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DIFFUSION LIMITS FOR A NONLINEAR DENSITY
DEPENDENT SPACE-TIME POPULATION MODEL!

By DougLAs BLOUNT

Arizona State University

A population density process is constructed using approximately NI
particles performing rate N2 random walks between N cells distributed
on the unit interval. Particles give birth or die within cells, and particle
death rates are a function of the occupied cell population. With suitable
scaling, two possible limiting stochastic partial differential equations are
obtained. Both are nonlinear perturbations of the equation satisfied by the
density process of super Brownian motion.

1. Introduction. We consider a reaction—diffusion model constructed by
dividing the unit interval into N “reactor” cells of length N~ !. Approximately
NI particles are distributed among the cells. Particles independently perform
rate N2 simple random walks between cells. Within a cell each particle gives
birth at rate b; + yNI/2 and dies at rate d,n,/l + d; + yNI/2, where n,
(1 <k < N) is the number of particles in the occupied cell and b,,d;,d,,y
are fixed nonnegative parameters. Particles also immigrate into the system
according to a rate b,NNI Poisson process and are then uniformly distributed
among the N cells.

We construct a step-function-valued process X(¢) by using the rescaled
quantities n,(¢)/l, 1 < k < N, as the values for X(¢, r), where r € [0, 1) tells
which cell is being observed.

Since n,/l =(n,/NIl)/N~', we are essentially considering the density
process formed by the ratio of fraction of total mass in a cell to the length of
the cell. For the case y = 0, it was shown in Blount (1994) that by letting
[ - o as N — «, one obtains a deterministic limit satisfying the partial
differential equation (PDE)

P
(1.1) E:A‘p_dz‘/fz"‘(lh_dl)lp"'bo,
and if [ is held constant as N — o, then the limit satisfies the PDE
P
(1.2) E=A1/;—d2¢/;2+(bl—dl—dgl*1)¢+b0.

The case with y = 0 and other reaction rates is considered in Arnold and
Theodosopulu (1980), Kotelenez (1986, 1987, 1988) and the papers of Blount
(1991, 1992, 1993, 1994).
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If d, = 0 (no particle interaction), y > 0 and NI — « as N — «, then, as is
well known, one obtains a process which is the density for super Brownian
motion [see Dawson (1991), Walsh (1986) and Konno and Shiga (1988)] and
satisfies a stochastic partial differential equation (SPDE) of the form

(1.3) dy(t) = (Ay(t) + (b, —dy)p(E) + by)dt + vy (t) dW(2),

where W is a cylindrical Brownian motion on L,([0, 1]). In this paper we
show that when d, > 0 (particles interact) and y > 0 we can combine these
results by showing that by letting [ - «© as N — « one obtains a limit
satisfying the SPDE

dyp(t) = (Ag(t) —dyp?(t) + (by — dy)¢(t) + by) dt
+yvg(t) dW,

and if [ is held constant as N — o, then the limit satisfies the SPDE
dy(t) = (Ag(t) — dagp®(t) + (by —dy — dul71)P(t) + by) dt

+yv(t) dW(t).

In Section 3, (1.4) and (1.5) are given a precise meaning as integral equations
holding in C([0,T']: H_,), where H_, is a Hilbert distribution space (see
Section 2). i itself is continuous in r for ¢ > 0.

Just as for the deterministic limits (1.1) and (1.2), convergence in distribu-
tion holds in D([0,T]: L,([0,1]) with the Skorohod topology if [ — « as
N — o, and convergence holds in D([0,T']: H_,) for any « > 0 if [ is constant
as N — . Loosely speaking, holding [ constant requires that the cells be
averaged together before obtaining the diffusion process limit. If [ — « as
N — oo, then a diffusion limit occurs in each cell. In this case one obtains the
same limit as first letting [ — oo, giving a system of N coupled diffusion
processes, and then letting N — « to obtain a limit satisfying an SPDE.
Some motivation for the extra linear term d,l™' ¢ in (1.2) and (1.5) can be
seen from the case of the deterministic limit when y = 0 and [ is constant. In
this case the random walk jumps occur so much faster than reaction jumps
that one expects that cell numbers at a fixed time ¢ > 0 will be approximately
distributed as independent Poisson random variables (that this is reasonable
can be seen from the fact that only allowing random walks with no reaction
gives a stationary distribution consisting of independent Poisson random
variables). The extra term then reflects the fact that the mean and variance
are equal for a Poisson distribution. For a related grid model this reasoning
has been made more precise in Boldrighini, De Masi and Pellegrinotti (1992).

Another reason for the extra term d,/ ! ¢ can be seen from a modeling
point of view. The contribution from interaction within a cell to a cell’s death
rate is the term d,/~' n}, which leads to (2.2)—a stochastic version of (1.1)
with analogous drift terms [since R(x) = —d,x% + (b, — d)x + b,]. Thus
modeling the interaction term by direct analogy to the “macroscopic” model
(1.1) leads to the extra term for the limiting model under a low density

(1.4)

(1.5)
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assumption (I constant). Writing d,l ' n? =d,l"'(n, — Dn, + dyl ' n,
shows that at a “microscopic” level the interaction arises from pairs of
distinct neighboring particles plus a “self-interaction” term, d,l~' n,. This
causes the extra term and can be interpreted as a contribution to the death
rate from overcrowding.

We note that an analogue of the SPDE (1.4) has been obtained in Mueller
and Tribe (1993) as a limit of the long range contact process. Also, other types
of SPDE’s modeling reaction—diffusion phenomena have been derived in
Kotelenez (1992a, b). For a related nonlinear model both Blount (1993) and
Kotelenez (1988) obtain SPDE’s by proving central central limit theorems in
contrast to the diffusion process limits of this paper.

