i i i iž /ž /

is1 is1

d d
U U Us V a s q Lh, T b s q L g .Ý Ým i i i iž /ž /

is1 is1

This is a simple computation if one recalls that s U s 2wU.j j
In particular,

V T = h 0 , LU h s V = h 0 , TULU h s V = h 0 , L h s 0.Ž . Ž . Ž .Ž . Ž . Ž .m e m e m e si i i

Analogously,

V T = h 0 , s U s V = h 0 , TUs U s V = h 0 , = h 0 s 2 xd . IŽ . Ž . Ž . Ž .Ž . Ž . Ž .m e j m e j m e e i , ji i i j

Denote by T s the symmetrization of T with respect to the inner product
V :m

1 UsT s T q T .Ž .2

In the next lemma we show that T s s TUT.

LEMMA 5.5. For every g in GG ,m

5.6 V g , Tg s V T , Tg .Ž . Ž . Ž .m m g

Ž s . Ž U .In particular, by polarization, V T g, h s V TT g, h for every g and h inm m
GG because T s and TTU are symmetric.m

Ž .PROOF. By Lemma 5.1, we just need to check identity 5.6 for g s
Ý a s q Lh for a in R d and h in GG . This is elementary if one recalls thati i i m
s s 2w . Ii i

Ž w x.We are now ready to obtain an explicit formula cf. 2 for the inverse of
Ž .the diffusion coefficient a. Let Q denote the matrix with entries Qi, j 1F i, jF d

defined by

Q s V = h 0 , T = h 0 .Ž . Ž .Ž .i , j m e ei j

We claim that Q is invertible. Indeed, assume aU Qa s 0 for some a in R d.
By the definition of Q and Lemma 5.5,

aU Qa s V T a = h 0 , T a = h 0 .Ž . Ž .Ý Ým i e i ež /i i
i i

Ž .Thus TÝ a = h 0 s 0 for the inner product V . In particular, 0 sei i mi

Ž Ž . U .V TÝ a = h 0 , s s 2 xa . This implies that a s 0. In fact, Q is related tom i i e j ji

the inverse of the diffusion matrix a by the following formula:

5.7 a s x Qy1 .Ž .
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U Ž . U Ž . UIndeed, since w s 1r2 s , by the definition of a, 1r2 s yj j j
j, kŽ . Ž .Ý a m = h 0 belongs to L*GG . Taking the inner product with respect tok e mk
Ž .T = h 0 , we obtain, by Lemma 5.4,e i

xd y a j , k m Q s 0.Ž .Ýi , j k , i
k

Ž .This proves identity 5.7 .
Ž .Again there is a factor of 2 difference between 5.7 and the formula

w xobtained by Esposito, Marra and Yau 2 due to their generator being
accelerated by a factor of 2.

Denote by QU the adjoint of Q and by Q s the symmetric part. Notice that
Ž . Ž Ž . Ž ..the matrix B s B , defined by B s V T = h 0 , T = h 0 , isi, j 1F i, jF d i, j m e ei j

symmetric so that aUBa s aU Qa by virtue of Lemma 5.5. Therefore,
sy1 y1 s y15.8 a s x Q s x V T = h 0 , T = h 0 .Ž . Ž . Ž . Ž . Ž .Ž . i , j Ž .m e ei , j i j

Ž Ž . Ž ..Because, by Lemma 5.4, T is bounded above by 1 and V = h 0 , = h 0 sm e ei i
Ž y1 . s2 xd , a is bounded above by 2. Therefore,i, j

y1s 1y1a G IŽ .Ž . 2

s Ž .in the matrix sense. In the next section we shall prove in fact that a G 1r2 I.
sŽ . w xNote that the proof of a 1r2 I presented in 2 is correct only in the case

where a is symmetric.

6. Variational formulas for the diffusion coefficient. In this section,
from Lemma 5.5 and the definition of Q, we obtain two variational formulas
for the symmetric part of the diffusion coefficient a and its inverse ay1. A

Ž y1 . w xvariational formula for the symmetric part of a is also given in 2 .

THEOREM 6.1. For every a in R d,

1y1sU U Uy1a a a s inf V a w y L g ,Ž .Ž . Ým i iž /x ggGGm i

1y1U Usa a a s inf V a = h 0 y L g .Ž . Ž .Ým i ež /ix ggGGm i

6.1Ž .

