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ORDER OF MAGNITUDE BOUNDS FOR EXPECTATIONS
OF A,-FUNCTIONS OF NONNEGATIVE RANDOM
BILINEAR FORMS AND GENERALIZED U-STATISTICS

By MicHaAEL J. KLass® aND KrRzyszTorF Nowicki?

University of California, Berkeley and Lund University

Let X, Yy, Y,, ..., X,,Y, be independent nonnegative rv's and let
{bij}1 <i, j<n be an array of nonnegative constants. We present a method of
obtaining the order of magnitude of

Ed)( Y b Y,-),

1<i,j<n

for any such {X}, {Y;} and {b;;} and any nondecreasing function ® on [0, =)
with ®(0) = 0 and satisfying a A, growth condition. Furthermore, this
technique is extended to provide the order of magnitude of

Efb( Y fij(xi,Yj),
1<i,j<n

where {f;;(x, )} i j<n IS any array of nonnegative functions.
For arbitrary functions {g;;(x, Y)4 ., j<n the aforementioned ap-
proximation enables us to identify the order of magnitude of

E®

)y gij(xiyxj)‘)

1<i#j<n

whenever decoupling results and Khintchine-type inequalities apply, such
as ® is convex, L(g;;(X;, X;)) = L(g;;(X;, X)) and Eg;;(X;, x) =0 for
all x in the range of X;.

1. Introduction and summary. Let X;,Y;,Y,,..., X,,Y, be indepen-
dent nonnegative random variables and let {b;;},_; ;., be nonnegative
constants. Set

A, = {symmetric functions @, nondecreasing on [0, )
with ®(0) = 0 and such that for some a > 0, ®(cx) <
[c|“®(x) for all [c| = 2 and all x}.

Such a ® € A, is said to have parameter « (and hence it has parameter g for
all 8= a).
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1472 M. J. KLASS AND K. NOWICKI

We are interested in approximating

(1.1) E@(B(X,Y))EEqn( > bijxivj)

1<i,j<n

for all {X;}, {Y}}, {b;;} and ® as above. Define
®(b,X,Y) = max{E max  ®(b;,X,Y,), E max &(vy;X,),

(1.2) 1<i,j<n l<ix<n
E max ®(vy;Y;), O(vyy), P(Vy4), @(W*)}
1<j<n
where
(1.3) Vi = sup{v > 0: i E((b;;Y;) A V) = v}
=1
(1.4) Vyj = sup{v > 0: i E((bi;X;) }
(15) Vi s =sup{v20 i E((vyi X)) /\v)>v},
(1.6) Vo = sup{v > 0: Xn‘, E((vo;Y)) AV) = v},
j=1
(1.7) Biij = {binj < Vl,},
(1.8) Buij = {bi Xi < vy}
and

(1.9) w, = sup{w >0 ) E[((bijxin) A w)l(BfijB;jij)] > w}.
1<i,j<n

We prove that

(1.10) E®(B(X,Y)) =, ®(b,X,Y),

where =_, means that there are constants 0 < ¢, < T, < « depending only on

o

the parameter « of ® such that

c.®(b,X,Y) < E®(B(X,Y)) <C, (b, X,Y).
Though the quantities which comprise ®(b, X,Y) may seem bewildering at
first sight, their presence actually makes good intuitive sense. Note first that

for i.i.d. Z; > 0, Lemma 2.3 of Klass and Zhang (1994) shows that whenever
g, > O satisfies

n
(1.11) E)Y (ZjAd,) =0y,
j=1
d, can be considered to be a “typical value” of S =2X7_; Z; in that P(S >
0,/3) = 0.2 and P(S < 3q,) > 0.3. The same qualitative fact holds for the
case of nonidentically distributed variables.
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Think of Z; as b;;Y; and note that Xi_, Z; is the coefficient of X; in
B(X, Y). Thus, v,; represents a typical value of the coefficient of X;. Substitut-
ing v,; for its coefficient, we observe that v, , is the typical value of X{_, v,; X;.
Now, in fact, for arbitrary independent Z; > 0, E®(X]_, Z;) has order of
magnitude ®(q,) + E max, _;_, ®(Z;) whenever g, > 0 is the largest root of
(1.11). Therefore,

<i<n

=, max{d)(vl*), E max d)(vlixi)},
1
<

where the one-sided bound =, or
Reversing X; and Y;,

has the obvious interpretation.

[e3

E(I)( Y binin) > max{(b(vz*), E max (D(vijj)}.

—a .
1<i, j<n l1<j<n

Large values of ®(X,; _; ;. b;;X;Y;) might also be due to the coefficient of
various X;'s being abnormally large. We associate this contingency with at
least one b;;Y; from among b;,Y, ..., b;,Y, exceeding v,;. Simultaneously, it
would seem that some b;; X; from among b,; X,,..., b,; X, should exceed v,;.
Thus, we are induced to analyze the random sum Q, where

Q= X byXYI(Bf;B3;).
1<i,j<n
Although Q is not merely a sum of independent nonnegative rv's, w,, still
identifies the “center” of its distribution and E®(Q) is roughly

1<i,j<n
Combining these heuristics and assertions with the trivial observation that

max ®(b;X;Y;)) <®| Y b;XY,

1<i,j=<n 1<i,j<n

accounts for the presence of each of the six quantities found in our approxi-
mation of E®(B(X,Y)). Each of these quantities is needed; none can be
dispensed with, as analysis following Theorem 3.5 shows.

