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BOUNDEDNESS OF LEVEL LINES FOR
TWO-DIMENSIONAL RANDOM FIELDS

BY KENNETH S. ALEXANDER

University of Southern California

Every two-dimensional incompressible flow follows the level lines of
some scalar function c on R2 ; transport properties of the flow depend in
part on whether all level lines are bounded. We study the structure of the
level lines when c is a stationary random field. We show that under mild
hypotheses there is only one possible alternative to bounded level lines:
the ‘‘treelike’’ random fields, which, for some interval of values of a, have
a unique unbounded level line at each level a, with this line ‘‘winding
through every region of the plane.’’ If the random field has the FKG
property, then only bounded level lines are possible. For stationary C2

Gaussian random fields with covariance function decaying to 0 at `, the
treelike property is the only alternative to bounded level lines provided
the density of the absolutely continuous part of the spectral measure
decays at ` ‘‘slower than exponentially,’’ and only bounded level lines are
possible if the covariance function is nonnegative.

1. Introduction. Every two-dimensional incompressible flow, described
by its velocity field, can be represented as the curl of some scalar potential
Ž . 2c x , x g R . This means that each Lagrangian trajectory of the flow is an

Žappropriately parametrized level line of c at least provided there are no
.critical points of c on the level line . The qualitative structure of the level

lines is thus of considerable physical importance, as it determines transport
properties of the flow, such as heat propagation. Of particular interest is
whether there are unbounded trajectories, which contribute to transport, or
bounded trajectories only, which in the rescaled limit only contribute to
diffusion. In some contexts it is natural to think of the potential as random
but fixed in time. In plasma physics, for example, velocity fields can be
generated by magnetic fields which change at most very slowly with time.
This motivates our study here of the qualitative structure of the level lines of
stationary random fields.

There is an extensive physics literature on this subject, generally based on
intuition and numerical simulations. The central working hypothesis among
physicists, sometimes called the Sagdeev hypothesis, is that when the mean
of the velocity field is 0, for ‘‘typical’’ two-dimensional velocity fields the
Lagrangian trajectory containing a given point is a bounded loop a.s., so that
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w xtransport of passive particles is not possible; see the review 13 and the
references therein. The diameter of this loop should also have finite moments
of all orders. This contrasts with the assumed situation in three or more
dimensions, where unbounded trajectories ‘‘typically’’ exist.

There is a more limited rigorous mathematical literature on the subject.
� 2 Ž . 4We call a connected component of x g R : c x s a a level line of c .

w xMolchanov and Stepanov 18 showed that, under mild hypotheses, for suffi-
ciently large a the level lines at level a of a stationary Gaussian random field

w xare all bounded. Avellaneda, Elliot and Apelian 6 considered a particular
type of random field built from a randomized lattice, and established bound-
edness of all level lines and moment bounds on the diameters of trajectories.

w xAlexander and Molchanov 5 studied level line boundedness and gave mo-
ment bounds for level line diameters for shot-noise random fields with lattice
symmetry, and gave examples in which some properties considered generic in
the physics literature were violated.

w xAlexander and Molchanov 5 also considered random fields c associated
� 2 Ž . 4with stationary random infinite trees in the plane, with x g R : c x ) a

being a neighborhood of the tree, at least for an interval of values of a. One of
our main results will be that, under mild hypotheses, such ‘‘treelike’’ random
fields represent the only possible type of violation of the Sagdeev hypothesis.

w xAttention in 5 was restricted to trees in the integer lattice, but the main
example is readily modified to remove the lattice, as in the next example. We

� 2 Ž . 4 � 4 � 4abbreviate x g R : c x s a henceforth as c s a , and similarly for c ) a
� 4and c - a .

w x w x ŽEXAMPLE 1.1. It was shown in 2 and 3 that the usual definition for
.finite point sets of the minimal spanning tree can be extended in a natural

way to define the minimal spanning tree of the set V of sites of a Poisson
process of intensity 1 in the plane. We denote this tree, viewed as a union of

w xline segments in the plane, by T. In 3 it is shown that the tree T a.s. has
one topological end; that is, there is a unique path to ` in the tree from each
site in V. The tree T has a dual tree TU, defined as follows, the derivation

Ž .being ‘‘valid with probability 1.’’ For each v g V let Q v denote the polygon
� 2 Ž . Ž .4 Ž .x g R : d x, v s d x, V , where d ?, ? denotes Euclidean distance and
Ž . � Ž . 4d x, A [ inf d x, y : y g A for a point x and set A. The vertices and edges

of these polygons form a graph GU called the Voronoi diagram; we let W U

denote the set of all sites of GU, that is, the vertices of the polygons. The
Delaunay triangulation of the plane is the graph G formed by placing a bond
² : Ž . Ž .u, v between sites u, v g V if and only if Q u and Q v have an edge in
common. Each w g W U is a vertex of exactly three Voronoi polygons, say
Ž . Ž . Ž .Q x , Q y and Q z , and then x, y and z are the vertices of a triangle,

Ž . Udenoted R w , of the Delaunay triangulation. There is a bond in G between
U Ž . Ž .w, x g W if and only if R w and R x have an edge in common. The

graphs G and GU are dual: for each bond b of G there is a unique bond bU of
U ² :G to which it is perpendicular, and vice versa. Specifically, for b s u, v ,

U Ž . Ž .b is the common edge of Q u and Q v . Exactly as in the well-known case of
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finite V, T is a subtree of G. Further,

² :if b s u , v meets Q w for some w other than u and v ,Ž .1.1Ž .
then b f T .

Ž w xSee 21 for these and additional facts about the Voronoi diagram and
. U UDelaunay triangulation. We now define T to be the subgraph of G with

� U U 4 Ubonds b g G : b g G _ T ; T is also viewed as a union of line segments in
Ž . U Uthe plane; by 1.1 , T and T are disjoint. We claim that, like T, T is a

one-ended tree. To see that TU is acyclic, note that any cycle CU in GU

encloses at least one site of V. Since T spans V, some bond b of T must thus
cross CU, and then bU g CU but bU f TU, so CU o TU. To see that TU is
connected, suppose SU is a component of TU which spans only a proper

U U Ž . U
Usubset Y of the site set W . Let A [ D R w . Since S is connected,w g Y

so is A, so ­ A is a closed loop if Y U is finite, and includes a doubly infinite
path if Y U is infinite. But ­ A ; T, and T is a one-ended tree and so contains
no closed loop or doubly infinite path. Thus there can be no such SU ; that is,
TU is connected. Thus TU is a tree. To see that TU is one-ended, note that if
TU contained a doubly infinite path g and x, y g V were on opposites sides
of g , then there would be no path in T from x to y. This is impossible since T
spans V.

We now define a random field c on R2 by

c x [ d x , TU y d x , T r d x , TU q d x , T , x g R2 ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .
Ž . Uso y1 F c x F 1, c s 1 on T and c s y1 on T . The following properties

� 4are easily seen to hold for each y1 - a - 1, a.s. The set c ) a is a
neighborhood of T ; it and its complement are each unbounded and connected.