U Ž .PROOF. Since the codimension of L GG is d and T = h 0 are linearlym e jU UŽ .independent and orthogonal to L GG , T = h 0 and L GG generate GG . Therem e m mj
Ž .exists therefore a matrix b s b such thati, j 1F i, jF d

d
Uw y b T = h 0 belongs to L*GG .Ž .Ýi i , j e mj

js1

Ž . Ž s.y1Taking the inner product with T = h 0 , we obtain that b s x Q sek

ŽŽ y1. s.y1 Ž U Ž .. Ž s. Ž Ž .x a because V w , T = h 0 s xd , Q s V T = h 0 ,m i e i, k i, j m ek i

Ž .. Ž . UT = h 0 and T = h 0 is orthogonal to L GG .e e mj k
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Therefore,

d
U Ui , j0 s inf V a w y a b T = h 0 y L g .Ž .Ý Ým i i i e jž /ggGGm is1 1Fi , jFd

Computing the inner product with the help of the identities proved in Lemma
5.4, we obtain

1
U U Ua ba s inf V a w y L g .Ým i iž /x ggGGm i

Ž . U i, j Ž .To prove the second formula, since, by 5.3 , w y Ý a = h 0 belongs toi j e j

LU GG , from the previous formula, we havem

1y1sU Uy1 i , ja a a s inf V a a = h 0 y L g .Ž . Ž .Ž . Ým i e jž /x ggGGm i , j

d U j, i ŽŽ y1 . s.y1 Ž s.y1 UDefine b in R as a a : b s Ý a a . Since a s a a a , thei j i
Ž U .U Ž s.y1 Uleft-hand side of the last formula can be written as a a a a a s

U Ž s.y1b a b. Therefore,

1y1U Usb a b s inf V b = h 0 y L g .Ž . Ž .Ým e jž /x ggGGm j

This concludes the proof of the lemma. I

These two variational formulas provide a numerical method to check if the
diffusion coefficient is symmetric, which we shall explain later. Moreover,
they provide an upper bound and a lower bound for the diffusion coefficient
and a simple proof of the continuity of the diffusion coefficient in the case
where it is symmetric. More precisely, we have the following three corollaries.

COROLLARY 6.2. For each b in R d,

1
U Usb a b y b b

2
d1

Us sup b V = h 0 , L gŽ .Ž .Ý i m e i½x ggGG is1m

1 2U U Uq V = h 0 , L g y V L g , L g .Ž . Ž .Ž .Ý ž /m e mi 52 x i

PROOF. From the variational principle, we have

y1U U Us sb a b s sup 2a b y a a aŽ .� 4
a
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for every b in R d. From the previous theorem this last expression is equal to

1
U U U U Usup 2 xa b y 2 xa a q 2 a V = h 0 , L g y V L g , L g .Ž . Ž .Ž .Ý i m e m½ 5ix d iagR , ggGGm

To conclude the proof of the lemma, we need just to maximize over a . I

s Ž .Since the supremum is positive, a is bounded below below by 1r2 I in
the matrix sense:

U 1 2< <a aa G a2

for every a in R d.
ŽŽ y1 . s.y1 sSince a G a and the equality holds if and only if a is symmetric,

Ž .from 6.1 and Corollary 6.2 we have that a is not symmetric if and only if, for
some a and g, h g GG ,m

1 1
U U UV a w y L g y a aÝm i iž /x 2i

d1
UG a V = h 0 , L hŽ .Ž .Ý i m e i½x is1

6.2Ž .

1 2U U Uq V = h 0 , L h y V L h , L h .Ž . Ž .Ž .Ý ž /m e mi 52 x i

Ž .Since in the first formula of 6.1 the diffusion coefficient is expressed as an
infimum, an upper bound is very easy to prove.

COROLLARY 6.3. There exists a universal constant C such that1

y1 2U < <a aa F C 2 x aŽ .1

for every a g R d.

ŽŽ y1 . s.y1PROOF. Take g s 0 in the variational formula for b s a . We get
that

1 d
U U U2a ba F V a w F a V w .Ž .Ý Ým i i i m 1ž /x xi i

Ž U .A bound on V w , uniform on m, is easy to obtain from the integration-by-m 1
parts formula and the characterization of V as a limit of finite-volumem

Ž .variances cf. Lemma 7.4 and Theorem 3.2 . In fact,
2dqŽ1r2.U U< <V w F b F w ,Ž . Ž .¦ ;Ž .Ým 1 b 1 m

dbgZ

Ž .where F s is the function given by the integration-by-parts formula.b 1
Up to this point we proved that there exists a finite constant C such that1

y1s y1 2U y1 < <a a a F C 2 x aŽ . Ž .Ž . 1
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d ŽŽ y1 . s.y1for every a g R . To conclude the proof, we just have to recall that a
G as. I

Finally, in the case where the diffusion coefficient is symmetric, the first
variational formula obtained in Theorem 6.1 and the one obtained in Corol-
lary 6.2 reduce to two variational formulas for a. This will permit us to prove
that the diffusion coefficient is continuous provided it is symmetric.

