
The Annals of Probability
1996, Vol. 24, No. 4, 1711]1726

THE EXISTENCE OF AN INTERMEDIATE PHASE
FOR THE CONTACT PROCESS ON TREES

BY A. M. STACEY

University of California, Los Angeles

Let T be a homogeneous tree in which every vertex has d neighbors.d
A new proof is given that the contact process on T exhibits two phased
transitions when d G 3, a behavior which distinguishes it from the con-
tact process on Zn. This is the first proof which does not involve calcula-
tion of bounds on critical values, and it is much shorter than the previous
proof for the binary tree, T . The method is extended to prove the3
existence of an intermediate phase for a more general class of trees with
exponential growth and certain symmetry properties, for which no such
result was previously known.

0. Introduction. The contact process was first introduced by Harris
Ž .1974 and has been greatly studied since then. The extended introduction of

Ž .Liggett 1996 contains an up-to-date summary of some important results, as
well as numerous references to books and survey papers where further
information can be found.

Ž .The contact process on a graph, G s V, E , is a continuous-time Markov
process j whose state space is the collection of subsets of V, with thet
following transition rates for each x g V:

� 4j _ x , at rate 1,t
j ªt ½ � 4 � 4j j x , at rate l a y g j : xy g E .Ž .t t

We usually think of j as the set of site which are occupied by particlest
Ž .which are alive or active or infected at time t. So we see that particles die

at rate 1 and are born at a rate equal to the number of neighbors alive
multiplied by some fixed parameter l, with the restriction that no more than
one particle may occupy a given site.

The process has been most widely studied on Zd, although the graphical
w Ž . Ž .representation of the process see Harris 1978 , Liggett 1985 or Durrett

Ž .x1988 shows that the process is well defined for more general graphs. We
shall use j A to denote the contact process with starting set A and use j x ast t
an abbreviation for j � x4, where x g V. Often x will be some distinguishedt

Ž d .vertex O in the case of Z , this is the origin . We then define two critical
values:

l s inf l: P ; t , j O / B ) 0 ,� 4Ž .1 l t

l s inf l: P ; T , ' t G T s.t. O g j O ) 0 .� 4Ž .2 l t
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Clearly l F l . It is well known that on Zd there is only one phase1 2
transition, so l s l . This is a consequence of the complete convergence1 2

1 Ž . dtheorem, proved for Z by Durrett 1980 and more generally for Z by
Ž . Ž .Bezuidenhout and Grimmett 1990 . However, Pemantle 1992 examined the

behavior of the contact process on a tree and he showed that the behavior can
be quite different.

For d G 2, let T be the homogeneous tree of degree d. That is, T is thed d
winfinite tree in which every vertex has d neighbors. Warning: Various

Ž .different conventions are used; e.g., our T is denoted T by Liggett 19963 2
Ž . x Ž .and is called a tree of degree 2 by Pemantle 1992 . Pemantle 1992 obtained

Ž . Ž .upper bounds on l T and lower bounds on l T which are good enough to1 d 2 d
show that l - l in the case d G 4. This shows that the contact process on1 2

Žthese trees can exhibit an interesting behavior that does not occur for the
. dsymmetric process on Z : if l - l - l , then there is a positive probability1 2

that the process starting from a single particle survives globally, but it drifts
off to infinity and cannot survive locally. We call this weak survival. In this

Ž .interesting intermediate phase Durrett and Schinazi 1995 showed that
there are infinitely many extremal invariant measures. The existence of such

wan intermediate phase on a homogeneous tree is also known to imply Madras
Ž .xand Schinazi 1992 that the second phase transition is discontinuous. The

wexistence of two phase transitions is generally regarded see comments to this
Ž . Ž .xeffect in Pemantle 1992 and Liggett 1996 as the main interest in studying

the contact process on a tree.
Ž .Pemantle 1992 conjectured that l - l for a much broader class of1 2

trees, and such a result seems to be widely believed to be true. Very recently,
Ž .Liggett 1996 settled this question for homogeneous trees by proving that the

Žcontact process on T exhibits two phase transitions. Note that this was the3
only homogeneous tree case left open, since T is isomorphic to Z1 for which2

.l s l .1 2
Ž .In solving the problem for T , Liggett 1996 developed ingenious methods3

to obtain bounds on l and l which are precise enough to separate them.1 2
The ratio of the two critical values for T seems to get closer to 1 as d getsd
smaller, and the values become harder to separate numerically; in the case of
T , rather long calculations are required to show that l F 0.605 and that3 1
l G 0.609. In Section 1 of this paper we present a quite different proof that2
l - l for T , d G 3. This new method does not give numerical bounds on1 2 d

Ž .the critical values which might be considered to be a disadvantage , but it is
much shorter and also more clearly based on our intuition that there is so
much room on the tree that if the process barely survives, then it must drift
off.