2. The stochastic model. Let b(x) = b,x + b, and d(x) = dyx?* + d; x,
where b,,d; > 0 for all i. Set R(x)=b(x) —d(x) and let {n,} be the
nonnegative integer-valued components of a jump Markov process with tran-
sition rates given by

n, - n, +1 atratelb(n,l™") + yNin,/2,
(2.1) n, —»n, —1 atrateld(n,l™')+ yNin,/2,
(ng,np.q) = (n,—1,n,,.,+1) atrate N°n,.
Here [ > 0, y > 0 and we view {n,} as a periodic sequence with period N.
Let S =1[0,1) and, for 1 <% < N, let I,(r) denote the periodic extension

(with period 1) of the indicator function for the interval [(k — 1)N !}, kN~ 1)
S. Let H" denote step functions of the form Y}_,a, I, and define

N

X(t,r) =Y ny(t)I (7).

k=1

Setting X(¢) = X(t,-) gives an H"-valued process. Note: X = X, ;, but we
suppress the subscript [ and only use N when necessary to avoid confusion.
For f € HY, let

VEf(r) =N(f(r £ N°1) = f(r))

and set

Anf(r)==V"V'f(r)=-V'V{(r)
=N2[f(r+N7Y) —2f(r) + f(r — N~ Y)].

Using Dynkin’s formula, we can write
(22)  X(t) =X(0) + [AyX(s)ds + [‘R(X(s)) ds + Z(t),
0 0

where, assuming E(X?2(0)) is finite, Z is an H"-valued martingale for the
filtration {0 (X(s): s < t)}. We have that X(¢) € HY c L,(S), but we require
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a larger state space than L,(S). Let

1, n=0,
@(r) = {‘/gcos(rrnr), n > 0 and even,

G, (r) = V2 sin(mnr), n > 0 and even.

Here {H_}, . p denotes the decreasing collection of Hilbert spaces obtained
from completion of the trigonometric polynomials in the norm

1/2

£l - [Z(<f, 0+ CF 0 P)(1 + wPm?)”

n

Note that H, = L,(S) and that if « >0, fe H_, and g € H,, then the
L,(S) inner product < -, - ) extends to

(f,8>=2(f, e g, @) + {fr (g, ¥,))

and satisfies
K, gl <Ilfll-aliglla.

Here ¢, and ¢, are eigenfunctions of A =d?/dr? with eigenvalues —f, =
—m2n?, and we need analogues for A .
We now restrict N to be odd and, for n € {0,2,..., N — 1}, define

N
¢, n(r) = k; ¢.((k = )N 1), (r),

N
P n(r) = }El 4, ((k = )N (r).

Then {gom N (), . ~(7)} form an orthonormal basis for (H?, | -|ly) and they
are eigenfunctions of A, with eigenvalues

—B,.xn= —2N?(1 — cos(wnN"1))
satisfying
(2.3) cn® < B, y <cyn®

for 0 < c¢; <cy < 0.
Note that HY c H_,, for a > 0. For f € H”, define

1/2

1l = | Z(<Fs @u, w0 + Foth w0 )L+ B w)”

n

Basic calculations show that for f € HY and « > 0,

(2.4) () fll-a, v < fll-a < cy( ) fll-a, N,

where 0 < ¢y(a) < ¢y(a) < . In particular, |fllo,y = IIfllo. Also note that
Kfe) <lfll-a nliglle,n for f, g € HY and all a.
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Let Ty(t) = exp(Ayt). Then ¢, y, ¥, y are eigenfunctions of Ty (¢) with
eigenvalues exp(— B, yt). Now (2.2) can be rewritten as

(25)  X(t) = Ty(¢)X(0) + /OtTN(t — s)R(X(s)) ds + Y(¢),

where

Y(t) = fOtTN(t — ) dZ(s).

If fe HY, g € H,, then (f,g — Pyg) =0, where Py: H, > H" is the
projection given by

N
Pyg(r) = ) N{(g,I)I,(r).
k=1

Also note that {Py ¢,, Py}, - v form an orthogonal (but not orthonormal) set
in H, and satisfy

PNQDn = an,N‘Pn,N + bn,N n,N» PNlpn = _an,NgDn,N + bn,N n,N»
where
lim (la, y =1+ b, y)) = 0.

Also Py is represented by
PNfz Z<f} gom,N>(Pm,N + <f1 dlm,N>¢lm,N

and, similarly, we define

Pn,Nf= Z <f’ (Pm,N>¢m,N+ <f’ lrlfm,N>¢m,N

m=<n
and
Pif= 2 {f0u00m + {Fy -
m=<n
Note P, can be considered as a continuous map P,: H, — H, for all a;, a,.

For f € H,, let ||fll.. = sup,|f(r)l.

We assume X is right continuous with left limits and that all the processes
are defined on the same probability space. Let F¥ denote the completion of
o(Xy(s): s < t). To analyze Z properly it is necessary to consider a larger
filtration. We take X to be constructed as a random time change of a system
of scaled and independent Poisson processes as in Chapter 11 (Section 2) of
Ethier and Kurtz (1986). With this approach we can distinguish, using (2.1),
two types of births for each n,: those which arrive at intensity /6(n,l ') and
those which arrive at intensity yNin, /2. Likewise we distinguish two types
of deaths.