COROLLARY 6.4. Assume that the diffusion coefficient a is symmetric. Then
Ž .it is continuous in 0, 1 .

PROOF. In the case where the matrix a is symmetric, the first relation in
Ž . Ž .6.1 provides a variational formula for a. Since, by Lemma 4.2, V ? ism

i, iŽ . i, iŽ . i, jŽ . j, jŽ .continuous, this proves that a ? and a ? q 2 a ? q a ? are upper
Ž .semicontinuous functions in 0, 1 for 1 F i, j F d. On the other hand, by the

i, iŽ . i, iŽ . i, jŽ . j, jŽ .same reasoning, Corollary 6.2 shows that a ? and a ? q 2 a ? q a ?
Ž .are lower semicontinuous functions in 0, 1 for 1 F i, j F d. This proves that

i, jŽ . Ž .a ? is continuous in 0, 1 for 1 F i, j F d. I

7. Regularity properties of the diffusion coefficient. In this section
we prove that the diffusion coefficient is continuous in the general case and

w xgive some technical results needed to fill in the gaps left in 7 .
Recall the definition of F defined in Section 4. The proof of the continuity

of the diffusion coefficient a follows essentially from the continuity in m of
Ž Ž ..V F m, ? for every function F in F proved in Section 4.m

Ž .THEOREM 7.1. The diffusion coefficient a is continuous in 0, 1 .

w x U i, jŽ . Ž .PROOF. Fix « ) 0 and m in 0, 1 . Since w y Ý a m = h 0 belongs toei j j

Ž .L*GG , there exists a cylinder function H m, h in GG such thatm i m

V wU y ai , j m = h 0 y LUH m , h F « .Ž . Ž . Ž .Ým i e ijž /
j

U U Ž .Up to the end of this proof, we will denote w by w m to stress thei i
dependence of wU on m.i

Ž .Fix 0 F m F 1. For 0 F m F 1, define F m, h by0 i, m0

² : ² : <F m , h s H m , h y H m , h y ­ H m , h h 0 y m .Ž . Ž . Ž . Ž . Ž .m r rsmi , m i 0 i 0 r i 00

Ž . Ž .Notice that F m, h belongs to GG . Moreover, F m, ? is a cylinderi, m m i, m0 0

Ž . Ž .function with uniform support and F ?, h is smooth. Therefore, F m, hi, m i, m0 0

belongs to F.
To keep the notation simple, we introduce the following notation:

˜ ² : <H m s ­ H m , h .Ž . Ž . r rsmi , m r i 00

˜ Ž . Ž .Recall that H m s 0 since H m , h belongs to GG .i, m 0 i 0 m0 0
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From Lemma 4.3, for each fixed m ,0

V wU m y ai , j m = h 0 y LUF m , hŽ . Ž . Ž . Ž .Ým i 0 e i , mj 0ž /
j

U i , j U ˜ Us V w m y a m = h 0 y L H m , h y H m L h 0Ž . Ž . Ž . Ž . Ž . Ž .Ým i 0 e i 0 i , mj 0ž /
j

is continuous in m. At m this function is bounded by « . In particular, there0
exists a neighborhood N of m such that the above continuous function ism 00 w xbounded by 2« . In this way, for each m in 0, 1 , we obtain a function0

Ž .F m, h in F such thati, m0

V wU m y ai , j m = h 0 y LUF m , h F 2«Ž . Ž . Ž . Ž .Ým i 0 e i , mj 0ž /
j

� w x4for m in N . The family N , m g 0, 1 constitutes an open covering ofm m 00 0w x0, 1 and we may therefore find a finite open subcovering. Since F is closed
i, jŽ .under addition, by interpolation we may construct smooth functions a m«

« Ž .and H m, h in F such thati

V wU m y ai , j m = h 0 y LUH « m , h F 2« .Ž . Ž . Ž . Ž .Ým i « e ijž /
j

From the triangle inequality it follows that

U Ui , j i , j «V a m y a m = h 0 q L H m , h y L H m , hŽ . Ž . Ž . Ž . Ž .Ým « e i ijž /
j