One further advantage of the new method is that it can be adapted to
prove the existence of an intermediate phase for a more general class of trees,
and this is done in Section 2. It seems very unlikely that the same result
could be obtained by giving precise numerical bounds on l and l for each of1 2
the trees in the class: accurate upper bounds on critical values are usually
very hard to obtain and their precision is significantly limited by the complex-
ity of the calculations that can be carried out. Even with a great deal of work,



CONTACT PROCESS ON TREES 1713

Ž . Ž .the upper bound of 0.605 that Liggett 1996 gives for l T is some way from1 3
Ž .the non-rigorous estimate of l f 0.542 by Tretyakov and Konno 1996 .1

Moreover, the computations used to obtain this upper bound are specific to
T , and they would need to be reworked with an arbitrarily high degree of3
precision to cover other trees.

1. Homogeneous trees. In this section we shall consider the tree T , ind
which every vertex has degree d, d G 3, and in which there is a distinguished
vertex O, called the root. Although it is customary to consider all the other
vertices as lying below the root, it will greatly simplify some of our calcula-
tions if we arrange the tree so that every vertex has one neighbor above it
and d y 1 neighbors below it. We can then assign a level to each vertex in
such a way that the root has level 0 and any vertex in level l has one
neighbor in level l y 1 and d y 1 neighbors in level l q 1. For n g Z, we
shall use LL to denote the set of all vertices in level n. Of course, each set LLn n

Ž .is infinite. We use l x to denote the level of a vertex x.
Having arranged the vertices in levels, we now define the weight of a

vertex x by
1.0 w x s a lŽ x . ,Ž . Ž .a

Ž .where a ) 0 is to be specified later; we shall often use w x as an abbrevia-
Ž .tion for w x . The weight of a set of vertices is defined to be the sum of thea

weights of all the vertices in the set. This arrangement of the tree and
Ž .assignment of weights appears in Liggett 1996 .

Now the tree seen from a vertex, say x , at level n, looks exactly like then
tree seen from the root with all the weights multiplied by a factor of a n.
Hence if j x is the contact process on T starting from a vertex x, then a veryt d

Ž Ž x n.. n Ž Ž O ..simple coupling argument shows that E w j s a E w j , or equiva-t t
lently, for any vertex x,

1.1 E w j x s w x E w j O .Ž . Ž .Ž .Ž . Ž .Ž .t t

Of course, it is exactly this property which will enable us to set up a useful
wsupermartingale. The additivity of the contact process see, for instance,

Ž .xLiggett 1985 easily implies that for any set of vertices, A,

1.2 E w j A F E w j x .Ž . Ž .Ž .Ž .Ž . Ýt t
xgA

Ž . Ž Ž A..For clarity in what follows let f A s E w j , so if A is a random set, thens s
Ž . Ž o .f A is a random variable. Now let FF s s j : u F t . Then we see fairlys t u

easily that for any s, t G 0,
o < oE w j FF s f jŽ . Ž .Ž .tqs t s t

F E w j xŽ .Ž .Ý s
oxgj t

s w x E w j oŽ . Ž .Ž .Ý s
oxgj t

1.3Ž .

s w j o E w j o ,Ž . Ž .Ž .t s
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since the first equality follows from the Markov property, the inequality is an
Ž . Ž .application of 1.2 and the next equality an application of 1.1 .

These straightforward observations about the behavior of the weighting
function enable us to establish the following result which will be central to
the proof of the main theorem of this section.

PROPOSITION 1.0. Let j o be the contact process with parameter l on at
homogeneous tree and suppose that for some t ) 0 and some weighting0

Ž .function w of the form given by 1.0 ,a

1.4 E w j o s b - 1.Ž . Ž .Ž .a t0

Then
1.5 P ' T s.t . ; t G T , O f j o s 1,Ž . Ž .t

so, a fortiori, l G l.2

o ˜Ž . Ž .PROOF. Let X s w j and let FF s FF . Then 1.3 demonstrates thatn nt n nt0 0

˜ o<E X FF F X E w j ,Ž .Ž . Ž .nq1 n n t0

yn ˜Ž . Ž . w Ž .xso condition 1.4 shows that b X is a supermartingale relative to FF .n n
Since it is non-negative it converges almost surely, so it is certainly bounded
a.s. Since b - 1, this implies that

X ª 0 a.s.n

Ž .However, if X ª 0 then, because w O s 1, for sufficiently large n we mustn
O Ž . Ž .have O f j . This virtually establishes 1.5 . Suppose now that 1.5 fails tont0

hold. Then there is a positive probability, p say, that for infinitely many
ŽŽ . . Ovalues of n, there exists some t g n y 1 t , nt with O g j . However, for0 0 t

Ž O < . yt 0each such t, P O g j FF G e ; since this bound does not depend on n, itnt t0

is straightforward to define an appropriate sequence of stopping times and
w Ž .apply a generalized Borel]Cantelli lemma see, e.g., Williams 1991 , page

x O124 to show that, with probability p, O g j infinitely often. This contra-nt0

dicts our previous conclusion and completes the proof. I

We shall also need one technical result about the behavior of the weighting
function.