What motivated our investigation of E®(B(X,Y)) as above? The merging
of many streams. Historically, the consideration of LP norms of quadratic
forms X, _; ., a;& ¢, Where the {g} are i.i.d. +1's, dates back to Khint-
chine. The next major step was provided by McConnell and Taqqu (1986),
who extended these results to independent symmetric &; (of otherwise arbi-
trary distribution), and reformulated the LP approximation by introducing
an independent copy z,,..., g, of the &,..., &,. Thereby, “Khintchine’s in-
equalities” became “decoupling inequalities.”
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It was observed that such results had a variety of uses [e.g., see Cambanis,
Rosinski and Woyczyhski (1985), Bourgain and Tzafriri (1987) and Krakowiak
and Szulga (1988)]. The conditions were gradually weakened, with de la Pena
and Klass (1994) establishing that, for arbitrary independent mean zero

random variables H,, ..., H, with independent copies H,, ..., H,,
2
a;; +a;; ~\2
(112) E\I’( Z a”HIHJ ) :a E\I’ \/ Z M(Hl)z( HJ) ,
1<i#j<n 1<i#j<n 4

for any convex A, function ¥ of some parameter, say 2« > 0. Thus (for
convex A, ¥), (1.12) converts the problem of approximating

E‘I’(|Zlgi#jsn ainiHjl)

into the problem of approximating the expected value of a function ®(x) =
W(y/|x|) of a nonnegative random bilinear form of nonnegative independent
random variables—the problem considered in this paper. Putting b;;
((a; + a;)? /DG # j), X;=HZand Y, = H2 and applying our Theorem 35
to (1 12) we obtain

Y. a;HiH;

1<i#j<n

(1.13) E‘I’( ) ~, ®(b,X,Y).

The approximation of the left-hand side of (1.13) by a semiequivalent version
of its right-hand side was first obtained by de la Pefia and Klass (1994) for
convex ¥ with ¥(y/[x|) concave on [0, ). The same authors also provided a
method of identifying the order of magnltude of E‘I’(IZR,#,@ a;;H;H;D
whenever, for some integer k > 1, ¥(x? ") and —W(x2 ') were both convex
functions on [0, »). The approximation in such cases included additional 2k
guantities whose construction (1.13) demonstrates to be superfluous.

Thus, what specifically motivated this research effort was the desire to
approximate EW(|Z, _;, ., a;;H;H;D for more general ¥, {H;}. For mean
zero H; we have not eliminated the convexity condition on ¥ but have
relaxed the growth condition to membership in A,. However, for nonnegative
b;; and nonnegative H;, the convexity condition is no longer required. A
forthcoming paper is planned that will eliminate both the convexity condition
on ¥ and any and all conditions on the {H;}. The task seemed too ambitious
for one paper. Fortuitously, it seems to divide quite naturally into two
separate works.

Subsequent to the initiation of this endeavor, de la Pena and
Montgomery-Smith (1995) obtained a stunning decoupling result for tail
probabilities (no integrations necessary). They showed that for any g;;(x, y)
and independent H,,..., H, with independent copy H,,..., H, such that
L(gij(Hi, HJ)) = L(gji(Hj, Hi))’

e p(

p(z

1<i#j<n

n

=

> gij(Hi!l_Tj)

1<i#j<n
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We therefore became interested in determining whether we could extend
Theorem 3.5 to include nonnegative generalized U-statistics and proved the
following result, to be found in Section 4:

Ed Xi, Y,

(1si,2j<n ( ))

(1.14) =, max{E max ®(f;;(X;,Y;)), E max ®(vy;( X)),
1<i,j<n l<i<n

E max @ (vyy(Y,)), D(vi), Dz ), B(w.) ),

1<j<n

where X;,Y,,..., X,,,Y, are independent rv's, ® € A, has parameter a > 0,
{fi;(x, Y)1-i j<n is any array of nonnegative functions,

(1.15) Vyi(X) =sup{v20, i E(fij(x,Y;) Av) zv},
-1

(1.16) Voi(y) = sup{ > 0, __ilE(fij(xi, y) AV) > v},

(1.17) Vi = sup{v > 0, _i E(vi( X)) A V) = v}

(1.18) Vo = sup{v >0, _ilE(vzj(Yj) AV) = v},

and }

W, =sup{wzo: Y (( fii(Xi,Y;) A w)
1<i,j<n
(1.19)

( (X" J) > (Vli(xi) v sz(Yj))) = W}

Results in this direction were previously obtained by Giné and Zinn (1992).
Specifically, they showed that for any independent rv's X;, Y., ..., X,, Y,
such that L(X;) =L(Y;) for 1 <i <n and any function f(x, y) satisfying
f(x, y) = f(y, x) for all x, y with the further property that Ef(X;, y) = 0 for
all y and i,

p
p n
E‘ Y. f(X.Y;)| <, E| max Zf(x,,v,)l
A l<i<n|;_
(1.20) ) =t
+El X f(X.Y)) for p > 1.
1<i,j<n
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In their paper they also gave a proof of (1.20) based on Hoffmann-Jgrgen-
sen’s inequality due to M. Arcones. That proof would extend to nonnegative
functions f;;(x, y) and arbitrary independent rv's X; and Y; in the following
form:

p
p n
El X f;(X.Y))| <, E| max | X f;(X..Y;)
1<i,j<n l<i<n j=1
n p
(1.21) +E| max | Y fi;( X, Y))
l<j<n|i-1
p
+E| X fi;(X.Y)) for p > 1.
1<i,j<n

Since p > 1, the reverse inequalities also hold (by Jensen’s inequality).

2. Preliminaries. In the sequel, ® will denote an arbitrary but fixed
function in A, with some parameter « > 0. The parameter « indicates that
an adjustment of the argument x of ®(x) by a factor of |c| > 1 can affect the
magnitude of ®(x) by a factor of as much as (|c| v 2)*. We will require the
following properties of ®.

LEMMA 2.1.

(i) ® also has parameter g for every 8 > a;

(i) ®(cx) < 2V [c|)P(x) < 2% + [c|)D(x) for all ¢, Xx;
(i) (c|* A 279)D(x) < D(cx) for all ¢, x;
(iv) For two nonnegative rv's X and Y,

E®(X +Y) =, max{E®(X), ED(Y))}.