F 2V wU m y ai , j m = h 0 y LUH « m , hŽ . Ž . Ž . Ž .Ým i « e ijž /
j

q2V wU m y ai , j m = h 0 y LUH m , h F 6« .Ž . Ž . Ž . Ž .Ým i e ijž /
j

From this inequality we want to conclude that on each compact subset of
i, j i, j 'Ž . Ž . Ž .0, 1 the difference a m y a m is uniformly bounded by C « . This will«

i, jŽ .prove that the diffusion coefficient a m can be uniformly approximated by
Ž .smooth functions on each compact subset of 0, 1 and is therefore continuous

Ž .in 0, 1 .
i, jŽ . i, jŽ .To keep the notation simple, denote the difference a m y a m by«

i, jŽ . « Ž . Ž . « Ž .b m and the cylinder function H m, h y H m, h by G m, h . Recall« i i i
Ž .the definition of the matrix Q defined just before 5.7 . We will now evaluate

the inner product

V b i , j m = h 0 q LU G« m , h , ak , l m T = h 0Ž . Ž . Ž . Ž . Ž .Ý Ým « e i ej kž /
j k
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Ž .for fixed i and l. From the definition of Q and the fact that T = h 0 isek

orthogonal to LU GG , this expression is equal tom

b i , j m Q ak , l m s 2 x b i , j m d s 2 x b i , l m .Ž . Ž . Ž . Ž .Ý Ý« j , k « j , l «
j, k j

On the other hand, by the Schwarz inequality and the previous bounds, the
inner product is bounded above by

1r2
1r2 k , l6« V T a m = h 0 .Ž . Ž . Ž .Ým ež /½ 5k

k

From the definition of the matrix Q and the proof of Theorem 6.1, this last
inner product is equal to

a j , l m Q ak , l m s 2 x a j , l m d s 2 xal , l m .Ž . Ž . Ž . Ž .Ý Ýj , k j , l
j, k j

< i, lŽ . i, lŽ . <In conclusion, we showed that a m y a m is bounded above by«

y1 l , l ''12 x a m « .Ž .
l, lŽ .In Corollary 6.3 above we proved that a m is uniformly bounded on each

Ž .compact subset of 0, 1 . This concludes the proof of the theorem. I

With the same ideas we prove a useful result.

COROLLARY 7.2. For each 1 F i F d and d ) 0,
d

U Ui , jinf sup V w y a m = h 0 y L F s 0.Ž . Ž .Ým i e iž /FgF dFmF1yd js1

w xPROOF. We have to avoid both ends of the interval 0, 1 because we
Ž .proved the continuity of the diffusion coefficient a only on 0, 1 .

w xFix 1 F i F d. From Lemma 5.1 we know that, for each m in 0, 1 ,
d

U Ui , jinf V w y a m = h 0 y L F s 0.Ž . Ž .Ým i e iž /FgGGm js1

The corollary thus states that we may interchange the order of supremum
w xand infimum. Fix « ) 0. For m in d , 1 y d , there exists a function G in0 m0

GG such thatm0

d
U Ui , jV w m y a m = h 0 y L G F « .Ž . Ž . Ž .Ým i 0 0 e m0 i 0ž /js1

To keep the notation as simple as possible, until the end of the proof we
U Ž . d i, jŽ . Ž . Ž .denote the function w m y Ý a m = h 0 by Z h . Recall the notationi js1 e mi

w xintroduced in the beginning of this section. For m in 0, 1 , define the cylinder
function F asm

X˜ ˜F h s G h y G m y G m h 0 y m .Ž . Ž . Ž . Ž . Ž .m m m m0 0 0
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w xWe defined F in such a way that F belongs to GG for every m in 0, 1 .m m m
Ž .More than that, F m, h belongs in fact to F since it is smooth in the first

variable and has a uniform support.
We claim that, near m ,0

V Z y LUFŽ .m m m

is small. Indeed, this expression, which is equal to

XU U˜V Z y L G y G m L h 0 y m ,Ž . Ž .ž /m m m m0 0

is bounded above by

X XU U U U˜ ˜V Z y L G y G m L h 0 y V Z y L G y G m L h 0Ž . Ž . Ž . Ž .ž / ž /m m m m m m m m 00 0 0 0 0 0

q V Z y LU G .Ž .m m m0 0 0

From Lemma 4.3 and Theorem 7.1, the first line vanishes in the limit as m
converges to m . On the other hand, the second line is bounded by « by0
construction.