LEMMA 1.1. Let j O, l be the contact process with parameter l on Tt d
Ž .d G 3 , let w s w be a weighting function as above and let T be some fixeda

time. Then the function

l ª E w j O , lŽ .Ž .T

is continuous.

Note that although results about the continuity of certain expectations and
probabilities, as functions of various parameters, are rather standard, some
care is required. If the weighting function were very fast growing, then the
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conclusion might fail to hold. The proof which we shall give for the homoge-
neous tree can be easily adapted for general graphs of bounded degree with
weighting functions which grow no faster than exponentially.

PROOF OF LEMMA 1.1. Fix some large L; we shall prove continuity for
l F L. We recall the graphical representation of the contact process in which,

Ž .for any two neighboring vertices x and y, arrows representing births are
drawn from x to y at the arrival times of a Poisson process of rate l.

Let x be a vertex of T at distance n from the root. Let the uniqued
Ž . Žnon-self-intersecting path from O to x be x x ??? x so x s O and0 1 n 0

.x s x . Let a birth path from O to x be a sequence of times 0 F t F ??? F tn 1 n
such that at time t there is an arrow from x to x in the graphicali iy1 i
representation. If site x is occupied at or before time T, then there must exist
a birth path from O to x with t F T. Now the expected number of suchn
paths is easily computed as

lnT n
n??? l dt ??? dt s .H H 1 n n!

0Ft F ??? Ft FT1 n

So for any l F L, the probability that x is occupied at or before time T is at
most LnT nrn!. We shall use this fact to show that we can restrict attention to
a finite graph.

Let « ) 0 be given. Let DD be the set of vertices at distance n from then
< < Ž .ny1root. Unlike LL , which is infinite, DD s d d y 1 . Note that D ;n n n

n Ž .D LL . Let g s max a , 1ra , so that any vertex in DD has weight at mostksyn k n
g n. Let BB be the set of vertices at distance less than n from the root. Then
probability that any vertex outside BB is occupied before time T is at mostn
< < n n Ž . n Ž .ny1DD L T rn!. Since w BB F g d d y 1 , if N is sufficiently large thenn n

< < N NDD L TN
1.6 w BB F « .Ž . Ž .N N !

Ž . n Ž .ny1Likewise, using the fact that w DD F g d d y 1 , if N is sufficientlyn
large then

LnT n

1.7 w DD F « .Ž . Ž .Ý n n!nGN

O, lŽ . Ž .Choose N so that both 1.6 and 1.7 hold. Let j be the contact process,t
with parameter l - L, restricted to the induced subgraph with vertex set

O, l O, lBB . We can couple j and j together in a natural way so that they areN t t
equal at time T if j O, l has not had a birth outside BB before then. Wet N

Ž .therefore see that 1.6 implies that

O , l O , lE w BB l j y E w BB l j F « .Ž .Ž .Ž .Ž .N T N T

Ž .Also, 1.7 implies that

E w j O , l _ BB F « ,Ž .Ž .T N
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so for any l F L,

O , l O , l1.8 E w j y E w j F 2« .Ž . Ž .Ž . Ž .Ž .T T

Using a standard technique, we can couple together two processes on a finite
O, l O, mgraph, j and j , in such a way that, at time T, the processes differ witht t

a probability which tends to zero as m ª l. In this way we can show that
O, lŽ Ž .. Ž .E w j is a continuous function of l; combining this fact with 1.8T

completes the proof. I

The other main ingredient which we shall need in our proof is a result of
Ž .Morrow, Schinazi and Zhang 1994 , which builds on previous work of

Ž .Madras and Schinazi 1992 .

w Ž .x OTHEOREM 1.2 Morrow, Schinazi and Zhang 1994 . Let j be the contactt
process on T for d G 3. Then, at the critical value l we haved 1

< O <1 F E j F C d ,Ž .Ž .t

Ž .where C d is a constant depending only on d.

Let us now state and prove the main result of this section.

THEOREM 1.3. For the contact process on a homogeneous tree T , in whichd
every vertex has degree d G 3, we have

l - l .1 2

PROOF. Let j O be the contact process at the first critical value, l . Lett 1
Ž . Ž .w ? be the weighting function as defined by 1.0 with a choice of a s

O' Ž .1r d y 1 . We consider how w j behaves as t increases; roughly speakingt
the idea is that the expected number of particles remains bounded, but
because they must spread out, the expected weight decreases.