Proor. Properties (i)—(iii) are straightforward. So is (iv), since

max{®(X),P(Y)} < P(X+Y) <P(2X) + P(2Y)
<29P(X) + 2°D(Y). O

The following lemma shows how various LP approximations of a random
variable |Y | can enable us to obtain two-sided approximations of expectations
of A,-functions of |Y|. This technique is central to our approach. The lower
bound is based on a probability inequality for the event that a nonnegative rv
is at least a half of its expectation. This inequality may date back to Paley
and Zygmund (1932) and Marcinkiewicz and Zygmund (1937) [cf. also Ka-
hane (1985)]. The upper bound makes direct use of the definition of the
parameter of a A,-function.
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LEmMmMA 2.2,  Let Y be a nonnegative valued rv, ® € A,, with parameter «,
and v = E(Y) > 0. Then

2

(2.1) 27 2P(v) ———— < ED(Y) < B(V)(2% + v UEY ).

E(Y?)
Moreover, if E(Y*) < c,q?, then
(2.2) EDQ(Y) <P(vVg)(2¢+c,).

ProoF. Bounding below in (2.1),

E@(Y)zE[q><Y>'( %)} ()(Y%)

woorfr3)

IV

Since Y is a nonnegative rv with E(Y) =v > 0,
P(v=r)=(t-3] e

>—| > — = =—

~2)° 2] E(Y?)'

which entails the left-hand side of (2.1).
To obtain the upper bounds in (2.1) and (2.2) write

DY) = @(%w) < ®(2w) +

%W) I(Y > 2w)

<P(w)(2*+w oY ).

Putting w = v and taking expectations gives the right-hand side of (2.1),
while putting w = v Vv q implies the right-hand side of (2.2). O

To approximate moments of a random variable |Y |, as required by Lemma
2.2, we recall Hoffmann-Jgrgensen’s inequality for positive variables [Hoff-
mann-Jgrgensen (1974)]. A proof can be found, for example, in Ledoux and
Talagrand (1991), inequality (6.8), Proposition 6.8 (given that max, _ IS,/ =
Sy for nonnegative variables).

LEmMmMA 2.3. Let {Y}n , be a sequence of independent, nonnegative rv’s.
Then, for any g > 1,
n B
Y EYJ-) .

j=1

E max YB+

1<j<n

Combining Lemmas 2.2 and 2.3, we immediately obtain the following
corollary.
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COROLLARY 2.4. Let {YJ-}J-“:1 be a sequence of independent, nonnegative rv’s.
Let ® be any A,-function with parameter « and suppose that Y; < w,, for
eachj=1,...,n, and that EX]_, Y; < w,. Then

(2.3) Eq>( i Yj) <, D(w,).
i=1

Moreover, if EX{_; Y; = A,w, for some 0 <c <A, <1, then
n
(2.4) E<I>( D Yj) =, D(w,).
j=1

Inequalities (2.3) and (2.4) of Corollary 2.4 convert the problem of upper-
bounding or obtaining the actual order of magnitude of the n-dimensional
integral E®(X]_, Y;) (for independent nonnegative suitably bounded Y;) to
that of applying ® to a sum of n one-dimensional integrals. Lemma 2.5
generalizes this idea to a sum of n? nonnegative random quantities which
depend in turn on only 2n independent variates.

LEmMmMA 2.5. Let @ be any A,-function with parameter « and let { X}/,
{Y;}/L, be two independent sequences of independent rv's. Let {Z;;}, _; ;. be
nonnegative rv's such that Z;; depends only on X; and Y;. Assume further the
existence of z,, such that we have the following:

(i) esssup; _; j<n Zij < Zy;

(ii) esssup; _ ., X{_y E(Z;lY)) <z,

(iii) esssup; _; ., Z]_; E(Z;;1X) < Z,;

(iv) Yicijen BEZijj <z,

Then

(2.5) E(I)( Y Zij) <, P(z,).
1<i,j<n

Furthermore, if for some 0 <c < A, <1,
1<i,j<n

then

(2.7) ECD( Y zij) >, . P(z,).
1<i, j<n

Observe that dependency on ¢ in (2.7) as well as in (2.4) can be eliminated if ¢
is known to be bounded away from 0 by an explicit constant.

Proor. W.ithout loss of generality, we assume that « > 1. We show that

(2.8) E( Y zij)asa ze.

1<i,j<n
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We have

n [e3

<, E[E max ( Y Z,]) { X}

1<j<nl\i_1

n n «

+ E[ ) ( Y E(Zij|xi)) (by Lemma 2.3)
i—1\j-1
o n [e3
<, E max (ZZij +E max | Y E(Z;]X))
1<j=<n\i-1 1<i<n i=1

+| )Y EZ;| (bylLemma2.3again)
1<i,j<n
n n @
<. LE E(ZZ”) Y,| + z§
j=1 i=1

[by assumptions (iii) and (iv)]
+z5

j=1

<, i E[E( max szj)] + i E(_i E(Z;Y;)

1<i<n i

(by Lemma 2.3)

n n n
<, 2§ L Emax Z+zgt ) E( X E(Z;1Yy)| + 25
j=1 j=1 i=1

l<i<n i=

[by (i) and (ii)]
<. 2§ [by (iv)],

which proves (2.8). Combining (2.2) of Lemma 2.2 with (2.8), (2.5) holds. Given
the left-hand side of (2.1) of Lemma 2.2, together with (2.8) for o = 2, yields
7. O

To enable first-moment type considerations as discussed above to apply, we
separate off all potentially abnormally (and uncontrollably) large individual
summands or potentially abnormally and uncontrollably large individual
factors of various groups of summands. The “rare event” cases that have
thereby been isolated are treated by the method of Lemma 2.6. This produces
a simplification in approximating expectations involving sums by noticing
that, though formally consisting of many summands, the actual number of
nonzero terms (or nonzero major factors) is a random variable having expo-
nentially decaying tail probability.
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LemMA 2.6.  For 1 <j < n, let the ordered pair (B;, Z;) be an event and a

nonnegative random variable, respectively. Suppose there is a o-field F (which
could be trivial) such that

n
(2.9) Y P(BJF)<1 as.
i=1
and such that for each 1 <j <n, Z;I(B;) is conditionally independent of

N; = XL, ;.; I(B) given F and that the {B;} are mutually independent given
F. Then, for ® € A, with parameter «,

(2.10) Eqn(ij zjl(Bj)) =, Zn‘, E®(Z)1(B;) =, E max &(Z;)I(B)).