Let 6X(t) =X(¢) — X(¢t —), where X(¢t —)=1im,_, , , X(s) and 86X
(0) = 0. Let 6X,, 6X, and 8X, denote those jumps in X arising from,
respectively, random walk, births or deaths associated with the intensities
Ib(n,l™ 1Y) and Id(n,l™ ') in (2.1), and births or deaths associated with the
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intensity yNin,/2 in (2.1). Here D stands for “diffusion” noise arising from
particle movement to neighboring cells through random walks. As in Blount
(1994) and Kotelenez (1988), where y = 0, R stands for “reaction” noise
arising from births or deaths associated with b(x) or d(x) in (2.1) and
contributing drift terms in (2.2). If v > 0 and b(x) = d(x) = 0, then it is
natural to have B stand for “critical branching” noise. We have kept this
notation here since it is the critical branching noise that leads to a limiting
SPDE.

Let GN denote the completion of the o-field generated by observing,
through time #, X(0) and the time changed Poisson processes used to con-
struct X. Then F¥ c G and with moment assumptions we have that

Zp(t) = L 8Xp(s) = [[AyX(x) ds,

(26) Zu(t) = L 5Xp(s) = [R(X(5)) ds,
Zp(t) = Y 8Xp(s)

are G martingales, although Z(¢) and Zz(¢) are not F measurable. Also,
if fe HY, straightforward calculations show [see Lemmas 0.1 and 1.1 of
Kotelenez (1986) and Lemmas 2.2 and 2.10 of Blount (1991)]

(Zp(s), [ — (NI fot<X(s),(V+f)2 (V) ds,
27)  (Zg(s), £ — (N fot<b(X(s)) +d(X(s)), f2) ds,

(Zy(5), " = v[(X(s), 2) ds
0

are G martingales.

Note that Z as defined in (2.2) satisfies Z = Z,, + Z, + Z5. Also note that
(Zy(),1) =0, and since Z;,, Z, and Z; arise from independent noise
sources and have (almost surely) no simultaneous jumps, E({Z(¢),1)%) =
E(Zy(0), 1)*) + EKZy(1), 1)*).

Letting

Y,(t) = [Ty(t — ) dZ,(s) forI<{D,R,B},
0
we can rewrite (2.5) as

t
X(t) =Ty(t)X(0) + | Ty(t —s)R(X(s)) ds
28) () = Tu(D) X(0) + [ Ty(t = ) R(X())
+ Yp(t) + Ye(2) + Yg(t).
Before precisely stating and proving our results in Section 3, we briefly
outline the approach.
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Let V(¢) = Ty(6)X(0) + [¢Tx(t — s)R(X(s))ds + Yz(¢). Then

(2.9) X(t) =V(t) + Yp(2) + Yg(2),
and substituting this expression for X in (2.2) gives

V(t) = X(0) + [‘AyV(s)ds + ['R(V(s)) ds

0 0
(2.10)
—dyl 7t ['V(s) ds + Z(t) + (1),
0
where £(¢) = &,(2) + ,(¢) + £5(¢) is defined by
ey(t) = fot(b1 —dy — 1 —dylt + Ay)(Yp(s) + Yr(s)) ds,
£x(t) = —dy [(Y2(5) + 2V(5)Yp(s) + 2V(5)Yg(s)
0

+2Y,(s)YR(s)) ds,

(2.11)

e5(t) = —dzfot(Yﬁ(s) — I"1X(s)) ds.

We will subsequently show that the distributions of {V} = {Vy ;} are rela-
tively compact on D([0,T]: H,) and that V is actually somewhat “smoother”
(in a spatial sense) than merely being in H,. We show

sup|lYz(¢)llo = O in probability as N — o,

¢<T
supllY,(¢)ll-, = 0 in probability as N — « for any a > 0,
t<T

supllY,(¢)llo = O in probability if I — cas N — oo,

t<T

sup (Ke(t), ¢, 01 + Ke(t), ¥,]) = 0 in probability if N — o.

t<T

As suggested by (2.7) the limiting martingale is the distributional limit of Z,
whereas Z; and Z; converge to 0 in the appropriate sense. We then use
(2.10) to identify the limiting SPDE as one of two possibilities depending on
whether [ » © as N — » or [ is constant as N — . As (2.10) indicates,
keeping [ constant contributes an extra term arising from the fact that

sup
t<T

ft<YDQ(S) —17'X(s),e,,>ds| >0
0

in probability for e,, = ¢,, or ¢,,.

3. Limit theorems. We now state our results before developing the
machinery to prove them. Let T'(¢) denote the semigroup generated by A on
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each H, and note that T'(¢)e, = exp(—B,t)e, for e, = ¢,
D(0,T]: H,)-valued martingale, we make the definition

[[T(t =) dA(s) = T [exp(~B,(¢ — ))dCA(s), @)e

or . If Aisa

+ Z/O"‘exp(—/sn(t — 5))dCA(s), bW,

and we note that integration by parts shows that the right-hand side defines
a process in D([0,T]: H,_,). The process may be smoother, depending on the
properties of A.

At various points we make the following assumptions:

AsSUMPTION A.  supy ; E(X(0),1) < o=,

AsSUMPTION Al. supy , E((X(0),1)*) < .
AssumPTION A2.  X(0) — ¢(0) in distribution on H,,.
AsSUMPTION B1. [ —» was N — .

AsSUMPTION B2. [ is constant as N — oo,

Throughout the paper we assume that

l>1,>0.