� 4 U � 4The same holds for the neighborhood c - a of T . The set c s a is a single
� 4 � 4 w xunbounded line and is the boundary of both c ) a and c - a . In 5 it was

Ž .shown for the lattice analog that the covariance function r t for c satisfies
Ž . < <r t ª 0 as t ª `; essentially the same proof yields the same result here as

well.

Ž .It is common practice to view a random field c x as representing the
elevation of a landscape at x and some constant a as the water level, so
� 4 � 4 � 4c ) a is land and c - a is water. An unbounded component of c - a is an

� 4ocean at level a; an unbounded component of c ) a is a continent at level a.
An ocean or continent is k-sided if its complement has exactly k unbounded
components.

Motivated by Example 1.1, we call a random field c on R2 treelike if there
is a nonempty interval I with endpoints y` F c F d F ` such that, with
probability 1, there is exactly one ocean and exactly one continent at each
level a g I, there is one continent and no ocean for each a - c and there is
one ocean and no continent for each a ) d. Thus a treelike random field
Ž .subject to mild regularity conditions has no k-sided oceans or continents
with k G 2.
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We say c is strongly treelike if the interval I consists of more than a single
point. Thus the random field in Example 1.1 is strongly treelike and the
corresponding flow does not satisfy the Sagdeev hypothesis.

We can now formulate the main questions we wish to consider. First,
under what hypotheses on a random field are all level lines bounded? Second,
under what weaker hypotheses can we conclude that the treelike property is
the only possible alternative to all level lines being bounded? We will pay
particular attention to the case of Gaussian processes.

2. Main results. We begin with some additional definitions. Through-
2 Ž .out, c is a continuous stationary random field on R , and r s y t [

Ž Ž . Ž .. ncov c s , c t is its covariance function. A subset of R is called increasing
if its indicator is a nondecreasing function of each coordinate separately. A
probability distribution in R n has the FKG property if every pair of increas-
ing subsets has a nonnegative correlation. The random field c has the FKG

Ž Ž Ž1.. Ž Žn...property if the distribution of c t , . . . , c t has the FKG property for
Ž1. Žn. 2 � 4all n and all t , . . . , t g R . A level line of c is a component of c s a for

some a. We say c has bounded level lines if, with probability 1, every
� 4 1connected component of c s a is bounded for every a g R. If c is C , we say

2 Ž . Ž .t g R is a critical point of c at level a if c t s a and =c t s 0, and we say
c is critically regular if, with probability 1, for each a g R there are at most
finitely many critical points of c at level a.

REMARK 2.1. Critical regularity is slightly stronger than the standard
Ž w x.property see 1 that

for each fixed a g R, with probability 1, there is no critical
2.1Ž . point at level a.

More precisely, if for some a there is a positive probability of a critical point
of c at level a, then by stationarity there is a positive probability that the set
of critical points at level a is infinite. But critical regularity of c implies
critical regularity of almost every ergodic component of c ; the same does not

Ž .hold for property 2.1 .

We say a random field is ergodic in each coordinate if it is ergodic with
respect to horizontal and vertical translation separately. Here is our first
main result, to be proved later in this section.

THEOREM 2.2. Suppose c is a stationary C1 random field on R2, ergodic
Ž .in each coordinate, with the FKG property and property 2.1 . Then c has

bounded level lines.

Modulo certain regularity conditions, for a given level a, a random field
has all level lines bounded provided there is either one ocean and no
continent, one continent and no ocean or no continent and no ocean, and the
field has the treelike property if there is one continent and one ocean. Thus
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the level line structure is closely tied to uniqueness of oceans and continents.
w xFor lattice percolation models, the concept of finite energy, originated in 20 ,

has been central in establishing uniqueness of the infinite cluster. Here we
<need an analogous concept for continuous random fields. Let c denote theA
Ž Ž . .restriction of c to the set A, and let FF denote the s-algebra s c t , t g A .A

For a continuous random field c and an open rectangle R ; R2, conditionally
c< Ž .con FF , c is a.s. a random element of C R . For g continuous on R and F aRR

Ž . � Ž .finite subset of ­R, let H R, g, F [ f g C R : f s g on ­ R, and a singleaq
� Ž . 4 4component of x g R: f x ) a contains F , that is, those functions f ,

agreeing with g on ­ R, for which every pair of points in F is connected
w Ž .together by a path in R on which f ) a. Of course, H R, g, F is emptyaq

x Ž .unless g ) a on F. Define H R, g, F similarly for f - a. We say c hasay
signed finite energy if, for each a g R, each open square R and each finite
F ; ­ R, there is a s-field GG c > FF c such thatR R

c< < cP c g H R , c , F GG ) 0Ž .Ž .R Raq R

a.s. on the event c s ) a for every s g F ,Ž .
2.2Ž .

c< < cP c g H R , c GG ) 0Ž .Ž .R R , Fay R

a.s. on the event c s - a for every s g F .Ž .
cŽ < . Ž .Note that H R, c , F is an increasing subset of C R , andRaq

Ž < c .H R, c , F is decreasing. Signed finite energy is an interpolation prop-Ray
erty; a sufficient condition for it is that

with probability 1, given FF c, the support of the distribu-R
2.3Ž . < Ž .tion of c consists of all functions in C R which agreeR

c<with c on ­R.R

Sufficient conditions for signed finite energy in the case of Gaussian processes
will be given in Section 3.

2 w xFor a, b g R let a, b denote the closed line segment from a to b. Let
Ž . Ž . 1e [ 1, 0 and e [ 0, 1 be the unit coordinate vectors. Given the C1 2

Žw x.random field c , let N a, b denote the number of critical points of thecr
Ž . Ž Ž . . w xfunction f t s c ta q 1 y t b in the interval 0, 1 . Here is our second

main result, also to be proved later in this section.

THEOREM 2.3. Suppose c is a stationary, critically regular C1 random
2 Žw x.field on R with signed finite energy satisfying EN 0, e - `, i s 1, 2. Thencr i

either c has bounded level lines or c is treelike.

The main step in proving Theorem 2.3 is establishing uniqueness of oceans
and continents. Note this uniqueness must a.s. hold simultaneously for all a,
not just hold a.s. for each fixed a. An analogous simultaneous uniqueness
property for infinite clusters in coupled percolation models was considered in
w x4 . Example 1.7 of that paper showed that even a.s. uniqueness for each fixed
a and finite energy together are not enough to guarantee a.s. simultaneous
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uniqueness. By analogy, we expect that some additional condition, like the
Žw x.requirement EN 0, e - ` in Theorem 2.3, is needed here as well, tocr i

� 4restrict how tightly packed the distinct components of c ) a can be.
Ž .The fill of a set B, denoted fill B , is the union of B and all bounded

components of B c.

REMARK 2.4. In some of our proofs it is desirable to know that a connected
set in R2 with a connected complement must have a connected boundary. For
general sets this is a difficult question involving the properties of local

w xconnectedness and simple connectedness}see 22 , Chapter 6. But when the
Ž . � 4set in question is, for example, fill Q for some component Q of c ) a anda a

c is critically regular, there is no problem, as the boundary is the image of a
continuous curve consisting of finitely many C1 segments.