Ž .ny1As in Lemma 1.1, let DD be the set of d d y 1 vertices at distance nn
from the root. Rather trivially we have

1.9 E w j o s w x P x g j O .Ž . Ž .Ž .Ž . Ž .Ý Ýt t
nG0 xgDDn

Ž . < <Let a be the average weight of a site in DD , that is, a s w DD r DD . Byn n n n n
symmetry, all the sites in DD are equally likely to be occupied at time t, andn

Ž .we make use of this fact to rewrite 1.9 as

o < O <1.10 E w j s a E j l DD .Ž . Ž .Ž . Ž .Ýt n t n
nG0
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It is straightforward to evaluate a precisely: DD contains sites in LL ,n n n
LL , . . . , LL withny2 yn

n
< <DD l LL s d y 1 ,Ž .n n

ny2< <DD l LL s d y 2 d y 1 ,Ž . Ž .n ny2

ny3< <DD l LL s d y 2 d y 1 ,Ž . Ž .n ny4
...

ny i< <DD l LL s d y 2 d y 1 ,Ž . Ž .n nq2y2 i1.11Ž .
...

1< <DD l LL s d y 2 d y 1 ,Ž . Ž .n ynq4

0< <DD l LL s d y 2 d y 1 ,Ž . Ž .n ynq2

0< <DD l LL s d y 1 .Ž .n yn

Note that the pattern varies slightly at the start and finish.
'So we see from our choice of a s 1r d y 1 that all the levels make

Ž .Ž .Žny2.r2 Ž .precisely the same contribution of d y 2 d y 1 to w DD except forn
Ž .n r2the first and last levels, which each contribute d y 1 . Adding all these

Ž .contributions shows that for n G 1 ,
Ž .ny2 r2w DD s 2 d y 1 q n y 1 d y 2 d y 1 .Ž . Ž . Ž . Ž . Ž .Ž .n

Dividing by the number of vertices in DD we obtainn

2 d y 1 q n y 1 d y 2Ž . Ž . Ž .
a s .n nr2d d y 1Ž .

Ž .So using the fact that d G 3 a ª 0 as n ª `.n
Ž .We shall now return to estimating the quantity on the r.h.s. of 1.10 . Let

Ž . Ž .« ) 0. Choose N such that if n G N, then a F «rC d , where C d is then
Ž .constant appearing in Theorem 1.2. Then we split up the r.h.s. of 1.10 as

O < O <1.12 w x P x g j q a E j l DD .Ž . Ž . Ž . Ž .Ý Ý Ýt n t n
0Fn-N nGNxgDDn

By Theorem 1.2 and the choice of N, the second term is at most « for any
Žvalue of t. The fact that the process dies out at l an easy corollary to1

. Ž o. ŽTheorem 1.2 implies that for any x, P x g j ª 0 as t ª ` in fact, thist
.happens uniformly in x . Consequently, for t sufficiently large, the first term

Ž .in 1.12 is at most « . So, for some value t we see that0

E w j O F 2« .Ž .ž /t0

This reasoning applied to the contact process at l . However, we now apply1
Lemma 1.1 to obtain that for some l* ) l we have1

E w j O , l* F 3« .Ž .ž /t0
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Since « was arbitrary we can choose it in such a way that 3« - 1. We can
then apply Proposition 1.0 to show that l - l* F l , which completes the1 2
proof. I

2. Inhomogeneous trees. The only trees for which it is already known
that two phase transitions exist are the homogeneous trees in which every
vertex has degree d G 3. As indicated in the Introduction, this was first

Ž . Ž .proved by Pemantle 1992 for d G 4 and by Liggett 1996 for d s 3. It is
reasonable to suppose, however, that for a much larger class of graphs there
is enough room for the process to move faster than it grows and for an

Ž .intermediate phase to exist. Pemantle 1992 defines a class of trees with
strongly exponential growth and conjectures that, for the contact process on

Ž .such trees, either l s l s 0 which will happen if the tree grows too fast or1 2
Ž .l - l . Madras and Schinazi 1992 also make a conjecture of this kind,1 2

which relates the behavior of the contact process on a graph to the behavior
of the branching random walk.

We shall constructively describe a class of graphs for which we can extend
Ž .Theorem 1.3 and show that l - l . Let H s V, E be a finite graph with1 2

distinguished vertices u , . . . , u , where h G 2. Say that a map p : V ª V is a1 h
strong automorphism of H if it is a graph automorphism in the usual sense

Ž� 4. � 4and also p u ??? u s u ??? u . We call H an isotropic block if the1 h 1 h
following two conditions hold.