Proor. Since E(Y) = E(E(Y |F)) for all Y, rather than conditioning on F
and then making our computations, we may as well assume that Z, I Bj) and
N; are independent to begin with, as are 1(B,), ..., I(B,):

E max ®(Z;)1(B;) < EQJ(
1<j<n

ik

_ zjl(Bj)) < E.i ®(Z;1(B;)(1 + Ny))

<EY (1+N)"®(Z1(8))

¥ E(L+ N ER(Z1(8)))

E(1+P,)*"! i E®(Z)1(B))
j=1

IA

[by Lemma 1.1 of Klass (1981)]
where P, ~ Poisson with parameter 1. To complete the cycle of inequalities,
we lower-bound E max; _;_, ®(Z)I(B)) in terms of X{'_, E®(Z;)I(B)). Since

max ®(Z;)1(B;) > ; 2 ®(Z;)1(B)I(N; < 1)
1<j<n i=1
and
P(Nj<1)=1-P(N;>22)>1-3E(N)

\%
INIE

we have

E max ®(Z;)1(B;) > 3

1<j<n

H'M:

E®(Z;)1(B;)EI(N; < 1)

%
ENE
ngE]

E®(Z))1(B). o

—
Il
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Synthesizing Lemma 2.2, 2.3 and Corollary 2.4 with Lemma 2.6 we have
the following.

COROLLARY 2.7. Let X;,..., X, be independent, nonnegative random vari-
ables. Put
n
(2.11) v, = sup{v: L E(XAv) = v}.
j=1

Then, for ® € A,,

(2.12) Ecb(
J

) Xj) =, max{(l)(vn), E max (I)(Xj)}.

1<j<n

Proor. Clearly,

E<I>( Zn‘, (X Avy)

j=1

n
: ECD( 2 X (X > v,)
j=1

)

[by (2.4) and Lemma 2.6]

n
E(I)( Y Xj) ~, max
i=1

=~ max{d)(vn), E max ®(X;)I1(X; > Vn)}

« 1<j<n

=~ max{(b(vn), E max <I>(Xj)}. O

[e3 .
1<j<n

REMARK 2.8. (2.12) can be also inferred from Klass (1981).

3. Uniform two-sided bounds for the 2-linear random sum with
nonnegative terms. In this section we obtain the order of magnitude of
(3.1) E®(B(X,Y)),
where BOX,Y) =X, _; ;.nbi; XY, b;; =0, {X;} and {Y;} are independent
nonnegative rv's and ® € A, has some parameter « > 0.

We begin by decomposing the sum Y, _; ;_, b;;X;Y; into six quantities
(Lemma 3.1) of four essentially different types. We approximate each part
separately (Lemmas 3.2-3.4) via the results developed in Section 2. The
grand approximation is then obtained by taking the maximum of these
bounds. Note that definitions (1.3)-(1.6) and (1.9) entail

n
(3.2a) P(b;;X; > vy;) < 1,
i=1
n
(3.2b) Y P(byY; > vy) <1,
j=1
n Vix
(3.3a) Y P X > <1,
i=1 Vii
n Vo«
(3.3b) 2 PlY, <1
-1 Vaj
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and
(3.4) Y P(biXiY1(BfiiBsi;) > w, ) < 1.

1<i,j<n

LEmmA 3.1 (Key splitting lemma).

ECI)( ) bijxivj)

1<i,j<n

(35) =, Ecb( Y ((byyYy) /\Vli)Xi) +E<D( Y ((bijxi)szj)Yj)

1<i,j<n 1<i, j<n

+E¢( ¥ b”xnqug>wgu%n>vm)

1<i,j<n

Moreover,

E<1>( Y ((binj)/\vli)Xi)

1<i,j<n
\%
(3.6a) ~, E®| X ((byY;) A vy Xi A 1*))
1<i,j<n Vii
\"
+ED| X (b)) Avy) X | X > 1*))
1<i,j<n Vii
Eq’( )» ((bijxi)szj)Yj)
1<i,j<n
\'
(3.6b) =, E®| X ((by;X) Avyy)| YA 2*))
1<i,j<n Vaj
\
+E®| X ((bX) Avy)Y[Y; > 2*))
1<i, j<n Vaj

and

E<I>( Y bininI(bini>v2j)l(binj>v1i))
1<i,j<n
=, Ecp( Z ((bijxin)Aw*)l(bijxi>v2j)|(binj>v1i))
(3.7) 1<i,j<n
+Eq>( Y by XY (b X, > vy))

1<i,j<n

XW%%>WOW%KW>Wﬁy
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ProoF. Observe that
Zi, = by XY, = max{((binj) AV ) X, (B X0) A V)Y,
by X, Yy 1(by X; > Vop by Yy > i)}
= max{Z;; 1, Zi; 2. Zij s}-
Put Z=2%,_; jonZijjand Z, =%, _; j<nZijm for m=1,23. Since Z, +
Z,+2Z;>Zand Z > max(Z,, Z,, Z;) we obtain that
:[E®(Z,) + E®(Z,) + E®(Z;)] < ED(Z)
< E®(3Z,) + E®(3Z,) + ED(3Z,)
< 3°[E®(Z,) + ED(Z,) + E®(Z,)],
which establishes (3.5). The approximations (3.6a), (3.6b) and (3.7) can be
proved by analogous arguments. O

We now direct an effort toward extracting the order of magnitude of each
of the six quantities given in the right-hand side of (3.6a), (3.6b) and (3.7).