To prove Theorem 2.3, we will need some preliminary results. We begin
with some observations about the level lines of treelike stationary random
fields. We say that a subset A of R2 winds through every region of R2 if

lim lim inf Ty2 1 dx s 1.H w dŽ x , A.F M x
2Mª` Tª` w xyT , T

That is, for sufficiently large M, the fraction of R2 that is within distance M
Ž .of A is close to 1. Let N A denote the number of components of a set A, let

Ž . Ž .N A denote the number of unbounded components and let N A; B denote` `

the number of unbounded components of A which intersect another set B.
Ž .Part i of the next lemma is included to support the idea that treelike fields

are an oddity rather than ‘‘typical’’; it says roughly that in a treelike random
field the coexisting ocean and continent at each level must be extremely
intertwined, as in Example 1.1, because nearly all of R2 is reasonably close to
the ‘‘beach’’ where the ocean and continent meet.

LEMMA 2.5. Suppose c is a stationary random field on R2.

Ž .i For each a g R, with probability 1, if there is a unique unbounded
level line at level a, then that level line winds through every region of R2.

1 Žw x.If c is C and critically regular and N 0, e - ` a.s., i s 1, 2, then,cr i
with probability 1, the following conclusions hold for each a g R.

Ž .ii If G is an unbounded level line at level a and R is an open rectangle,
Ž c.then N G l R G 1.`

Ž .iii If G is a neighborhood of an unbounded level line at level a, then G
contains an unbounded connected set where c ) a and an unbounded con-
nected set where c - a.

Ž . Ž .iv The following are equivalent: a There is a unique unbounded level
Ž c. Ž .line G at level a, and for every open rectangle R, N G l R s 1 or 2. ba ` a

There are a unique ocean and a unique continent at level a.
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Ž .PROOF. For part i , we may assume c is ergodic. The result is then an
Ž w ximmediate consequence of the multidimensional ergodic theorem see 15 ,

.Section 6.2 and the fact that, if A is the unique unbounded component of
� 4 Ž Ž . .c s a at some level a, then lim P d x, A F M s 1.M ª`

Ž .For ii , we may assume R is large enough to contain all critical points of c
at level a. Let S be a closed rectangle containing R in its interior, let C be a

Ž . � 4component of S _ R l c s a and fix x g C. By the inverse function theo-
Ž . � 4rem, x has a neighborhood D such that D l S _ R l c s a ; C. Let A be

� 4 Ž .a set containing one point from each component of c s a l S _ R . Then D
contains at most one point of A, so x is not an accumulation point of A; since
C and x are arbitrary, it follows that A has no accumulation points, so A is

Ž c. Ž .finite. Therefore N G l R is finite, and ii follows.
Ž .Turning to iii , let G be an unbounded level line at level a and R an open

Ž . crectangle containing all critical points of c at level a. By ii , G l R has an
unbounded connected component P. The result now follows easily from the
inverse function theorem applied at each point of P, together with local
compactness of P.

Ž .To prove iv , let R be an open rectangle containing all critical points of c
Ž .at level a. Suppose a holds. A point in the intersection of the boundaries of

� 4two components A and B of c ) a is a critical point of c , so there are no
such points outside R. If A and B are both unbounded and R is large enough

Ž c. Ž c.to intersect both A and B, then N ­ A l R G 2, N ­B l R G 2, so` `

Ž c.N G l R G 4, a contradiction, so there is at most one continent at level a;` a
Ž . Ž .by iii , there is exactly one. Similarly, there is exactly one ocean; that is, b

holds.
Ž .Conversely suppose b holds, and let Q be the unique continent at levela

Ž .c ca. Note that the components of fill Q are the unbounded components of Q .a a
Ž .c cLet A and B be components of fill Q . Let C be the component of Q in A ,a a

and let D / A be a component of Qc. Then ­ D ; ­ Q l D, so the latter isa a
nonempty and we must have D ; C. Since D is arbitrary this means C s Ac,

c c Žso A is connected. Since A and A are unbounded and connected cf.
. Ž .Remark 2.4 so is ­ A. By iii , A contains an ocean; similarly so does B, so

Ž . Ž .A s B is unique, and ­ A s ­ fill Q . Let G be the component of ­ fill Q ina a a
� 4 X � 4 Xc s a . If G is any unbounded component of c s a , then G ; A bya a

Ž . Xuniqueness of A, but, by iii , every neighborhood of G meets an ocean, soa
G

X ; ­ A and hence G
X s G . This proves uniqueness of the unbounded levela a a

Ž c. cline. If N G l R ) 2, then, after enlarging R if necessary, G l R in-` a a
1 Ž .cludes three or more disjoint C paths from ­ R to `, and, by the proof of iii ,

each of these paths has an ocean on one side and a continent on the other.
� 4 cThis means c ) a l R has two unbounded components A and A inter-1 2

� 4 csecting ­R, and c - a l R has two unbounded components B and B1 2
intersecting ­ R, arranged so that, traversing ­ R clockwise, we enter A ,1
then B , then A and then B . Since A and A are part of the unique ocean1 2 2 1 2
Q , they are connected together inside R; similarly so are B and B . Buta 1 2

Ž c.this is impossible, so N G l R s 2. I` a
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We call a square R ; R2 a branch node of a set A ; R2 if there are three
or more unbounded components of A l Rc, each containing a path from ­ R

wto `, which are all part of a single component of A. Here by a path from ­ R
w . 2to ` we mean the image of a continuous mapping g : 0, ` ª R with

Ž . < Ž . <g 0 g ­R and g u ª ` as u ª `. Such a path need not exist even if A is
xconnected, unbounded and open, and A meets ­ R. Recall that an unbounded

connected open set is called k-sided if its complement has exactly k un-
Ž . Ž .2 wbounded components. Let L x denote the translate x q yM, M orM

Ž .d xx q yM, M if we are in general dimension d . We call a function A on a
probability space for which the values are open subsets of R2 a random open

w x 2 2set if the event B ; A is measurable for each open ball B in R . Since R is
separable, this is sufficient to make all events in the next lemma and its proof
measurable. The proof is an adaptation of the proof of the main theorem of
w x8 .

LEMMA 2.6. Suppose A is a stationary random open set in R2 with
Žw x .EN 0, e l A - `, i s 1, 2. Then, with probability 1, there are no branchi

nodes of A in R2.

PROOF. We may assume A is ergodic. If a given square is a branch node,
then so is any square containing it. Therefore is it enough to show that
Ž Ž . .P L 0 is a branch node s 0 for all M ) 0. Fix M ) 0 and let B be theM k

Ž . 2number of branch nodes of A of the form L 2 Mx , x g Z , contained inM
Ž . w xL 0 . Then, as in the lattice analog in 8 ,Ž2 kq1.M

c
N ­L 0 l A G N L 0 l A; ­L 0 G B q 2.Ž . Ž . Ž .Ž . ž /Ž2 kq1.M ` Ž2 kq1.M Ž2 kq1.M k

Now

w xEN ­L 0 l A F 2 M 2k q 1 EN 0, e l AŽ . Ž . Ž .Ž .Ž2 kq1.M 1

w xq 2 M 2k q 1 EN 0, e l A ,Ž . Ž .2

so letting k ª `,

E lim inf B rk F lim sup EB rk F lim sup EN ­L 0 l A rk - `,Ž .Ž .k k Ž2 kq1.M

and therefore,

2.4 lim inf B rk - ` a.s.Ž . k

Ž w x .But, by the multidimensional ergodic theorem see 15 , Section 6.2 ,
22.5 lim B r 2k q 1 s P L 0 is a branch node a.s.Ž . Ž . Ž .Ž .k M

kª`

Ž . Ž . Ž Ž . .Together, 2.4 and 2.5 yield P L 0 is a branch node s 0. IM

The next proposition will be used here only to avoid certain technicalities,
but we include it because it may be of independent interest. It is related to
w x4 , Lemma 2.2, which says roughly that in stationary random graphs, any
property of a vertex that occurs for only finitely many vertices in each infinite
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w xcomponent actually never occurs. It is also similar in spirit to 11 , Lemma 8.
Ž .Let card B denote the cardinality of a set B.