THEOREM 3.1. (i) For any T > 0, Assumptions Al, A2 and Bl imply
(X, Zp) » (¢, M) in distribution in D(0,T]: Hy X H_g) for any B> 4
where  and M have the following properties: (a) (¢, M) € C(0,T]: H, X
H_p); (b) M is a martingale with respect to the filtration {o(y(s): s < t)};

(¢) for any trigonometric polynomial f, {M, ) has quadratic variation pro-
cess

M, () = ¥ [ (w(s), £*) ds;
@ in C(0,T: H ,) N C(0,T]: H_,), for any a > 2, (4, M) satisfies
(B1)  w(t) = w(0) + [[Au(s)ds + [R(w(s)) ds +M(t);
() in C(0,T): Hy) N C(O,T): H,), for any a < %, (, M) satisfies
(3.2) w(t) =T(t)w(0) + fOtT(t — $)R(¥(s))ds + fOtT(t — ) dM(s).
(i) For any T > 0, Assumptions Al, A2 and B2 imply (X, Zy) — (, M)

in distribution in D([0,T]: H_, X H_g) for any a > 0 and B> 1. where
and M have the following properties: (a) (, M) € C(0,T]: Hy X H_,); (b) M
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is a martingale with respect to the filtration {o(y(s): s < t)}; (¢) for any
trigonometric polynomial f, {M, ) has quadratic variation process

M, () = ¥ [ C0(s), £*) ds;
(@ in C(0,T]: H_,) N C(0,T1: H_,), for any a > 3, (s, M) satisfies

w(t) = #(0) + ['Ay(s) ds
(3.3) 0

+f0t(R(¢(s)) — IV d,p(s))ds + M(t);
(e) in C(0,T]: Hy) N C(0,T1: H,), for any a < 3, (s, M) satisfies

W(2) = T(8)0(0) + [T(¢ =) (R(y(5)) =17 dyu(s)) ds
(3.4)
+ ['T(t - 5) dM(s).
0

REMARK 3.1. In the proof of Lemma 3.6 we show that
W(-) = [ T(-~s)dM(s) € C((0,T]: C([0,1])) almost surely.
0

From this result and the results of Konno and Shiga (1988) applied to
J§T(¢ — s) dM(s) the following hold:

(a) P(y(¢,r)is continuous in r for all £ > 0) = 1.
(b) ¢ can be represented as the solution of (3.1) or (3.3) with

M(1) = [ (s) dW(s)

for W a cylindrical Brownian motion on H,.

Also, distributional uniqueness for ¢ is proved in Evans and Perkins
(1994) and Tribe (1994).

Before proving Theorem 3.1 we need preliminary results.

LEMMA 3.1. (i) sup,_,{EX(t),1) < C(b,, by, TX1 + (EX(0),1)).
(ii) Elsup,_{X(t),1)] < C(b,, by, v, TX1 + (NI D21 + (EX(0),1)).
(i) Elsup, _;(X(t),1)*] < C(b,, by, v, T ECX(0),1)*) + (1 + (ND™1) x

1 + (EX(0), 1))].

Gv) [TE(IX(IIE) ds < C(by, by, v, TE(X(0),1)*) + (1 + (EX(0),1)) X

a+71"'+WND Y.

ProoF. Let X denote the process constructed as X, but with d; =dy =0
in (2.1). One can construct X and X in such a way that P(0 < X(¢#) < X(¢),
t>0)=1
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Thus it suffices to prove the lemma for X. We assume X(0) = X(0). Using a
similar decomposition as in (2.2), we have

(3.5) (X(t),1) =<(X(0),1) + blftu?(s), 1) ds + byt + (Z(t),1).
0

Taking expectations in (3.5) and applying Gronwall’s inequality proves (i).
Equation (3.5) and the fact that X > 0 imply that

E[sup(f(s),l)] <(EX(0),1) + blft<EX'(s),1> ds
0

s<t

1/2
+ byt + (E[sup(Z(t), 1>2]) .

s<t

Noting that Z,,, Z, and Z, can be defined analogously to Zp, Z; and Zz, (ii)
then follows from (i), Doob’s maximal quadratic inequality applied to Z and
(2.7) together with the paragraph following it.

Two applications of Jensen’s inequality to (3.5) imply that

sup()_((s), 1)? < 4<X(0),1>2 + bltft( sup()?( ©m), 1)?| ds
0

s<t m<S

+ b2t% + sup(Z(s),1).

s<t

After taking expectations, (iii) follows from Gronwall’s inequality, Doob’s
inequality, (i) and (2.7) together with the paragraph following it.
Applying Jensen’s inequality (twice) to (2.5) we obtain

— t — —
(3.6) IIX(t)l§ < 4(||TN(t)X(0)||3 + tjob%nX(s)n% ds + b2t2 + 1Y ()5 ).
For I € {R,D, B} and e,, y = ¢, y O ¥, y We have

<?I(t)’em,N> = /;)texp(_ﬁm,N(t - S))d<Zl(s)’ em,N>'
From this, (2.3), (2.7) and (i), we obtain

E(IYp(t)I}) < C(by, by, t)(1 + (EX(0), 1)1,

E(IIY5()lI5) < C(by, by, t)y(1 + (EX(0),1)),

E(IIYz(2)ll5) < C(by, by, )(1 + (EX(0),1))(NI) .

Also note IITN(t)X(O)IIg < 4(X(0), 1>22m exp(— B, yt). Part (iv) then follows
from Gronwall’s inequality after taking expectations and integrating using
(3.6). O
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Let I denote the identity operator on H,,.