CONDITION 1. Given distinct i, j, k F h, there exists a strong automor-
Ž . Ž .phism of H, p , for which p u s u and p u s u .i i j k

CONDITION 2. Given i, j F h, there exists a strong automorphism of H, p ,
Ž .with p u s u .i j

Note that unless h s 2, Condition 1 implies Condition 2. Note further that
we do not require u , . . . , u to be distinct, although if two of them are the1 j
same, then Condition 1 implies that they all are. These two conditions look
rather strange; we explain their significance once we have explained how
these isotropic blocks are used to construct infinite graphs. In practice, most
of the examples one thinks of, and all of the small examples which we shall
give, satisfy the following stronger and simpler Condition S which is easily
seen to imply Conditions 1 and 2.

� 4CONDITION S. Given any r g S , the symmetric group on 1, . . . , h , thereh
Ž .exists an automorphism of H, p , with p v s v for all i F h.i r Ž i.

The graphs which we shall consider will be built up of isotropic blocks in
the following way. Let H and K be two isotropic blocks with distinguished
vertices u , . . . , u and v , . . . , v , respectively, and}to avoid an absurd1 h 1 k
example}suppose that at least one of these lists consists of distinct vertices.

Ž . Ž .Let G H, K be a copy of H. Obtain G H, K by taking h copies of K and0 1
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Ž .identifying v in the ith copy of K with u in G . To obtain G H, K , we1 i 0 2
Ž .take each ‘‘unused’’ distinguished vertex all the v ’s for i G 2 and identify iti

Ž .with a vertex u in a new copy of H; so we are adding h k y 1 new copies of1
ŽH to the graph. Repeat this process, so that at stage 2n we are adding by

. Ž .ny1Ž .nvertex identification a separate copy of H to each of the h h y 1 k y 1
Žunused distinguished vertices, and at stage 2n q 1 we are adding h h y

.nŽ .n Ž .1 k y 1 copies of K. We obtain an infinite graph, G s G H, K , as a limit.
Examples are given after the statement of the main result of this section.

Ž . ŽIn the graph G H, K , each copy of H is attached to h copies of K one at
.each distinguished vertex, u , . . . , u and each copy of K is attached to k1 h

copies of H. If H and K are both trees, then G will also be a tree. In the
Ž .important special case where H is a singleton so u s ??? s u we are1 h

really just attaching each copy of K to h y 1 other copies of K at each
distinguished vertex.

Ž .Another way to view G H, K is by arranging it as a rooted tree in such a
way that each block of type H has one block of type K as its parent and
h y 1 such blocks as children. Each block of type K will have one block of
type H as a parent and k y 1 such blocks as children. This view will be of use
later in our proof.

Ž .A graph constructed in the above fashion, G s G H, K , we shall call an
isotropic block tree. Although this construction is slightly cumbersome, it does
have the advantage of sufficient generality to include a number of significant
examples, while still ensuring that enough of the useful properties of the
homogeneous trees are retained. Condition 2 of isotropic blocks ensures that

Ž .isotropic block trees are periodic in the strong sense that if G s G H, K and
Ž .if H and H or, likewise, K and K are two copies of H used in the1 2 1 2

construction of G, then there is an automorphism of G taking H to H ; in1 2
other words, the graph looks the same seen from any copy of H. Condition 1
of isotropic blocks says that if we hold one distinguished vertex fixed, any
other two distinguished vertices are interchangeable. We can think of the tree
as having branches hanging off the distinguished vertices, and with a little
thought one can see that Condition 1 ensures that isotropic block trees are
indeed isotropic in the sense that any path of blocks leading away from, say,
the first copy of H, to infinity, looks the same.

In order to show that l - l we shall need the number of blocks added at1 2
Ž .stage n in the construction of G to grow exponentially with n. With this in

Ž . Ž .Ž .mind, we say that G H, K has exponential growth if h y 1 k y 1 G 2. We
are now in a position to state our general result.

THEOREM 2.0. Let G be an isotropic block tree with exponential growth.
Then the contact process on G has an intermediate phase in the sense that

l - l .1 2

This theorem, and the results leading up to it can be proved in a similar
way to the corresponding results for homogeneous trees, although extra work
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is needed. Before discussing this matter in more detail, let us give some
examples of isotropic block trees.

EXAMPLE 1. Let H be a single vertex and let K be a path of length m
Ž . Ž .i.e., K has m edges with its two endvertices distinguished. Then G H, K is
the same graph as that obtained from the homogeneous tree of degree h by
replacing each edge by a path of length m. Of course, it has exponential
growth if h G 3.