PROPOSITION 2.7. Suppose L is a stationary random open set in R d,
satisfying

2.6 EN L ; V - ` for some bounded rectangle V ; R d .Ž . Ž .`

Then, with probability 1,

every unbounded component of L has infinite volume,2.7Ž .
d Žand for every locally finite stationary point process X in R viewed as a

d .countable subset of R , with probability 1,

2.8 card X l C s 0 or ` for every unbounded component C of L .Ž . Ž .

Ž . Ž .PROOF. Observe that 2.7 follows from 2.8 when we take X to be a
Ž .Poisson process independent of L. Therefore we will prove 2.8 . Also, since

Ž .N L; ? is monotone and subadditive as a set function, we may replace`

Ž . Ž .‘‘some’’ with ‘‘every’’ in 2.6 . Further, we may assume the pair L, X is
ergodic.

Ž .Let us call a box L x a containment box if there exists an unboundedM
Ž . Ž .component C of L for which X l C ; L x . To prove 2.8 , it is sufficient toM

Ž Ž . .show that P L 0 is a containment box s 0 for all M ) 0. This can be doneM
similarly to the proof of Lemma 2.6. Fix M ) 0 and let B be the number ofk

Ž . d Ž .containment boxes of the form L 2 Mx , x g Z , contained in L 0 .M Ž2 kq1.M
� d Ž < < < <. 4Let V [ x g Z : max x , . . . , x s k q 1 . Thenk 1 d

d d2k q 3 y 2k q 1 EN L ; L 0Ž . Ž . Ž .Ž .Ž . M

s E N L ; L xŽ .Ž .Ý M
xgVk

G EN L ; L 0 _ L 0Ž . Ž .Ž .Ž2 kq3.M Ž2 kq1.M

G EB .k

It follows that
dP L 0 is a containment box s lim EB r 2k q 1 s 0,Ž . Ž .Ž .M k

k

as desired. I

Ž .In 2.8 one can replace X l C with any subset X of X, so long as theC
subset X are associated with the components C in a translation-invariantC
way.

Being stationary, the random field c is a mixture of its ergodic compo-
nents. To facilitate reduction to the ergodic case, we need the next result, an

w x Žimmediate consequence of 4 , Lemma 2.1, once it is adapted straightfor-
. w xwardly to the present situation. The result 4 , Lemma 2.1, in turn, is an

w xanalog of 11 , Lemma 1.
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LEMMA 2.8. If c is a stationary random field with signed finite energy,
then every ergodic component of c has signed finite energy.

Let A8 denote the interior of A.

REMARK 2.9. For a critically regular stationary random field c and a fixed
level a, by Remark 2.1 there are a.s. no critical points of c at level a. For

� 4 cA s c ) a , this means that, for each component C of A or A and each
Ž . 1component G of ­ C, the following holds: i G is C -diffeomorphic to R if G is

1 Ž .unbounded, and to S if G is bounded; ii every neighborhood of G contains a
smaller neighborhood which is the union of an open connected subset of A,

c Ž .an open connected subset of A and G itself; and iii C8 is connected.
Further, only finitely many components of A or Ac can intersect a given
bounded region. We call any set A with these properties structurally regular.

cNote A is structurally regular if and only if A is, and in this case both A
and A8 are structurally regular.

REMARK 2.10. If A is structurally regular and some component C of A is
k-sided with k G 3, then any open square which intersects at least three
unbounded components of C c is a branch node of A.

� 4We next prove a.s. uniqueness of the unbounded component of c ) a for
each fixed a. Later this will be used to help establish a.s. simultaneous
uniqueness for all a. In comparing hypotheses of this and other lemmas, it is
useful to observe that

w x w x� 42.9 N 0, e l c ) a F N 0, e q 2 for all a g R.Ž . Ž . Ž .i cr i

w x w xThe following proof is adapted from analogous results in 19 and 8 .

LEMMA 2.11. Suppose c is a stationary, critically regular C1 random field
Žw x.with signed finite energy satisfying EN 0, e - `, i s 1, 2. For each a g R,cr i

� 4with probability 1, c ) a has at most one unbounded component.

PROOF. By Lemma 2.8 we may assume c is ergodic. Fix a g R. Then
Ž� 4.there is an n such that N c ) a s n a.s. Suppose 2 F n - `. If R is a`

sufficiently large open square, then there is a positive probability that R
intersects all n unbounded components, and hence a positive probability of

� 4 cthe event that there are n or more unbounded components of c ) a l R ,
and all of them intersect ­R. Because of signed finite energy, given the latter
event, there is a positive probability that the n or more unbounded compo-

� 4 c � 4nents of c ) a l R are all part of a single component of c ) a , in which
Ž� 4.case N c ) a s 1, a contradiction. Thus n s 0, 1 or `.`

If n s `, then for a sufficiently large open square R there is a positive
� 4probability that R intersects at least three distinct components of c ) a ,

and hence a positive probability of the event D that there are at least three
� 4 c � 4unbounded components of c ) a l R which intersect ­R. Since c ) a is
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a.s. structurally regular in the sense of Remark 2.9, each unbounded compo-
� 4 cnent of c ) a l R then contains a path from ­R to `. Because of signed

finite energy, given the latter event, there is a positive probability that three
� 4 cor more unbounded components of c ) a l R are all part of a single

� 4 � 4component of c ) a , in which case R is a branch node of c ) a . Thus, by
Ž .Lemma 2.6 and 2.9 , we do not have n s `, and the lemma follows. I

We will need the following topological fact. To keep things simple, we make
much stronger regularity assumptions than are really necessary.

LEMMA 2.12. Suppose A ; R2 is open and structurally regular and every
Ž .ccomponent of A is unbounded and one-sided. Then fill A is unbounded and

connected.

PROOF. Let CC be the set of all components of A, and fix C g CC. Let D be0
Ž . Ž .c � Ž .the component of ­ fill C in fill A , and let E [ D j D fill C : C g CC,0

Ž . 4 Ž . Ž .­ fill C l D / B . Since ­ fill C is connected for C g CC, if ­ fill C l D / B,
Ž . Ž .then ­ fill C ; D. Since A is open, so is fill A , so D is closed.