LEMMA 3.2. Assumption A implies that, for a < 3 and every & > 0,

lim supP(supH(I — P, ) YD)l n = g) 0.

n—o N t<T

Proor. Let 7= inf{#: (X(¢#),1) > p}. Given &, Assumption A and Lemma
3.1(i1) imply there exists p(g) < © so that 7= 7(N, [, p(g)) satisfies
supy ; P(1 < T) < &. This shows that instead of Y; we may prove the lemma
for

R(t) = ['Ty(t = ) dZy(s A 7).
0
For fixed m # 0 and 0 < u < ¢, let

M(u) = me“exp(—Bm,Nu —5))d{Z5(5 A7), @0 x)-

Note that M is a mean 0 martingale on [0, #] and M(¢) = m{R(¢), qu’N>.
Also, [8M(uw)| < mK8Zg(w), @,, x| < 2/?m(NI)~* <22 /1, since m < N.In
what follows we first assume [, > 22 so |6M(w)| < 1. If 1, < 2V2%, we
replace Z, by (1,/2'/?)Zy in the proof. This will imply that |6M(u)| < 1 and,
other than slight changes in notation (some constants will now depend on /),
the proof is the same. From (2.7), M has a Meyer process (M ) satisfying

() = ym? [ X (), (0, 0) " Vexp(=2B,, (¢ = 5)) ds

< 2'ym2pf0uexp(—2ﬁm’N(t —s))ds
< cyp.
The proof of Lemma 4.4 of Blount (1992) shows
Elexp(M(t))] < exp(3c7p/2),

with the same argument applying to —M(¢). Using Markov’s inequality, we
obtain for arbitrary a and r that

P(m2“<R(t), go,mN)Q > m*2’)
=P(IM(t)|=m' ")
<P(M(t) =m'"""*) + P(=M(¢) >m'~""*)
< C(yp)exp(~mi 7).
Setting R, (t) = (R(t), ¢,y and Z, (t) = (Zp(t), ¢, x> We have

(3.7) R, (t) = —ﬁm,NfOtRm(s) ds + Z,,(t A7)
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and, from our previous calculations,
(3.8) P(m**R%(t) =m™>") < C(yp)exp(—m'~""%).
Let ¢, = kTm 2 for 0 <k < m® For ¢, <t <t,,, we have from (3.7) that

R, (t) = Ro(t) = Buon [Bo(5) ds + Z,(t A7) = Z,(t, A 7).
123
Applying Gronwall’s inequality to this shows

sup IR, (0)] < (IR(L)1+ sup 1Z,(t A7) = Z,(4, A7)l
(3.9) [E799 793 L7979y
X exp(m*ZBn%NT)
Consider the mean 0 martingale m(Z,,(¢ A 7) — Z, (¢, A T)for ¢, <t <t,,;.

Using (2.7) again and an almost identical calculation as previously for M(u),
we obtain

Elexp|m(Z,,(t,.1 A7) = Z,,(t, A 7))]] < exp(3ypT),
with the same holding for —Z,,. This shows
P| sup m**(Z,(t A7)~ Z(t, AT)) =m ™%
(3.10) [ty ts )
< 2exp(3ypT )exp(—m!'~ "™ %)

after applying Doob’s inequality to the submartingale exp[m(Z, (¢ A 7) —
Z,(t, A 7]

Since m~?B,, y < C, (3.8) and (3.10) applied to (3.9) shows [with C(T') > 0]
that

P(C(T) sup m?*R2(¢t) =m 27| < C(yp,T)exp(—m'~""%).
L798 791
In turn, this yields
P(C(T)supm2“<R(t), S m*2r)

(3.11) t<T

< C(yp,T)m?exp(—m!'~ "™ %),

and the same for ¢, 5 in place of ¢, y. For any o < ; we can choose r
so that r > 3 and « + r < 1. This implies

Ym 2 <o and Y m?exp(—m! ") < .

m m

The lemma then follows from (3.11) and the definition of the norm || - ||, 5. O

LEMMA 3.3. Let f denote ¢, n, Y, x> @ OT U, with m fixed.

() Assumption A implies lim .., Elsup,_(Zp(t), f)* +{Yp(2), Y] =0.
2(ii) Assumption Al implies limy . Elsup,_,((Zx(t), f)* + (YD),
f7)] =0.
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(iii) Under Assumption A the distributions of {Zgz} on D(0,T]: H_,) are
relatively compact for any a > ;.

(iv) Under Assumption A the distributions of {Yz} on D(0,T]: H,) are
relatively compact.

(v) Assumption A implies that for each a < & and any &> 0 there exists
ple, a) < © such that

supP(supIIYB(t)Ila,N > P) <e.
N, t<T

Proor. Since (Y;(1), ¢,> =Y (¢), P, y¢,> (and likewise for Z;) it is
enough to prove (i) and (i) for ¢,, y and ¢, y. For N> m and I € {D, R},

<Y1(t)’ f> = <Z1(t)’ f> - Bm,N/;)teXp(_Bm,N(t - S))<Z[(s)’ f> ds.
Thus sup, _KY; (), f)| < 2sup,  ,KZ,(¢), f)| and (i) and (i) follow from

(2.7), (1) and (iv) of Lemma (3.1) and Doob’s inequality.
Consider Z,. From (2.7), for f,, = ¢,, or ¢,

E[(Zy(T), £,] = y/OT<EX(s),(prm)2> ds.
This implies
E[I(I - P,)Zs(T)I%.] < minu + 72m2)’“2yf0T<EX(s),1> ds.
Also, for 0 < p < 4,
E[1Zy(t + 1) — Zy(t)I2.1GY]

< (%(1 + wzmz)a)2yE[/;t+6<X(s),1> ds|GgV].

Part (iii) then follows from Lemma 3.1(i), Doob’s inequality and a well-known
tightness condition which is stated in Theorem 8.6 and Remark 8.7(a) of
Chapter 3 of Ethier and Kurtz (1986).