EXAMPLE 2. Let H be as in Example 1 and let K be a star in which a
central vertex is joined by edges to k outer vertices. The outer vertices of K

Ž .are all distinguished. Then G H, K is a graph which can be arranged so that
every vertex has one parent and in which all the vertices in the same
generation have the same number of children, this number alternating
between h and k.

EXAMPLE 3. Let H be a triangle with all three vertices distinguished and
let K be a star with the k outer vertices distinguished. This gives a simple
example of a graph which cannot be described by a single isotropic block, yet
which has sufficiently good properties to show l - l .1 2

The first of these families of examples is of interest because it is very
unlikely that one could use explicit bounds on l and l to show that all the1 2
trees in the family exhibit an intermediate phase. For fixed h, as the length
of the path, m, tends to infinity, it seems reasonable to suppose that the

Ž . Ž .critical probability for survival l converges to that for Z , l Z . Since1 1 c 1
Ž .l F l F l Z , l rl will be converging to 1 as m ª ` and hence the1 2 c 1 1 2

critical values will become increasingly hard to separate. This is consistent
with the fact that a homogeneous tree of degree d looks less and less like Z1
as d ª ` and the critical values are hardest to separate numerically in the
case of T . They become easier to separate as d ª ` and, in fact, it is known3
w Ž .x Ž . Ž .Pemantle 1992 that, as d ª `, l T rl T ª 0.1 d 2 d

Let us make one more observation about the graphs we have constructed.
Ž . Ž .As seen from the starting block G H, K , the graph G H, K looks the same0

as it does seen from any block which is a copy of H. However, sometimes one
considers rooted trees where the situation is slightly different. For example,

Ž .consider the simple rooted tree mentioned in Pemantle 1992 in which one
starts with a root, the root has n children each of which has only one child.
Each of the n grandchildren of the root has n children and so on, with the
number of children per parent alternating between 1 and n from generation
to generation. Call this tree R . If this tree were continued backwardn
appropriately, then we would obtain a tree, RX , say, which is a special case ofn

Ž .Example 2 and also a special case of Example 1 , but R itself is not of then
Ž .form G H, K : in particular, the root is the only vertex of degree n. However,

the fact that RX has an intermediate phase implies that the same must ben
true for R . Consider the contact proces on RX in a phase of weak survival: itn n
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can survive but drifts off to infinity, so it must be able to survive when
Žrestricted to any single branch of the tree where a branch, loosely speaking,

.is obtained by severing the tree at one edge or vertex , so in particular when
restricted to R . Yet, if it cannot survive strongly on the whole tree, itn
certainly cannot survive strongly on a branch, so it must exhibit weak

wsurvival when restricted to a branch. This type of argument is easy to make
Ž . xprecise; see Pemantle 1992 , Lemma 6.5. Hence the rooted tree R has ann

intermediate phase too.
Let us remark that the simplicity of the argument sketched in the previous

paragraph}to show that survival on the tree implies survival on a branch
under the assumption that there is an intermediate phase of weak survival}is,
in a sense, slightly misleading. Without the assumption, it is rather harder to

Ž .show this result; it is proved in Morrow, Schinazi and Zhang 1994 for
homogeneous trees, and their proof can be extended to give a proof for

Žisotropic block trees. This more difficult result i.e., without the assumption of
.a phase of weak survival is still necessary since the result is needed in their

proof of Theorem 1.2 and hence is an ingredient in our proof of the existence
of the intermediate phase.

We now turn to consider the proof of Theorem 2.0. To begin, analogues of
Proposition 1.0, Lemma 1.1 and Theorem 1.2 need to be proven in the more
general setting of isotropic block trees. We shall not give all the details since
the modifications required are of a similar flavor in each case. However, in
order to show the kind of work one needs to do, we will give the essential
details for one result, the analogue of a proposition of Madras and Schinazi
Ž . w1992 which preceded the proof of Theorem 1.2 Morrow, Schinazi and Zhang
Ž .x1994 .

Ž .PROPOSITION 2.1. Let G s G H, K be an isotropic block tree with expo-
Ž .nential growth. Let A be the vertex set of the graph G H, K , that is, the1

graph obtained from one copy of H and h copies of K. Let j A be the contactt
process on G with parameter l and starting set A. Then there exist constants a
and C such that for all t G 0,

< A <2.0 exp a t F E j F C exp a t .Ž . Ž . Ž .Ž .t

Moreover, a is a continuous function of l and, for fixed b G a ) 0, we can use
w xthe same value of C for all l g a, b .

Ž < A <.PROOF. Let m s E j . Using the fact that every vertex of G is equiva-t t
Ž .lent via an automorphism to some vertex of A, and using the additivity of

the process, we see that

m F m m .tqs t s

A standard subadditivity argument leads us to conclude that

1 1
2.1 lim log m exists and equals inf log m .Ž . t tt ttª` t)0
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Ž . Ž . a tCall this limit a . It is immediate from 2.1 that E m G e for all t,t
Ž .establishing the first inequality of 2.0 .