We claim that E is closed. Since each bounded region intersects at most
finitely many C g CC, a limit point x of E is either a limit point of D or a

Ž .limit point of some C g CC with ­ fill C l D / B. In the first case we have
Ž . Ž .x g D. In the second case we have either x g fill C or x g ­ fill C ; D. In

both cases x g E, so E is closed.
� Ž . Ž . 4We claim that E is open. Since D fill C : C g CC, ­ fill C l D / B is

open, it is sufficient to show that a fixed y g D is not a limit point of Ec. Let
R be a square centered at y. There are at most finitely many components of

Ž .cfill A l R, and these are separated by strictly positive distances, so y is not
Ž .c c � Ž .a limit point of fill A l D . If y is a limit point of D fill C : C g CC,

Ž . 4­ fill C l D s B , then, since each bounded region intersects only finitely
Ž . Ž .many sets fill C with C g CC, y must be a limit point of fill C for a single

Ž . Ž . Ž .C g CC with ­ fill C l D s B. But then y f ­ fill C and y f fill C , a con-
tradiction. Thus y is not a limit point of Ec.

2 Ž .c Ž .Therefore E s R , meaning fill A s D which is connected. Since ­ fill C0
is unbounded, so is D. I

� Ž� 4. 4 X � Ž� 4.Let a [ sup a: N c ) a G 1 a.s. and a [ inf a g R: N c - a G 1c ` c `

4 w xa.s. . The following simultaneous-uniqueness result is related to 4 , Theorem
1.8, but the proof is simpler here because we work in two dimensions only.

PROPOSITION 2.13. Suppose c is a stationary, critically regular C1 ran-
dom field on R2 with signed finite energy satisfying

w x2.10 EN 0, e - `, i s 1, 2.Ž . Ž .cr i

Then

� 4P for each a g R, c ) a has at most one unbounded component s 1.
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Ž .PROOF. By Lemma 2.8 we may assume c is ergodic. By Lemma 2.5 iii ,
Ž .Remark 2.1 and Lemma 2.11 applied to both c and yc , with probability 1,

� 4for each q g Q there exist no critical points at level q, so c ) q is struc-
� 4turally regular, and c ) q has at most one unbounded component, with that

� 4component, if any, being zero-sided or one-sided. Since c ) a decreases as a
increases, the conclusion of the proposition a.s. holds simultaneously for all
a ) a . Therefore we assume a ) y`.c c

�� 4 4The following is valid with probability 1. Since c ) q : q g Q, q - a is ac
nested collection of connected sets, for each real a - a there exists a uniquec

� 4unbounded component M of c ) a containing every unbounded componenta
� 4of c ) b for every real b ) a; we call M the mainland continent at level a,a

� 4and call any other unbounded component of c ) a an Atlantis continent at
level a. Our goal is to show that Atlantis continents do not exist. Note that an
Atlantis continent at any level a cannot contain an unbounded component of
� 4 Žc ) b for any b ) a. An Atlantis continent at level a may be pictured as
follows: as the water level drops, at precisely level a some bounded islands
coalesce to form a new continent outside the mainland continent. But as soon
as the water level drops below a, this new continent merges with the

.mainland continent. Therefore, if x g A for some Atlantis continent A at
� � 44level a, then a s sup b: x is in an unbounded component of c ) b . In

particular, there exists at most one such a for each x; thus any two Atlantis
continents, even at different levels, are disjoint, and hence separated. If A is

Ž .an Atlantis continent at level a, then c x s a for every x g ­A.
Let H denote the union of all Atlantis continents at all levels. By critical

regularity there are at most finitely many critical points of c on the bound-
Žw x . Žw x.ary of each Atlantis continent. Now N 0, e l H F N 0, e q 2, so, byi cr i

Ž . Ž .2.10 and stationarity, we have EN ­ R l H - ` for every square R a.s., so
Ž .2.6 holds for H. By Proposition 2.7, with probability 1, there are therefore no
critical points of c on the boundary of any Atlantis continent. Hence H is
structurally regular. Therefore, by Lemma 2.6 and Remark 2.10, every At-
lantis continent is at most two-sided.

Let H denote the union of the fills of all one-sided Atlantis continents at1
all levels. As with H, H is structurally regular and hence so are H c and1 1
Ž c.H 8. Let us show that one-sided Atlantis continents do not exist. By Lemma1

c Ž .c Ž c.2.12, H s fill H is unbounded and connected, hence so is H 8. Since1 1 1
Žw x Ž c. . Žw x. Ž .N 0, e l H 8 F N 0, e q 2, 2.10 , Lemma 2.6 and Remark 2.10 showi 1 cr i

Ž c.that H 8 is at most two-sided, so there are at most two one-sided Atlantis1
continents. If there are only one or two one-sided Atlantis continents, then, by
ergodicity, there is a constant c such that the level of the lowest one-sided
Atlantis continent is c a.s. But, by Lemma 2.11, there are a.s. no Atlantis
continents at level c, so there are a.s. no one-sided Atlantis continents.

It remains to rule out two-sided Atlantis continents. Fix q - a and let QQc q
be the set of all two-sided Atlantis continents at levels less than q. Suppose

Ž .QQ is nonempty, so that M is one-sided. Let G [ ­ fill M be the uniqueq q q q
unbounded component of ­M . Fix B g QQ , and let g be a path from G to ­ Bq q q

Ž .cin M j B consisting of finitely many horizontal and vertical line segmentsq
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w x Žw x.c, d , each necessarily with N c, d - `. The latter condition means thatcr
g can intersect only finitely many Atlantis continents, so there exists A g QQq
for which there is a path from ­ A to G which intersects no two-sidedq
Atlantis continent. Let us call such an Atlantis continent q-adjacent.

Let J be the union of M and the fills of all q-adjacent Atlantis conti-q q
nents, and let C be the component of J c which contains G . As with H, J c isq q q
structurally regular. If A is the fill of a q-adjacent Atlantis continent, then

Ž .there is a path from a necessarily unbounded component G of ­ A to GA q
which intersects no two-sided Atlantis continent, so this path is contained in
C. Therefore G ; ­ C. Since A is arbitrary, if there are n F ` q-adjacentA

Ž .Atlantis continents, this means C, and hence C8, are at least n q 1 -sided.
Žw x . Žw x. Ž .But N 0, e l C8 F N 0, e q 1, so, by 2.10 , Lemma 2.6 and Remarki cr i

2.10, we must have n F 1. But, as with one-sided Atlantis continents, there
cannot be a.s. only one q-adjacent Atlantis continent, so QQ must be emptyq
a.s. Since q - a is arbitrary, there are a.s. no two-sided Atlantis continentsc
having level below a . By Lemma 2.11 there are a.s. no Atlantis continents atc
level a , so there are a.s. no two-sided Atlantis continents at any level. Ic

PROOF OF THEOREM 2.3. By Lemma 2.8 we may assume c is ergodic.
If aX - a , then from Proposition 2.13, applied to c and yc , we see that,c c

Ž X .with probability 1, for each a g a , a there is a unique continent and ac c
unique ocean, while for a ) a there is one ocean and no continent and forc
a - aX there is a continent and no ocean. Thus c is strongly treelike.c

If aX s a , then at level a either there is one continent and one ocean, inc c c
which case c is treelike, or one of the two does not exist, in which case