Consider, for n fixed,

P, xYy(t) = P, Zy(t) + [ T(t = 5) AP, Zg(s) ds + &,(1),
0
where
ea(t) =(Poy =P Zy(t) + [ (Ty(t =5) Ay Py y = T(t —5) AP,)Zp(s) ds.
0

Since | B, x = Bul + 1o, v = @ulle + 14, v — ,ll- = 0as N — o« for m fixed
and supy ; E((Z(T),1)*) < =, basic calculations show sup, _ 7ll&,(t)ll.,x = 0
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in probability as N — « for any «. The map B: D(0,T]: H,) — D(0,T]:
H, ) defined by

BF(t) = P,f(t) + fOtT(t —$)AP, f(s) ds

is continuous for any «a;, ay,. Thus (iv) and (v) follow from (iii), our just
completed calculations, Lemma 3.2 and Problem 18 of Chapter 3 in Ethier
and Kurtz (1986). O

LEMMA 3.4. Assumptions A and A2 imply that ()—(vi) below hold. As-
sumptions A, A2 and B1 imply (vii) below holds.

(1) Given & > 0 there exists p(&,T, 1) < % such that

supP(supHX(t)llo > p) < e.
N1 ‘t<T
(i) sup, _ 7 IYR(llo — 0 in probability.
(iii) Given & > 0 there exists p(e, T, a) < % such that for each a < 2,

fOtTN(t — s)R(X(s)) ds

>pl <e.

supP( sup
N,I \t<T
(iv) The distributions of { [{Ty (- — s)R(X(s)) ds} on C(0,T]: H,) are rela-
tively compact.
(v) Given &> 0 there exists p(e,T) < © such that

a?

supP(supIIYD(t)IIO > p) <e.
N, t<T

(vi) sup, _,IIYp(DI-, — 0 in probability for all o > 0.
(vid) sup, _7IYpllo = O in probability.

Proor. To prove (i) it suffices to consider X(¢) as defined in the proof of
Lemma 3.1. From (2.8) we have

1X(t)llo < 11X (0)lo + blfotﬂ)_((s)ﬂo ds + byt + 1Y, (t)llo + 1YR(2) + Yg(t)llo.
Let 7 = inf{t: || X(¢)llo > p}. Then

P(supl X(1)lls > p) < P(supl X (¢ A 7)o = p),
t<T t<T

and applying Gronwall’s inequality to our first inequality we obtain

supIIX(t A o
t<T

< eblT(IIX(O)IIO + bT + supllFp(¢ A 7)llo + supllTa(t) + ?B(t)no).
t<T t<T
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For p/4 > exp(b,;T)b,T, we obtain

P(sup||X(t A1)l > p)
t<T

<P(IX(0)llo > exp(—b,T) p/4)

3.12 —
( ) + P(supIIYD(t A T)llo > exp(—blT)p/4)
t<T

+ P(sup||17R(t) + ,()llo = exp( —blT)p/4).
t<T

Consider Y(¢) + Yy(¢) = [{Ty(t — s) d(Zy(s) + Zy(s)). Recall that for X we
assume R(x) = b,x + b,, which is linear, and using (2.7) with Z, + Z, in
place of Z,, Lemma 3.3(v) applies to Y, + Y. Thus the third term on the
right-hand side of (3.12) can be made arbitrarily small by choosing p large
enough. The same holds for the first term using Assumption A2.

The proof of Lemma 3.5 of Blount (1994) or the proof of Theorem 3.3 of
Blount (1991) shows that for N > N(a, [,),

P(supIIYD(t A 7)o > a)

t<T
< C(T)pa %(Nl) '(log N)°
+ C(T)N3(og N) *[Cra2l/p] 7,

(3.13)

where C; > 0 is an absolute constant.

Letting a = exp(—b,T)p/4 for p large enough but finite, the right-hand
side of (3.13) converges to 0 as N — . Our previous discussion then shows
that the right-hand side of (3.12) can be made smaller than & for p(e, T, ,)
< =, This proves (i).

To prove (i) it suffices, by (i), to prove it for [[Ty\(¢ — s) dZy(s A 7), where
r=1inf{¢: | X(s)llo = p} and p < ». However, the proofs of Lemmas 3.2 and
3.3(Gi1) apply as well to [{Ty(t —s)dZy(s A 7) and Zy(¢t A 7) since
sup, _pl| X(t A 7—)llo < p < », and this proves (ii).

Let A(t) = [(Ty(¢t — s)R(X(s)) ds. We have

(*) §1<1¥|<R(X(t)), Dl < C(T)(l + fgan(t)II%).
Fore, y= QDm,N_Ol" ,, n this implies _
(% %) sugl(A(t),em’N>| <1+ mz)_lC(T)(l + suITJIIX(t)H(z)).
t< t<
Conditions (i) and (s *) imply (iii) and that for all £ > 0 and « < 3/2,

(%5 %) lim supP( supl(1 = P, x) A(t)ll,v = &) = 0.
n=% N \t<T '
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Basic calculations using (#) and (i) imply that for 0 < ¢, # + u < T, we have

sup 1P, y(A(t +u) —A(t))l-

O<t,t+u<T

(****)
<C(T,n)|1+ supllX(t)Hg)luI
t<T

Now (@ii), (* * * *) and Theorem 7.2 of Chapter 3 of Ethier and Kurtz (1986)
imply the distributions of {P, yA} for n fixed are relatively compact on
D(0,T]: Hy); (* = %) and Problem 18 of Chapter 3 of Ethier and Kurtz (1986)
imply the same for {A} = {Ay ;}. This proves (iv) since A € C([0,T]: H,),
which is a closed subset of D(0,T]: H).

Part (v) follows from (i) and (3.13) (with Y;, in place of Y;)) by choosing p
large but fixed. Also (v) and Lemma 3.3(1) imply (vi) since

1Y, ()2 = 1P, Yp(6)12 6 + (I = P,)Y,(2)I%
<IP,Y, ()15 + n= 21 Y, (2)115.