The upper bound on m is more involved. We shall consider the way thet
Ž .tree G H, K is built up from isotropic blocks of two types, H and K. We

shall say two blocks are adjacent if a vertex from each was identified in the
construction of G. So each block of type H is adjacent to exactly h blocks of
type K, and each block of type K is adjacent to exactly k blocks of type H.

Ž . ŽIt is easy to see that if the upper bound in 2.0 holds, it holds with a
.different constant when A is replaced by any other finite set. So, interchang-

ing the roles of H and K if necessary, we may assume that the distinguished
vertices of H, u , . . . , u , are distinct. This ensures that different blocks of1 h
type K are disjoint, which will be convenient.

< A <Now suppose that there are n particles at time t, that is, j s n. Lettingt
Ž < < < <.c s max H , K , at least nrc different blocks contain a particle. It is not1 1

hard to see that this implies that at least nr2c blocks of type H either1
contain a particle or have an adjacent block of type K which contains a
particle. Among these, we can find a collection of at least nr2kc blocks of1
type H such that no two of them are adjacent to the same block of type K.
Looked at another way, there are at least nr2kc disjoint copies of A each of1
which contains at least one occupied site. We can choose a constant c so that2

Ž .if the contact process is run on a copy of A only starting with just one
occupied site, then with probability at least c , the whole of A is occupied at2
time 1. In order to put these facts together, we introduce one more piece of

Ž .notation: given a finite set of sites, S, let a S be the maximum number of
disjoint copies of A that we can find all of whose vertices are in S. Then the
preceding argument, together with the additivity of the process, shows that

c2A A< <2.2 E a j G E j .Ž . Ž . Ž .Ž .tq1 t2kc1

Ž . Ž .When we go from G H, K to G H, K in the construction of G, we add1 2
Ž .h k y 1 copies of H to A. Generally these copies are disjoint, but if all the

distinguished vertices of K are the same, then some of these copies will have
Ž .vertices in common. In any case, let H9 be any one of these h k y 1 copies of

Ž .H. Let the set of all those vertices which can only be reached from G H, K0
by passing through H9 be called a branch adjacent to A. So there are
Ž .h k y 1 branches adjacent to A, all of them isomorphic, and the vertex set of

G is the union of A and all these branches; apart from the ‘‘outer’’ vertices of
A, this is a disjoint union. If A9 is any copy of A we can also consider the
Ž .h k y 1 branches adjacent to A9.

Let B be the union of A, together with b of its branches. It is not hard to
see by isotropy that, for any s,

b
A A< < < <2.3 E j l B G E j .Ž . Ž . Ž .s sh k y 1Ž .

Ž A .Now suppose at time t q 1 we pick a j disjoint copies of A all of whosetq1
sites are occupied and delete all the other particles on the tree. An easy
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Ž Ž . .edge-counting argument shows that there must be at least h k y 1 y 2
Ž A .=a j branches which are adjacent to occupied copies of A but which aretq1

Žthemselves unoccupied with the exception of the one vertex they share with
.A . The latter condition on the branches ensures that any two such branches

Žare disjoint with the possible exception of a single vertex shared between the
.two branches and the same copy of A .

Consider running the process from one of the occupied copies of A which
Ž .has b unoccupied branches. Then 2.3 implies that, after a time s, the

expected number of particles on A and those b branches is at least bm rs
Ž .h k y 1 . Any two different copies of A which are both occupied at time

t q 1 have disjoint unoccupied branches, so additivity and the argument of
the preceding paragraph show that

h k y 1 y 2 E a j AŽ .Ž . Ž .Ž .tq1
2.4 m G m .Ž . tqsq1 sh k y 1Ž .

Ž .Combining this with 2.2 we see that

c h k y 1 y 2Ž .2
m G m m .tqsq1 s t2kc h k y 1Ž .1

Ž .Since G has exponential growth, h k y 1 y 2 G 1 and so we see that, for
some c ) 0,3

2.5 m G c m m .Ž . tqsq1 3 s t

a t a Ž .Letting m s c m re e , 2.5 becomes˜ t 3 t

2.6 m G m m .Ž . ˜ ˜ ˜tqsq1 t s

Ž . Ž . Ž .Equation 2.1 implies that lim 1rt log m s 0. From this and 2.6 we see˜t ª` t
that we must have m F 1 for all t and hence˜ t

ea

a tm F e ,t c3

Ž .establishing the second inequality of 2.0 .
The dependency of C on l is via the choice of c and the term ea; both of2

w xthese terms can be uniformly bounded for all l g a, b in such a way that
Ž .we can make 2.0 hold with the same choice of C, as claimed. Finally, the

continuity of a as a function of l follows exactly as in Madras and Schinazi
Ž . Ž .1992 : 2.0 can be used to express a as both the supremum and the infimum
of families of continuous functions. I