Ž .Lemma 2.5 iii shows that c has bounded level lines.
If aX ) a , then for each a g R oceans and continents do not coexist, so, byc c

Ž .Lemma 2.5 iii c has bounded level lines. I

Ž� 4.PROOF OF THEOREM 2.2. Fix a g R, and suppose N c ) a G 1 a.s. Since`

� 4 Žw x � 4.c ) a is open, we have P 0, he ; c ) a ) 0, i s 1, 2, for some h ) 0. Byi
the FKG property, the same is true for every h ) 0. With this observation,

w xthe proof of the main theorem of 12 goes through essentially unchanged to
2 � 4show that, with probability 1, every square R ; R is encircled by c ) a

w 1 � 4 ci.e., there is a continuous mapping g of S into c ) a l R such that R is
2 Ž 1.xin a bounded component of R _ g S . Therefore, with probability 1, at level

a there is exactly one continent and no ocean. Thus a - a implies a F aX , soc c
a F aX . If b - a - aX , then an unbounded level line at level b would be partc c c
of an ocean at level a, so, since a - aX is arbitrary,c

P there exists an unbounded level line at some level b - aX s 0,Ž .c

and similarly

P there exists an unbounded level line at some level b ) a s 0.Ž .c

It remains to consider the level a when a s aX . Since continents and oceansc c c
Ž . � 4a.s. do not coexist at level a , and, by 2.1 , c ) a is a.s. structurallyc c
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Ž .regular, as in Lemma 2.5 iii , we have a.s. only bounded level lines at level ac
as well. I

3. Gaussian random fields. We consider now conditions under which a
Gaussian random field satisfies the hypotheses of Theorem 2.2 or 2.3. Suffi-
cient conditions for the C1 hypothesis are summarized in the next lemma;

Ž w x w x.these are standard see 1 and 23 so we include no proof. We denote first-
Ž 2and second-order partial derivatives of c when existing at least in the L

. Ž . Ž .sense and of r using subscripts; for example, c t s ­cr­ t and c t si i i j

­ 2cr­ t ­ t . We denote the spectral measure of c by D and write logqx fori j
Ž .max log x, 0 .

LEMMA 3.1. For a stationary Gaussian random field c on R2, the follow-
ing are equivalent:

Ž . Ž .i r 0 exists and is finite for all i;i i
Ž . Ž .ii r t exists and is finite for all t, i and j;i j
Ž . Ž . 2iii c t is differentiable at every t in the L sense;
Ž . Ž . Ž . T Ž < <2 .iv r t s r 0 y t Str2 q o t as t ª 0 for some nonnegative defi-

nite S;
Ž . < <2 Ž .2v H x dD x - `.R

Ž . Ž . 2Under i ] v the L partial derivatives have covariances

3.1 cov c t , c s s r t y sŽ . Ž . Ž . Ž .Ž .i i

and

3.2 cov c t , c s s yr t y sŽ . Ž . Ž . Ž .Ž .i j i j

and c has spectral measurei

dD x s x 2 dD x .Ž . Ž .Ž i. i

If also

Ž .y 1q«3.3 sup r 0 y r he s O log 1ru as u ª 0, i s 1, 2,Ž . Ž . Ž . Ž .Ž .i i i i i
< <h Fu

for some « ) 0, then c has a version which is C1. A sufficient condition for
Ž .3.3 is

Ž .1q«2 q< < < <x log x dD x - `.Ž .Ž .H
2R

COROLLARY 3.2. For a stationary Gaussian random field c on R2, if

Ž .y 1q«sup r 0 y r he s O log 1ru as u ª 0,Ž . Ž .Ž . Ž .i i j j i i j j j
< <h Fu3.4Ž .

i , j s 1, 2,
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for some « ) 0, then c has a version which is C 2. A sufficient condition for
Ž .3.4 is

Ž .1q«4 q< < < <x log x dD x - `.Ž .Ž .H
2R

LEMMA 3.3. For a stationary C1 Gaussian random field c on R2, if
Ž . 2property 2.1 does not hold, then c is a.s. constant on R .

Ž . w xPROOF. Suppose 2.1 does not hold. By 1 , Theorem 3.2.1, the covariance
Ž Ž . Ž . Ž .. Ž .matrix of c 0 , c 0 , c 0 is singular. From 3.1 , this means that either1 2

Ž . w Ž . Ž . x Ž .r 0 s 0 in which case c t s Ec 0 for all t a.s. or r 0 ) 0 and there is a
2 Ž Ž . Ž ..nonzero v g R such that c 0 , c 0 ? v s 0 a.s. In the latter case, we may1 2

assume v s e , and then c is a.s. constant on every horizontal line; that is,1
ŽŽ .. Ž . 1c t , t s Z t a.s. for some C stationary Gaussian process Z on R. Now1 2 2

Ž . w x2.1 must also fail for Z, so, by 1 , Theorem 3.2.1, the covariance matrix of
Ž Ž . XŽ .. Ž . XŽ .Z 0 , Z 0 is singular, which, by 3.1 , means we have Z 0 s 0 a.s. There-
fore Z, and hence c , are a.s. constant. I

It is now a simple matter to give conditions for the application of Theorem
2.2}the main requirement is nonnegative correlations.

THEOREM 3.4. Suppose c is a stationary C1 Gaussian random field on R2

Ž . Ž . Ž . < <with r 0 ) 0, r t G 0 for all t and r t ª 0 as t ª `. Then c has
bounded level lines.

w x Ž .PROOF. It is proved in 9 that, in the one-dimensional case, r t ª 0 as
< < w xt ª ` implies ergodicity. As pointed out by Adler 1 , Theorem 6.5.4, the
same proof applies in all dimensions, and in fact it yields ergodicity in each
coordinate, since all that is needed is that an arbitrary event can be approxi-
mated by a finite-dimensional event, and any finite-dimensional event is

Ž .asymptotically independent of its translates in a fixed direction when r t ª 0
< <as t ª `.

w xSince r G 0, by a result of Pitt 20 , c has the FKG property. By the
Ž .preceding remarks c is ergodic in each coordinate. By Lemma 3.3, 2.1 holds.