LEMmMA 3.2. Let

\Y;
1i
Vo
Vaij = (b %) A V)| Y5 A )
2j
and
W;; = (binin)I(bini > vzj)l(binj > vli).
Then
(3:82) b X Vi) = b(vin),
1<i,j<n
(3:80) b T Vi) = b(va0)
1<i,j<n
and
(3.9 ECD( Y (WA w*)) =, ®(w,).
1<i,j<n

Proor. Note that the conditions required in Lemma 2.5 hold for V;;:

(i) esssup; _; j<n Viij < Viss

(i) esssup; _j_n Xig ECVy5lY) < Z1g BV X)) A Vyy) < Vg
(i) esssup; _; ., Xf_q E(Vy;51X;) < esssupy ;o n((Vi; X)) A vy ) < Vg,
(V) Xi-i j<n EViij = Vs
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Hence Lemma 2.5 validates (3.8a). Moreover, the same argument proves
(3.8b). Equation (3.9) is proved in similar fashion, employing bounds such as

n n
esssup 3 E((W; A w,)lY;) < sup Y Ew, 1(b;X; > vy) < w,

1<j<n j=1 1<j<ni=1
and
1<i,j<n
LEMMA 3.3.
\Z¥
Ed ((bijxi)szj)le(Yj> ))
1<i, j<n Vaj
n \Y;
(3.10a) v ea|v vy, s )
j=1 Vaj
=, E max ®(vy;Y;)1(Vvy;Y; > vy y)
1<j<n
and
Vi
E®[ X ((biY;) Avy)Xil| X > y
1<i,j<n 1i
3.10b n \Y
( ) =, ZECD(vliXiI(Xi> L )
i=1 Vii
=, E max &(v; X)) (v X; > Vvyy).
1<i<n
Proor. Set

Vo«
Zi; = ((bi;Xi) A vzj)YjI(Yj > )
2j
By virtue of (3.3b) we can apply Lemma 2.6 conditionally on the set of
Xy, ..., X, to obtain

n n n
E(IJ( ) zij)=EEq> E( zij) (X} = ZE(I)(ZZ,J)
1<i,j<n j=1\i=1 j=1 i=1
Since
n Vo iy
El X ZlY| = v,y Y, >
i=1 2j
and
\%
Z;, < vy Y| Y > 2*),
Vﬁ

Corollary 2.4 entails

E q’( i_il Zii) {v;}

=, (VoY) 1(Vy;Y > vy ).
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Sum this equivalence on j and invoke Lemma 2.6 to conclude (3.10a).
Similarly, (3.10b) holds. O

LEMMA 3.4.

E® ) bininI(bini > Vyi, biiY; > vy, b XY, >W*))

1<i,j<n
=, X E®(by; XY (b X; > vy ) 1(by;Y; > vy 1(bi XY, > wy))
1<i,j<n
=, E1<rTi]aJ._)in(I)(binin|(bini > Vo) 1(by;Y; > vip) 1(bi XY > wy ).
Proor. Set
W;; = by XY, (b X > vy ) 1(byY; > vyy),
W, = Wi (W > wy),
Ni,j = Z I(Wi/'j’ i O)'
1<i',j'sn:i'#iand j #]
n
NL.(D) = X 1(byY; > vy),
=100 #]
n
NSG(D) = X (b X > vy)).
i'=1,i"#i
Clearly,

E max d)(Wi’.)gEq)( Y Wi'j)

P J
1<i,j=<n 1<i, j<n

E1 L @(W(1+ NG+ NL()) + NY()))
<E -g-"(l + N+ NLCT) + NG(D) T o(wy)
1<i.j<n
< El<izj<n3a((1 + N+ (NLCD) T+ (N(0)) %) o(wi))
- 3&1_ Z_ E(1 + Njj)"EQ(W)))
+ 3_“;J<:Zj<n E(N/.(j)) ED(W})
+ 3¢ _i_ E(N(i)) E®(W))

1<i,j=<n

IA

(by linearity and independence).
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Note that

E(1+N;j)“gE(1+ > oow ¢o))a< 1

j —qa
1<i,j<n

[by applying inequalities (3.2a), (3.2b) and (3.4) to Lemma 2.5],

[e3

E(N/.(j))" < E( znj 1(by;Y; > vli)) <, 1
j=1

[by (3.2b) applied to Corollary 2.4]
and, similarly,

n [e3
E(N/(i)) < E( 2 (b X > vzj)) <, 1.
j=1
Hence,
E max ®(W)) < E<1>( Y wi'j) <. X EoW)).
1<i,j<n 1<i, j<n 1<i, j<n
Finally,
E max ®(Wj)=HE X &(W)) (N <3, N.(j) <3, N/j(i) <3)
l<i,j=<n 1<i,j<n
since forall (i,j) ) (W), #0) <10
1<i’,j'<n
on {W;; # 0, N/; V N/.(j) v N/;(i) < 3}
>4 X E®(W;)(1-I(Nj>4)
1<i, j<n
—I(N/.() = 4) = I(N/;(i) = 4))
=% X E®Wj)(1-P(N;=4)
1<i,j<n
—P(N/.(J) = 4) — P(N/(i) > 4))
(by linearity and independence)
> L ER(W),
1<i, j<n
since
1
P(N/; > 4) < ZEl Y (W >wy)
<i',j'<n
1 W,
<- Y E( LAl =,
415F|f5n Wy
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Xn: P(bi;Y; > vy;)