To prove (vii) it suffices, by (i), to consider [|[Y,(¢ A 7)o, where 7= inf ﬁf:
| X(®)llo = p} for p < . However, applying (3.13) with Y, in place of Y,
shows that for any a > 0, P(sup, _,[1Y,(¢ A Tl > a) = 0if I > was N — o,

O

LEMMA 3.5. Assumptions A and A2 imply ()-(Gv) below hold. Assump-
tions A, A2 and B1 imply (v) below holds.

(i) sup /(YD s) —17'X(s),e,»ds| >0

t<T

in probability for e, = ¢, or i,.

(i) The distributions of {V} = {Vy ;} [defined by (2.9)] on D([0,T']: H,) are
relatively compact.

(iii) £(¢), defined in (2.11), satisfies sup,_r|[(&(t), e, x| — 0 in probabil-
ity fore,, x = ¢, x OF {5, y.

(iv) The distributions of{X} {Xy. )} on D(0,T]: H_,) forany a > 0 are
relatively compact.

(v) The distributions of {X} = {Xy ;} on D([0,T]: H,) are relatively com-
pact.

PRrROOF. Before proving (i) we sketch the idea. For 0 < u < ¢, let m,(u) =
[8Tn(t — $) dZp(s) and note m,(u) is a martingale in u with m,(¢) = Y, (¢).
From (2.7) applied to Z,), it follows that m?(u) — F(X)X(¢, ) is a martingale
for F(X)(¢, w) as subsequently defined. For e, y = ¢, y or ¢, y with k fixed,
the martingale (m}(u) — F(X)X¢, ), e, y) converges to 0 because its
quadratlc variation is forced to 0 as N — . Thus, m2(¢) = Y,2(¢) and
(mi(t), e, x> = (F(X)Xt, ), e, y). Basic calculations also show that
(F(X)(t t) e Ny =X, €y, ~2- We now give the proof.
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For0 < u<t,let
F(X)(¢, 1)

= (V)" T ["exp[(~B,x ~ B (L~ 9)]

X[{X(8), (V" @ x)(V 0u ) + (V0 8) (V7 00 8) )P v Pa
HCX(8), (Vi W) (Vi ) + (Vi v (V8 8) 20 ¥
+2(X(8), (V" 0 ) (V¥ n)

(V0 n)(V U, 8) )0 v v ds.

In the proof of Lemma 5.3 of Blount (1994) it is shown that for e, y = ¢, y or
Y, n We have

(F(X)(t,m),e, n»

=2(Nl)_1[ ) fMEXP[_(Bm,N+5m+k,N)(t_3)]
m+k<N "0

(%)
X(Bu,n + Brsi,n) X(8), e, n)ds

+ e, (X, p,t),

where |&,(X, p, t)| < C(k)log N)(NI)~! sup, _ {X(s),1). Integrating () and
changing the order of integration in the resulting double integral shows

(v%)  [XF(X)(s,5) e n)ds =17 [(X(s), e, x)ds + 8,(2),
0 0

where sup, _7|8,()] < C(k)log NXNI) ! sup,_(X(¢),1). For 7= inf{¢:
1X(®llo = p} with p < o, let

Yo(t) = j;)tTN(t —$)dZy(s A T).

As a consequence of (2.7), it is shown in the proof of Lemma 6.3 in Blount
(1994) that

E(<(YD)2(t) — F(X)(t,t A7), ek’N>2) < C(T,ly, k, p)N-V/2.

This implies

(5% %) /OTK(YD)Z(t) ~ F(X)(t,t A7)0y )| ds >0

in probability. Then (i) follows from (s ), (* * *) and Lemma 3.4().

For (ii) recall V(¢) = Ty () X(0) + [{Ty(t — s)R(X(s) ds + Yy(¢). The map
(x+y +2)t) » x(8) + y@&) + 2(¢) from C(0,T]: H,) X C(0,T]: H, X
D(0,T]: Hy) into D(0,T]: H,) is continuous. Thus Assumption A2, Lemma
3.3(iv) and Lemma 3.4(iv) imply (ii) holds.
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For (iii) recall £(¢) = &,(t) + &4(¢) + £4(¢). By Lemmas 3.3() and 3.4(i),
sup, _pKe&,(t), e, x>l > 0 in probability, and the same holds for £3(¢) by
(1). To deal with &4(¢) we first claim that given §, £ > 0 there exists p(e, T,
8, @) < = such that for each a < 3,

(%) supP( sup  [[V(¢)lla, N > p) <e.
N, 0<6<t<T

Assume (*) for now and consider the term in £,(¢) given by

sup
t<T

fot<em’NYD(s),V(s)> ds

< 82'2 sup [IY,(¢)lollV(£)llo
0<t<T

+TC(m) sup Yp(t)l-1 a5 -IV(E)ll1,a,n-
0<é6<t<T

Since § is arbitrary, it follows from (v) and (vi) of Lemma 3.4, (ii) and () that
sup, . rl/o{e, x> Yp(s)V(s)) ds| > 0 in probability. Then (iii) follows after
applying (ii), and Lemma 3.4Gi) and (v) to the remaining terms in
(&4(2), e,, . It remains to prove (x), but this follows from Lemmas 3.3(v),
3.4(iii), Assumption A2 and the spectral properties of T ().

Parts (iv) and (v) follow from (2.9), (ii) and Lemma 3.4(ii), (vi) and (vii). O

LEMMA 3.6. Let Assumptions Al and A2 hold.

(1) Assumption Bl implies the distributions of {(X,Zz)} on D(0,T]:
H, x H—B) are relatively compact for any B > + and any distributional limit
(y, M) € C(0,T]: Hy X H_p) almost surely and satisfies (3.1).

(i1) Assumption B2 implies the distributions of {(X,Zg)} on D(0,T]:
H_, X H_p) are relatively compact for any a >0, B> 1 and any distribu-
tional limit (¢, M) € C(0,T]: Hy, X H_,) almost surely and satisfies (3.3).