The conclusion now follows from Theorem 2.2. I

1 2 Ž .LEMMA 3.5. If c is a C Gaussian random field on R with r 0 ) 0 and
Ž . < < Ž . Ž . < <r t ª 0 as t ª `, then r t ª 0 and r t ª 0 as t ª `, i, j s 1, 2. If ci i j

2 Ž Ž . Ž . Ž ..is also C , then the distribution of c t , c t , c t is nondegenerate.11 12 22

Ž .PROOF. The first statement follows easily from the fact that, by 3.1 and
Ž .3.2 , r and r are both uniformly continuous functions. For the secondi i j

Ž .statement, observe that, by 3.2 , the determinant of the covariance matrix
Ž2. Ž Ž . Ž . Ž .. Ž .w Ž . Ž . Ž .2 xS of c t , c t , c t is r 0 r 0 r 0 y r 0 . If11 12 22 1122 1111 2222 1122

0 s r 0 s x 2 x 2 dD x ,Ž . Ž .H1122 1 2
2R
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then D is concentrated on the axes, so c can be expressed as the sum of two
orthogonal stationary processes, each corresponding to the portion of D on

ŽŽ .. Ž . Ž . ŽŽ .. ŽŽ .. ŽŽone axis: c t , t s a t q b t . But then r r, 0 q r 0, r y r r,1 2 1 2
.. Ž Ž .. Ž Ž .. ŽŽ .. Ž . < <r s var a 0 q var b 0 s r 0, 0 for all r g R, so r t ¢ 0 as t ª `. If

20 s r 0 r 0 y r 0Ž . Ž . Ž .1111 2222 1122

2
4 4 2 2s x dD x x dD x y x x dD x ,Ž . Ž . Ž .H H H1 2 1 2ž / ž / ž /2 2 2R R R

2 2 Ž . 2 2 Ž .then there exists c such that x s cx a.e. D or cx s x a.e. D ; we may1 2 1 2
Ž . Ž . Ž .assume the former. If c - 0, then x s x s 0 a.e. D so r t s r 0 for all t.1 2

Ž . ŽŽ .. ŽŽ .. Ž .If c s 0, then x s 0 a.e. D so r r, 0 s r 0, 0 for all r so r t ¢ 0 as1
< < 1r2t ª `. If c ) 0, then D is concentrated on the lines x s c x and x s1 2 1
yc1r2 x , and, analogously to the above case of D concentrated on the axes,2

Ž . < < Ž . < <we obtain r t ¢ 0 as t ª `. Thus, when r t ª 0 as t ª `, we have
Ž Ž2..det S / 0. I

Ž .Let diag l , . . . , l denote the diagonal matrix with diagonal entries1 n
l , . . . , l .1 n

2 2 Ž .LEMMA 3.6. If c is a C Gaussian random field on R with r 0 ) 0 and
Ž . < <r t ª 0 as t ª `, then c is critically regular.

Ž .PROOF. If the matrix S of Lemma 3.1 iv is singular, then the directional
derivative of c at 0 in some direction v is 0 a.s. We may assume v s e ; then,1

Ž . Ž . Ž .by 3.2 , c t s 0 for all t, so c is constant on horizontal lines, so r t ¢ 01
< <as t ª `. Thus S is nonsingular. By rotating axes if necessary, we may

Ž . Ž Ž . Ž ..assume 0 s S s yr 0 s cov c t , c t .12 12 1 2
Ž Ž . Ž . Ž ..By Lemma 3.5 the distribution of c t , c t , c t is nondegenerate,11 12 22

w xso, by 7 , Corollary 3.1, there are a.s. at most finitely many critical points of
c in each bounded region. Define w: R4 ª R5 by

w s, t [ c t y c s , c t , c s , c t , c s , s, t g R2 .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 1 2 2

Ž . Ž . < < Ž .By 3.1 , 3.2 and Lemma 3.5, as t y s ª ` the covariance matrix of w s, t
Ž Ž . .converges to diag 2 r 0 , S , S , S , S which has strictly positive deter-11 11 22 22

minant. Therefore, for sufficiently large M and all N ) M, the density of
Ž . Ž . �Ž .w s,t is bounded, uniformly for s, t in the compact set K [ s, t gM N
2 2 w x2 w x2 Ž .24R = R : s g yN, N , t y s g yN, N _ yM, M . Although the pro-

w xcess w is not stationary, the proof of 1 , Theorem 3.2.1, still applies, so there
Ž . Ž .are a.s. no points s, t g K where w s, t s 0. Since N is arbitrary, thisM N

means there are a.s. no two critical points s and t of c at the same level with
Ž .2t y s f yM, M . As there are a.s. at most finitely many critical points of c

in each bounded region, the lemma follows. I
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We continue with a fact from harmonic analysis. Let m denote Lebesguen
n Ž .measure on R , let supp f denote the support of a function f and let

y1ˇf x [ 2p exp yit ? x f t dtŽ . Ž . Ž . Ž .H
nR

2Ž .denote the inverse Fourier transform of f for f g L m .n

Žw x w x .LEMMA 3.7 16 ; see 10 , page 138 . Suppose « ) 0 and s is a positive
w .nonincreasing function on 0, ` satisfying

` log s xŽ .
3.5 dx ) y`.Ž . H 2x q 10

Then there exists a continuous function f : R ª C, not identically 0, such that
ˇŽ . w x < Ž . < Ž < <.supp f ; y« , « and f x F s x for all x.

2 w .Given nonnegative functions f on R and s on 0, ` , we say s is a radial
Ž . Ž < <.nonincreasing minorant of f if s is nonincreasing and f x G s x for all

x g R2. Let D
X denote the density of the absolutely continuous part of D. The

next result says roughly that the main condition for signed finite energy is
that D

X not decay too fast at `.

PROPOSITION 3.8. Suppose c is a stationary continuous Gaussian random
field on R2 such that D

X has a radial nonincreasing minorant s satisfying
Ž .3.5 . Then c has signed finite energy.

Note, in particular, that the required radial nonincreasing minorant exists
provided D

X is bounded away from 0 on compact sets and decays only
polynomially fast at `, for example, if D

X is nonzero and rational.
Before proving this result let us put it in the context of interpolation

theory. We say that c has perfect interpolation if, for every open square R, c
c Ž Ž . < .cis determined on R by its values on R ; more precisely, if var c t FF s 0R

for all t g R. In general, one would not expect c to have signed finite energy
w xif c has perfect interpolation. From 10 , a sufficient condition for perfect

interpolation in one dimension is that

`
Xlog D xŽ .

dx s y`.H 2x q 10

Ž .Thus it seems unlikely that 3.5 can be improved much; an optimal result
might be that the absence of perfect interpolation implies signed finite
energy.

n ˜ pŽ . Ž . 5 5 Ž .For a function f on R , define f x [ f yx , let f denote the L m -p n
Ž . Ž n.norm of f and recall that supp f denotes the support of f. For a C R -
Ž .valued random process Z, supp Z denotes the support of the distribution ofC

Ž n.Z in C R .
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PROOF OF PROPOSITION 3.8. We begin with a sketch of the proof. Given an
open square R and a s-field GG c > FF c, we can decompose c into a sum of twoR R
independent Gaussian processes:

< cc s E c GG q c ,Ž .R R

Ž < . Ž . Žcwith c [ c y E c GG . The easiest case is when supp c which is non-R R C R
.random includes a function g which is strictly positive on R. Then, given

Ž < .c cGG , the support of the distribution of c includes E c GG q Mg for arbitrar-R R
Ž .ily large M, since supp c is a vector space. This, in turn, yields the finiteC R

energy property fairly directly. Unfortunately, there is no reason in general
Ž .why supp c should include such a function g . But we can instead look forC R

a Gaussian process X which does have the desired property}the existence of
Ž .a function g in supp X which is strictly positive on R, where X is theC R R

analog of c }and which ‘‘lies underneath’’ c in the sense that c can beR
Ž .decomposed as c s X q Y for some process Y independent of X. Under 3.5

we will construct such an X.
Ž . Ž .Turning to the details, first fix T ) 0. Since 3.5 also holds for a x [

1r4Ž . Ž .s 4 x in place of s x , by Lemma 3.7 there exists a continuous function
ˇŽ . w x < Ž . < Ž < <.f : R ª C such that B / supp f ; yTr4, Tr4 and f x F a x for all x.