P(N/.(j) =4) < iiYi

and, similarly,
P(N/(i) = 4) < 3. i

THEOREM 3.5. Let & be any A,-function with parameter « > 0,
{bij}1<i j<n be nonnegative constants, {X;} and {Y;} be two independent
sequences of independent, nonnegative rv’s. Define vy;, V,;, Vi, Vo, and w,
as in (1.3)-(1.6), (1.9), respectively. Then,

E<D( Y binin)
1<i,j<n
=, P(b,X,Y)
(3.11)
= max{d)(vl*), E max ®&(vy; X;), P(v,4),
l<i<n

E max ®(v,;Y;), P(w,), E max @(binin)}.
1<j<n 1<i,j<n
Moreover, if ® is convex on [0, ), the approximation can be simplified to read

E<I>( > bijxin)

1<i,j<n

~, ®(b,X,Y)

= max CD( b bijExiEYj),

1<i,j<n

(3.12)

n n
E max <I>(Xi Y bijEYj), E max d)(Yj Y bijEXi),

1<i<n j=1 1<j<n i=1

1<i,j<n

E max d)(binin)}.

Proor. Combining Lemmas 3.1-3.4,

ECD( Y bijxin)

1<i,j<n

= max{q)(vl*)’ E max ®(vy; X;) IV X; > Vi), P(V,4)
l<i<n

a

E max ®(vy;Y;)1(Vvy;Y; > Vyi), P(W,), E max CID(Wi’j)},

1<j<n 1<i,j<n
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where W, is defined as in the proof of Lemma 3.4. Due to the presence of
®(v, ) above, ®(v,; X;) may be ignored when v ; X; < v, .. Hence,

max{CI)(vl*), E max ®(vy; X;) I(vy; X; > vl*)}
l1<i<n
may be replaced by
max{CD(vl*), E max q>(v1ixi)}.
l1<i<n
Similarly, we may substitute

max{(b(vz*), E max (D(vijj)}
1<j<n
for
max{db(v”), E max ®(vy;Y;)1(vy;Y; > VZ*)}.

1<j<n

Finally, since

max ®(W;) < max CI>(binin)s<I>( Y binin)

1<i,j<n 1<i, j<n 1<i,j<n

we may drop E max, _; j., ®(W;)) in favor of E max, _; ;., ®(b;; X;Y)).
Suppose now that ® is convex. By Jensen’s inequality,

E<I>( > bijxin)ch( by bijE(xin)).
1<i,j<n 1<i,j<n

Let m;; = X0, bj;EY; and m,; = X[, b;; EX;. Conditioning on {X;} and
using Jensen’s inequality again,

n
E(I)( b binin) > cI)( b mliEXi) > E max ®(my; X;).
i-1

1<i, j=n 1<i<n

Similarly

Ecp( > bijxin) > E max ®(m,;Y;).

1<i, j<n 1<j<n

Hence the right-hand side in (3.12) is a lower bound for EP(Y, _; -, b;; X;Y)).
However, since v,; < my;,

n n
i=1 i=1 1<i,j<n
Similarly, v,; < my;, V,, <m, and w, < m,. Thus the right-hand side of
(3.12) dominates the right-hand side of (3.11). Hence, by (3.11), (3.12) holds.
m|

Despite the intuitive content of the six quantities which comprise
®(b, X, Y), their sheer number should probably motivate a search for some
kind of reformulated simplification.
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For convex ® one might further hope that two out of the four quantities
which comprise ®(b, X, Y) could be omitted, namely

E maX; ci<n (I)(XiZELl bijEYj)

and its counterpart. The following example illustrates the necessity of incor-
porating all four quantities.

ExampLE 3.6. Suppose that b;=1=Y;, and P(X;=1=p,=1-

P(X; = 0). Let ®,(x) = x* Then for all « > 1 and p,, > 0 such that np, — 0,

n

1<i, j<n i=1

and

= E max (nX;)“ ~n*"lp

l<i<n

E max @,
1<i<n

n?

n
X X byY;
=1

whereas the other three quantities

E max &,(b;X )

1<i,j<n

E max @, (Y Zb,JX)

1<j<n

and

@a( Y bijEXiEYj)
1<i,j<n
are of lower order. Hence the quantity E max, _;_, P(X;X5_,b;;Y)) [and
therefore E max,_;_, ®(Y;XL; b;; X;) as well] cannot in general be elimi-
nated from ®(b, X,Y) if We are to maintain the validity of (3.12). The

necessity of incorporating the other two quantities into ®(b, X, Y) is obvious.

Can we dispense with any of the six quantities in ®(b, X, Y)? Clearly,
®(v, ) and so ®(v, ) are (separately) needed, as is E max, _; ;. , ®(b;; X;Y)).
The following example illustrates the necessity of the other three quantities.

ExampLE 3.7. First, using Example 3.6 with p, >0, np, - 0 and 0 <
a <1 ,wehave v;;=n, vy, =V,, =V, =W, =0=Emax,_;_, ®,(v,;Y}))
and so (by default)

Ed, Y bijxin) =, E max @, (v, X;).
1<i, j<n 1<i<n

Hence E max, _;_, ®(v,; X;) and E max, _;_, ®(v,;Y;) are vital members of
®(b, X, Y).
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Finally, to show that w, also cannot be excluded, take any ® € A, of
some parameter « > 0, b;; = 1 and b;; = 0 for i # j. Then (foreach 1 <i < n)
take any (independent) nonnegative, nonconstant random variables X; and
Y; such that

E max ®(X;Y;) < E(I)( i XiYi).

l<i<n i=1

Then (since Y; is nonconstant) v,; = 0 and so v,, = 0. Similarly v,; =0 =
V, 5 and so Emax, _; ., ®(vy; X;) =0 = Emax, _;_, P(v,;Y)). Since we have
taken X; and Y; to satisfy

1<i,j<n l<i<n (-

n
i=

XiYi)
1
and

E(I)( i XiYi) = Ecb( Y bijxin)

i=1 1<i,j<n
it follows from (3.11) (or Corollary 2.7) that
ECD( Y bijxin) =, ®(w,).
1<i,j<n
[Note that w, = X7, E((X;Y;) A w,) > 0]
It would be possible to replace the three quantities v, ., v,, and w, by a

single quantity g* which acts as a rough approximation to their maximum,
where

q* = sup{q: i E((vii X)) A Q) + i E((v2;Y;) A a)
(3.13) o o

+ ) E(Wij/\q)zq}

1<i,j<n

and W;; is defined as in Lemma 3.2.
However, it is not possible to substitute v* for max{v, ., V, ., w,} where

(3.14) vF = sup{v: Y E((bi;XY) Av) > v},
1<i,j<n

as the following example shows.