Therefore, there exists a neighborhood N of m such thatm 00

V Z y LUF F 2«Ž .m m m

� w x4for m in N . The family N , m g d , 1 y d constitutes an open coveringm m 00 0w xof d , 1 y d and we may therefore extract a finite subcovering. In this way
Ž .we obtain a finite family of open intervals N whose union is equal toi 1F iF n0w x Ž .d , 1 y d and an associated family of functions F in F such thati 1F iF n0

V Z y LUF m, h F 2«Ž .Ž .m m i

if m g N . By interpolation, we obtain from this family a function F in Fi
such that

sup V Z y LUF m, h F 2« .Ž .Ž .m m
w xmg d , 1yd

This concludes the proof of the lemma. I

w xThe following lemma is used in Section 7 of 7 .

� iŽ . 4LEMMA 7.3. For d ) 0 and 1 F i F d, let H m, h ; k ) 1 be a sequencek
of functions in F such that

d
U Ui , j ilim sup V w y a m = h 0 y L H m s 0.Ž . Ž . Ž .Ým i e kiž /kª` dFmF1yd js1

Such a sequence exists by virtue of Corollary 7.2.
For every v g R d and d F m F 1 y d ,

21 1 2j i , j < <lim = v t H s v a m v y v .Ž .Ý Ý Ý Ýe j x k i j½ 5i¦ ;4x 2kª` xi j i , jm
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U d i, jŽ . Ž .PROOF. We compute the inner product of w y Ý a m = h 0 yi js1 e iU iŽ . Ž . Ž . Ž .L H m with respect to = h 0 , using identity 5.2 and relation 5.1 . In thisk e l

way, we obtain, applying the Schwarz inequality,

1r2i , l i² :xd y 2 a m x q 2 w , H F o 1 2 x .Ž . Ž . Ž .m , 0i , l l k k

l Ž .Repeating the same procedure with L H instead of = h 0 , we obtains k e l

1r2U Ul i l l² : ² :7.1 y w , H q L H , H F o 1 V L HŽ . Ž . � 4Ž .m , 0 m , 0i k k k k m s k

Ž .because L GG is orthogonal to the space generated by = h 0 for 1 F i F d. As m e i
Ž l . Ž U l .simple computation shows that V L H F V L H . By the Schwarz in-m s k m k

equality we have

d
U Ul i , jV L H F o 1 q 2V w y a m = h 0 .Ž . Ž . Ž .Ž . Ým k k m i e iž /js1

Since a is continuous, the right-hand side of this expression is bounded. This
Ž . Ž .shows that the right-hand side of 7.1 is of order o 1 .k

² U l:Since w q w , H s 0, from the two previous equalities we getm , 0i i k

1 U ji , j y1 i² :d y a m y x L H , H s o 1 .Ž . Ž .m , 0i , j k k k2

Thus, for every v g R d,

1 2 U ji , j y1 i< <7.2 v y v a v s x L v H , v H q o 1 .Ž . Ž .Ý Ý Ýi j i k j k k2 ¦ ;
i , j i j m , 0

Since the first term on the right-hand side is equal to

21
j jy1 s ix L v H , v H s y = v t H ,Ý Ý Ý Ý Ýi k j k e j x k¦ ; ½ 5i¦ ;4x xi j i jm , 0 m

the lemma is proved. I

We conclude this section with the statement of the integration-by-parts
formula. The proof is omitted since it is similar to the proof of Lemma 6.1 in
w x2 .

Ž .LEMMA 7.4 Integration-by-parts formula . Let g be a cylinder function.
Denote by ll the smallest integer such that L contains the support of g. Fixll

� Ž . 4K G ll and x such that t g is measurable with respect to h z , z g L .x K
Recall the definition of g given in Definition 3.1. Assume that:˜K

dŽ . Ž .i g jrK s 0;
X̃ d dŽ . Ž .ii g jrK s 0 for some 0 F j F K .˜
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� Ž . 4Then there exists a family of functions F x, g ; b g L such thatb K

d
d² :7.3 t g y g jrK , h s F x , g , = hd² :Ž . Ž .˜ Ž . Ý K , jrKx K b bK , jrK

bgL K

and

2dqŽ1r2.< <b y x F x , g F C gŽ . Ž .¦ ;Ž . dÝ b K , jrK
bgL K

Ž . Ž .for some constant C g that does not depend on K or x. In fact, C g depends
only on g through the length of the support of g, denoted by ll , and through
5 5g .`

Instead, assume that g satisfies:

Ž . Ž .i g m s 0;˜
Ž . XŽ . w xii g m s 0 for some m in 0, 1 .˜

� Ž . 4 Ž .Then there exists a family of functions F x, g ; b g L satisfying 7.3 andb K
such that

2dqŽ1r2.< <b y x F x , g F C gŽ . Ž .¦ ;Ž .Ý b m
bgL K

Ž .for some constant C g satisfying the same properties mentioned above.
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