2 ˜2 ˇ< < < < Ž Ž ..Let h [ f ) f and let u [ sup supp h , so h is nonnegative and even, h
is real and 0 - u F Tr2. Specifically,

ˇ ˇ ˇ ˜ ˇ ˜ ˇh s f ) f f )f ,Ž . Ž .ž /ž /
while

`
ˇ ˇ ˜ < < < <f ) f x F a x y u a u duŽ . Ž . Ž .Ž . Hž /

y`

`
< <s 2 a xr2 q v a xr2 y v dvŽ .Ž .H

0

< <F 2 a ? a x r2 ,Ž . Ž .1

ˇ ˜ ˇŽ .and similarly for f )f , so, for some constant c,

1r2ˇ < <h x F cs 2 x for all x .Ž . Ž .
ŽŽ .. Ž . Ž .Now define g t , t [ h t h t . Let W be a white-noise process on the1 2 1 2

open subsets of R2, that is, a mean-zero Gaussian process with

cov W A , W B s m A l B ,Ž . Ž . Ž .Ž . 2

and define the stationary Gaussian process

X t [ d g s y t W ds ,Ž . Ž . Ž .H
2R

2 4 Ž .where d ) 0 satisfies 2pd c s 0 F 1. The covariance function of X is

r X t [ d 2 g ) g t G 0,Ž . Ž . Ž .
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and the corresponding spectral measure D has a spectral density given byX

2 2X 2 ˇ ˇD x [ 2pd h x h xŽ . Ž . Ž .X 1 2

2 4 < < < <F 2pd c s 2 x s 2 xŽ . Ž .1 2

2 4 < <F 2pd c s 0 s xŽ . Ž .
F D

X x .Ž .
Therefore there exists a stationary Gaussian process Y having spectral
measure

D [ D y D .Y X

We may take X and Y independent, and construct c as

c s X q Y .
Ž Ž . Ž .. Ž Ž . Ž ..Since var X t y X s F var c t y c s for all t and s, by a result from

w x17 , we may assume X, and similarly Y, are continuous.
Ž .2 Ž Ž . Ž ..2Let R [ yT, T and Q [ y T y u , T y u . Define s-fields

WW c [ s W A : A ; Qc , A open ,Ž .Ž .Q

YY c [ s Y t : t g Rc ,Ž .Ž .R

GG c [ WW c k YY c ,R Q R

Ž Ž . c. c c cso that s X t : t g R ; WW and therefore FF ; GG . Define GaussianQ R R
processes

c c cm t [ E c t GG s E X t WW q E Y t YY ,Ž . Ž . Ž . Ž .Ž . Ž .Ž .R R Q R

c cX t [ X t y E X t GG s X t y E X t WW s d g s y t W ds ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . HR R Q
Q

c cY t [ Y t y E Y t GG s Y t y E Y t YY .Ž . Ž . Ž . Ž . Ž .Ž . Ž .R R R

Then X s Y s 0 on Rc, andR R

c s m q X q Y .R R R

Note m is GG c-measurable, while X and Y are independent of each otherR R R R
and of GG c. In particular, the distributions of X and Y , given GG c, areR R R R
nonrandom. As with X and Y, the processes m , X and Y are continuous.R R R
The covariance function of X isR

r XR s, t [ d 2 g u y t g u y s du.Ž . Ž . Ž .H
Q

XRŽ .We claim that r t, t ) 0 for all t g R. It is sufficient to show this for
t , t G 0. Then since a F Tr2 we have1 2

Tya TyaX 2 2 2Rr t , t s d h u y t du h u y t duŽ . Ž . Ž .H H1 1 1 2 2 2
t ya t ya1 2

Tyt ya Tyt ya1 22 2 2s d h u du h u du,Ž . Ž .H H
ya ya
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and it follows from the definition of a and the symmetry and continuity of h
XRŽ . XR XRŽ .that r t, t ) 0. Since r is continuous, it follows that r t, s ) 0 for all

t in a neighborhood of each fixed s g R, and therefore

g s [ r XR t , s dt ) 0 for all s g R .Ž . Ž .H
R

w Ž 2 .xThe support of the distribution of X as a random element of C R is itsR
reproducing kernel Hilbert space, that is, the uniform closure of the linear

XR� Ž . 4 Žspan of the functions r t, ? , t g R . This standard fact is an easy
consequence of the uniform convergence of the orthogonal expansion of

w x . Ž y1 2 .X }see 14 , Theorem 3.3.5. Let R [ n Z l R; it follows easily fromR n
the uniform continuity of r XR that g is the uniform limit of the functions

g [ ny2 r XR t , ? .Ž .Ýn
tgR n

Ž . Ž .Therefore g g supp X , and hence also Mg g supp X for all M g R.C R C R
Ž .Since 0 g supp Y it follows thatC R

< c3.6 P c y m q Mg - d GG ) 0 for all d ) 0 and M g R,Ž . Ž .Ž .R RR

5 5where ? denotes the sup norm over R.R
Ž .Now let F be a finite subset of ­ R and suppose c s ) a for each s g F.

Let G be the union of a collection of straight lines connecting each s g F to a
� Ž . 4 Ž . Ž .fixed t g R. Let « [ min c s y a: s g F ) 0. Since c s s m s for s g FR

and since m and g are continuous and g is strictly positive on R, if MR
is sufficiently large, then m q Mg ) a q «r2 everywhere on G. If alsoR

c5 Ž .5 < Ž < . Ž .c y m q Mg - «r2, then c g H R, c , F . The first half of 2.2R R RR aq
Ž .now follows from 3.6 ; the second half is symmetric. I

Žw x . 2LEMMA 3.9 9 , Chapter 10 . Suppose c is a stationary C Gaussian
random field on R2. For each i s 1, 2, the following are equivalent:

Ž . Žw x.i EN 0, e s `;cr i
Ž .ii c is constant on every line parallel to e ;i
Ž . Ž .iii r 0 s 0;i i
Ž . Ž . Ž .iv r ue s r 0 for all u g R.i

Ž . Ž . < < Žw x.In particular, if r 0 ) 0 and r t ª 0 as t ª `, then EN 0, e - `,cr i
i s 1, 2.

Combining the preceding results immediately yields the following suffi-
cient conditions for the application of Theorem 2.3.

THEOREM 3.10. Suppose c is a stationary C 2 Gaussian random field on
2 Ž . Ž . < < X

R with r 0 ) 0 and r t ª 0 as t ª `. If D has a radial nonincreasing
Ž .minorant s satisfying 3.5 , then either c has bounded level lines or c is

treelike.
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Heuristically, the treelike property of a random field seems to require a
kind of long-range structure that is not generally reflected in the covariance.
Based on this, we make the following conjecture; a proof, together with
Theorem 3.10, would establish a form of the Sagdeev hypothesis for a wide
class of Gaussian fields.

CONJECTURE 3.11. No stationary Gaussian random field on R2 is treelike.

Acknowledgments. The author would like to thank R. Adler, L. Pitt
and F. Bonahon for helpful conversations.
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