ExampLE 3.8. Fix 0 < @ < B < 1. Suppose {X;} and {Y;} have a common
distribution determined by

P(X>y)=y # A1, y > 0.
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Then
@ n aln a n ay2
E| X XY =ELX||XY]| =|E XX ~ n2e/#,
1<i,j<n i=1 j=1 i=1
However, since
B logy

P(X X, >y) ~

yB + y_Bv y > 1|
direct calculation yields

2Bn2logn )"
V¥~ | ————
1-p
whence (V) > E[Z, _; ., XY;l%

One might wonder how the order of magnitude of ED(X, _; ;. , bi; X;Y)) is
affected as the terms inside ® are made increasingly more independent of
one another [de la Peha raised such a question in a paper on martingales
(1990)]. Perhaps more importantly, how does this additional independence
affect and alter the method of approximation?

Happily, the structure of Theorem 3.5 is broad enough to encompass the
situations which introduce these questions. We begin by showing how
EQ(T, _i j-nbij XY and E®E, _; ., by XPY,P), where XD, ..., X(™ are
i.i.d. copies of X; and Y,¥,..., Y, are i.i.d copies of Y;, are related to each
other.

First, note that for any convex (concave) h and any i.i.d. rv’'s X, X; and
X5,

g(A) = Eh(AX; + (1 — 1) X;)
is convex (concave). Therefore, if h is convex,

sup g(A) = max{g(0), g(1)} = Eh(X),

O<ax<1
and so
(3.15) Eh(X) > Eh(AX; + (1 = 1) X,)
for all 0 < A < 1. Similarly, if h is concave,
(3.16) Eh(X) < Eh(AX; + (1 = 2A) X,)
for all 0 < A < 1. If everything in sight is independent, then introducing
X, X@®, XM and VP, Y@, .., Y™ one by one (while suitably condi-

tioning on the others) and using (3.15) repeatedly, it is easy to see that

Ecb( Y bijxivj)zeb( > bijxiﬂ')vj)

(3.17) 1<i,j<n 1<i,j<n

zEcD( b bijin)Yj(i)),
1<i,j<n

for convex ®, with the inequalities reversing for concave ®.
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Next, we present two examples to further illustrate how one obtains the
actual order of magnitude of such quantities for general A, .

ExampLE 3.9 (Making all the terms independent). Given ® € A, with
parameter «, constants b;; > 0 and independent nonnegative random vari-
ables {X;,Y;}, let {X;;,Y;;: 1 <i, j <n} be independent random variables
such that for all 1 <i, j <n, L(X;;) = L(Xp) and L(Y;;) = L(Y;). How does
one approximate

(3.18) Ecb( ) bijxijvij)?

1<i,j<n

We could approximate (3.18) directly from Corollary 2.7. This would be the
most natural approach. Set

(3.19) V* = sup{v: Y E((bijXYj) Av) > v}.

1<i,j<n

By Corollary 2.7,

(3.20) ECD( Y by XY, ) =, max{CD(v*),E max @ (b;; X;Y; )}

ijij < ijlij
1<i,j<n 1<i,j<n

However, we could also put the problem in the framework of Theorem 3.5 and
invoke its approximation. To do this, let

B'(ifl)nJrj,k =bijjI(k=(i—1)n+]j),

X(ifl)n+j = Xij-

Y(i—l)n+j = Yij'

As i and j vary from 1 to n, (i — 1)n + j varies from 1 to n2.
Defining V,;, V,;, V4, V,, and W, in the obvious way we obtain

- b;;Y;, if Y] is constant,
0, otherwise.
Similarly,

1oy

b X. if )'<"J is constant,
0, otherwise.

For simplicity, let us assume V;; = 0 = V,;. ThenV,, = 0=V, , and W, = v*
[of (3.19)]. Thus the two approximations turn out to be identical.
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ExampLE 3.10 (Making all terms independent in the X variables). With @,
bij, X, Y; as in Example 3.9, introduce independent random variables
Xigl), X@, ., XM for 1 <i<n such that L(X{P)=L(X;). How do we

approximate

(3.21) Ed Y b;; Xi(j)Yj)?

1<i,j<n
While Corollary 2.7 does not apply, the second method we employed to handle
Example 3.9 does. Let, for 1 <i, j<n, 1<k <n?

Gi-Dn+j,k bijl(k Zj)v

X(ifl)n+j = xi(J)v

(op

By construction

ol

1<i,j<n 1<i, j<n?

Therefore (for 1 < i, j <n)

~

n? ~
Vii-mn+j = h E( (ifl)n+j,kYk) A Vl,(ifl)n+j)
k=

= B((bi;¥;) A Va,-pnj) (K =)

{0, if b;;Y; is nonconstant,

bi;Y;, if b;;Y; is positive and constant.