(i1) In () and (i), M is a martingale with respect to the filtration {o(y(s):
s < )}, and if f is a trigonometric polynomial, { M, ) has quadratic variation
UM, £ = y[ip(s), f2) ds. In addition, (3.2) and (38.4) hold and €
C(0,T]: H) N C(0,T]: H)) a.s. for any a < 1.

ProoF. From (2.10) we have
P,Zy(t) = PV(t) = P,V(0) — ['AP, V(s) ds
0

(3.14)
~ ['P,R(V(s)) ds + dyl ™" ['P,V(s) ds + 5,(t),
0 0
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where
5.(0) = (P = )| =~ Zy(0) + V(1) = V(0)
—]OR(V(S)) ds + dyl? fOV(s) ds]

+ [((AP, = AyP, )V (5) ds = P, y(e(t) + Zg(t) + Zp(1)).
0

By (2.4), Lemma 3.3(1), (ii) and (iii) and Lemma 3.5(ii) and (iii),
(3.15) sup|8,(¢)ll.. — O in probability for fixed n.

t<T
From (3.14) we can write
(V7 PnZB) = fn(V) + (07 8n)’
where

fo: D([0,T]: Hy) - D([0,T]: Hy)

is continuous. By (3.15) and Lemma 3.5(i1) this implies the distributions of
{(V, P,Zy)} are relatively compact on D([0,T]: H?) for fixed n. By Lemma
3.3(iii) and Problem 18 of Chapter 3 in Ethier and Kurtz (1986) the same
holds for the distributions of {(V, Zp)} on D(0,T]: Hy X H ) for p> ;.
Since [|6X(¢)llo < 21/2(NI)~1, it follows that any distributional limit (i, M) of
(V,Zp)isin C(0,T]: H, X H—B) almost surely. By (2.9) with Lemma 3.4(i),
(vi) and (vii), we obtain relative compactness for {(X, Z;)} and the fact that
any distributional limit of (X, Zz) is also one for (V,Zy). Applying the
continuous mapping theorem, we first take the limit in distribution in (3.14)
with n fixed, to obtain

P,M(1) = P,u(t) = Pur(0) = ['AP, u(s) ds

— /;)tPnR( P(s))ds

[or R(#(s)) + dyl~! ¢(s) in place of R(y(s)) when [ is held constant].
Since A: H, - H,_, is continuous, R(x) is quadratic and ¥m 2% < « for
a > %, the map defined by

F(BY(E) = B(2) = B(0) = ['AB(s) ds — ['R(B(s)) ds

is continuous from C([0,T']: H,) into C(0,T]: H_,), and P,M = P, f(¢).
Letting n — o« shows (3.1) and (3.3) hold in C([0,T]: H_,).

We subsequently show that ¢ € C((0,T): H,) for any a < ;. Since f is also
a continuous map from C((0,T']: H,) into C(0,T]: H,_,) for any a > 0, we
again use lim, ,, P, M = lim, . P, f({) to show that (3.1) and (3.3) hold as
stated in Theorem 3.1. This proves (i) and (i).
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For e, = ¢, or i, (2.7) implies
(%) E((Zy(t),e,)") < 2v[ E(X(s),1) ds
0

and for any trigonometric polynomial £,

2
(%) E[sup(ZB(t), f>4} <C(f) E[(y]j(X(s),l) ds) + (Nl)4],
t<T
where (%) follows from the Burkholder—-Davis—Gundy inequality [Theorem
21.1 of Burkholder (1973)].

Let x(¢) = (X(¢),Z5(#)) and consider (x(2),{Zz(¢),e,,»). By (*), Lem-
ma 3.1(3) and Problem 7 of Chapter 7 in Ethier and Kurtz (1986), we obtain
that (M, e,,> and then M is a martingale with respect to {c(#(s): s < t)}.
Using (*#), Lemma 3.1(ii) and (2.7), the same argument applied to
(x(8), {Zg(t), [Y* — y[{{X(s), (Py[)?) ds) shows that (M(t), f)* —
v/ (s), ) ds is a martingale with respect to {o((s): s < ¢)}.

From (3.1) we have

P,u(t) = P,T(£)$(0) + P, ['T(t - s)R(¥(s)) ds
(3.16) °
+ P, [T(t - 5)dM(s).
0

Fore, = ¢,

KT(¢)(0), e, = exp( =B, t)Ky(0), e, ) < 22 exp(—B,,t){¥(0), 1)
and for t < T,

‘<]:T(t - s)R((j/(s)),em>ds

or i,

- ‘fotexp(—ﬁm(t —8)){R(¥(s)),e,»ds

-1

< C(T)(l + supllg ()] (1 + m?)
¢<T
Letting n — % implies that almost surely, for any a < 2,

T(-)9(0) + fO'T(-— s)R(¥(s)) ds
e ¢([0,T]: Hy) n C((0,T): H,)
n C((0,T]: ¢([0,1])).

Note that the previous argument holds as well with R((s)) — 171 d,(s) in
place of R(i(s)) for the case when [ is constant.

Consider P, [{T(¢ — s) dM(s) = [{T(t — s) dP,M(s). Using the stochastic
bound on sup, _ 7|l (t)lly, the proofs of Lemmas 3.2 and 3.3(iv) and (v) show
that the distributions of {[;T'(-— s)dP, M(s)} are relatively compact on
C(0,T]: H,) for any a < 3. Thus the proof of (iii) is complete by letting
n — o in (3.16) and using (3.17). O

(3.17)
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Note that Lemma 3.6 and distributional uniqueness for the limiting equa-
tion complete the proof of Theorem 3.1.
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