Ž .The above proof is an adaptation of that of Madras and Schinazi 1992
with substantial technical modifications to deal with the extra complexity of
the general isotropic block tree. One can make similar modifications to the

Ž .proof of Morrow, Schinazi and Zhang 1994 to show that, at the critical value
l , the exponent appearing in Proposition 2.1, a , is equal to 0. This estab-1
lishes an analogue of Theorem 1.2 for isotropic block trees.
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As indicated in the remarks preceding its proof, it is not hard to check that
Lemma 1.1 holds fairly generally, although the proof needs some modifica-
tions; we omit the straightforward details.

In order to state and prove a more general version of Proposition 1.0, and
prove Theorem 2.0, it is necessary to define a weighting function for an

Ž .isotropic block tree. As remarked earlier, given such a tree, G s G H, K , we
can arrange it so that each block of type H has one block of type K as its
parent and h y 1 such blocks as children. Each block of type K has one block
of type H as a parent and k y 1 such blocks as children. We assign levels to
the blocks in such a way that the levels only change every other generation:
the initial copy of H has level 0 and each copy of H at level i has
Ž .Ž .h y 1 k y 1 grandchildren at level i q 1 and one grandparent at level
i y 1. The level of a block of type K is declared to be equal to the level of the

Ž . Žblocks of type H immediately below it. Given a block B with level l B B is
.regarded as a subgraph of G; it is either a copy of H or a copy of K , we

define its weight to be

w B s a lŽB . .Ž .a

The weight of a set of vertices, S, is defined to be the sum of the weights of all
the blocks whose intersection with S is non-empty. Note that this is rather
generous, since some vertices belong to more than one block. Having made
these definitions, it is easy to establish the following result, whose proof is a
very slight extension of the proof of Proposition 1.0.

Ž .PROPOSITION 2.2. Let G s H, K be an isotropic block tree arranged in
the manner described above and let w be a weighting function. Let B consista

Ž .of those vertices in the initial copy of H, G H, K , together with those vertices0
Ž . Bin the copy of K immediately above it in the arrangement of G H, K . Let j t

be the contact process on G with parameter l and starting set B. Suppose that
for some t ) 0,0

E w j B s b - 1.Ž .ž /a t0

Then

P ' T s.t . ; t G T , B l j B s B s 1,Ž .t

so, a fortiori, l G l.2

With all the ingredients in place, it is very easy to imitate the proof of
w x'Theorem 1.3 with a choice of a s 1r h y 1 k y 1 to prove TheoremŽ . Ž .

2.0, although the precise details are rather more tedious and we omit them.
Let us also comment that one consequence of Theorem 2.0 is that all isotropic
block trees with exponential growth have a type of discontinuous second
phase transition; the proof of this is an easy adaptation of the corresponding

w Ž .xproof for homogeneous trees Madras and Schinazi 1992 .
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The proof that we have given for the existence of two phase transitions
seems to rely strongly on properties of periodicity and isotropy possessed by
the graphs in question. As we have already commented, an intermediate
phase should exist for a much broader class of graphs. As well as making a

Ž .conjecture to this effect, Pemantle 1992 discusses two specific types of trees
for which the result should hold. One is a class of periodic trees, constructed
in a similar way to our construction of isotropic block trees. However, there
are many examples of these periodic trees which are not sufficiently isotropic

Žto look like an isotropic block tree or even like a branch of an isotropic block
.tree . One of the simplest examples is a rooted tree in which all vertices in the

same generation have the same number of offspring, that number cycling
from two to three to four and back to two again. The fact that we cannot
prove l - l even for such a simple graph indicates a significant limitation1 2
on the power of our current techniques.

Ž .The second particular class of graphs discussed by Pemantle 1992 con-
sists of the Galton]Watson trees generated by a branching process. Although
any one such tree is likely to be highly irregular, the space of all such trees
Ž .for a given branching process is stochastically regular in the sense that the
descendants of any two particles have the same distribution. Given a branch-
ing process with a positive chance of survival, it is not hard to see that,

Žconditional on survival, the critical values are deterministic i.e., the same for
.almost all trees generated by the process so one can talk about critical values

w Ž .for the branching process itself see Pemantle 1992 for one result along
x Ž .these lines . We have not been able to show that l - l for any non-trivial1 2

branching process, but it is hoped that the techniques of this paper will prove
to be a useful tool in doing so.
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