For simplicity, let us assume ¥, , = 0 for 1 < k < n? Then ¥, = 0 as well.
Forl<k<n,

$Z,k = Z E((b(i—l)n+j,kx(i—l)n+j) A ﬁz,k) =

1<i,j<n

>

E(bi Xi AT, ).

i=1

Hence, for 1 < k < n?,

(3.23) V2= Val(k < n)
and so
(3.24) Vo = Vau,
W, = X E(( (i*l)n+j,(i’fl)n+j’X(ifl)nJrJ'Y(i'*l)n*J") A W*)
1<i,j i’ j'<n
(3.25) Xl(i,=1,j’:j,bijx(i—l)n+j>v2,j)

1<i,j<n
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(Therefore, w,, < W,.) Consequently,

ECI)( Y bijxi(DYj)

1<i,j<n

(3.26) ~ max{db(vz*).q)(vz\/*),

E max ®(v,;Y;), E max d)(bijxi(j)Yj)}.

1<j<n 1<i,j<n

4. Two-sided uniform bounds for nonnegative generalized U-statis-
tics. The method we have used to identify the order of magnitude of
E®(Z,_; j<n bijX;Y;) can be abstracted, enabling us to approximate

E® )y fiy (X, J))

1<i,j<n

whenever {f;;(x, y)}, _; j., is any array of nonnegative functions, ® € A,
with parameter «, and {X;}{L; and {Y;}L, are two independent sequences of
independent rv's. Define v;;(x), V,;(Y), Vi 4, Vo4 and w, as in (1.15)—(1.19),
and note that

(4.12) i P(fij(x,Y;) > vi(x)) <1 forall x,
-1
(4.1b) _ilp(fij(xi, y) >V,;(y)) <1 forally,
(4.2a) i P(Vii(Xi) > Viy) <1,
(4.2b) i P(v,i(Y)) > Vo) <1
and o
(4.3) r P(fi( X Y)) > (vii( X)) V vy (Y)) vV wy)) < 1.
1<i, j<n

Next, define the following sets of events:

(4.4) Agi; = {150%.Y)) > via( X))},
(4.5) A2,J {f0%.Y;) > vp5(Y)))
(4.6) = {fi;(X. ) < w.},
(4.7) = {vii(Xi) < Vvii},

(4.8) {VZJ(Y) <v2*}
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and

(4.9) Dy; = {vai( X)) Vv vp(Y)) < Vis V Vyu ).

We now record some results that will be necessary for our approximation of
Eq(zlshjsnfu(XhYﬂl

LEMMA 4.1.

(4.10) EcI)( )y (f (XI'YJ)/\W*)I(AlijAZij)) =q (W),

1<i,j<n

ECD( Y (f(XY) A (Vli(xi)\/VZi(Yj))I(Dij)))

1<i,j<n

(4.11)

<o P(Viy V Vo)
with the reverse inequality holding if

P(Vii( Xi) > Vig V Vyy), Z P(sz(Y) > Vi V Vz*)}
j=1

(4.12) {

N T M:s

Proor. Put

Wis = (Fii( X, Y;) AW, ) 1( A Agig)

and
Vi = (X Y5) A (vai(Xi) v vp(Y))) 1( D).

We intend to employ Lemma 2.5. Observe that W;; < w,,

E(Wij|xi) < Xn: Wi P(ALG X)) < w, [by (4.18)],

j=1

M= T

Il
SN

E(W;;lY;) < w, [as above but incorporating (4.1b)]

and

ij=w, [by (1.19)].

Now (4.10) follows from Lemma 2.5.
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As for V;;, w.l.o.g. assume that v,, > v,,. Observe that V;; <v,,,

£ ex) = £ E((1,00%) A v ) 10000 2 vi0%)

j=1
<V 1(vi(X;) <viy) [by(1.15)]
= Vi,
i E(V,jlY)) < i E((f(Xi.Y) A Vi) (VoY) < Vi )lY) < v
[as above but using (1.16)]
and
EVijS Z Z ( IJ(XI’ j)/\vll(x))l(vll(x)<vl*)
1<i,j<n i=1j=1
+ Xn: Xn: E( (X Y)) A va (V) 1(v2i(Y)) < Vix)
j=1li=1
< ¥ B (X 1C) + T vy (1)1(voy(%) < via)
i=1 j=1
< Xn: E(Vi( Xi) Avyy) + Z E(Vo;(Y;) A Vig) <2V,

H
[

j=1
(since Vv, < Vy.).

Hence (4.11) holds by (2.5) of Lemma 2.5.
For the reverse bound, observe that

1SiZMEVij > i_il ji fii( Xi0 Y5) A vii( X)) (1(Cyi) = 1(Cy; D))
> i_il Evy( X)) 1(Cyy) — i_il ,--il Evy;( X;) 1(Cy; D)
= i vli(Xi)I(Cli)(l — i P(Vvy;(Y)) > Vi)
i—1 -1
=1 Y Evy(X)1(Cy) by (412)]

i=1

= Vl*(l i (Cfi))zﬁvl* [by (4.12)].

Invoking (2.7) of Lemma 2.5 we obtain the reverse inequality. O
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LEMMA 4.2.

E(D( E fij(Xi,Yj)I(AlijAZijij))
1<i,j<n

(4.13)
<, E_max ®(f;(X;,Y;)).

1<i,j<n "l

Proor. Proceed exactly as in the proof of Lemma 3.4, using W;; =

FOX, YD ICAL; Agyp) and WY = Wi 1(B5) with N/, and N!;(i) defined analo-

gously. O

THEOREM 4.3. Take any nonnegative functions f;;(x,y). Let X;, Y,
..., X, Y, be independent random variables and ® € A, having parameter
a > 0. Define v;;(), vy;(), Vi, V, 4 and w,, as in (1.15)—(1.19). Then

E@(lsgsnfij(xi,vj))

(4.14) ~ max{E max @ ( f;;( X; Y-)),Elm_ax D(vii( X)),

a Ay ir'j
1<i, j<n

E max ®(v,;(Y;)), P(Vy4), P(Vy4), CID(W*)}.

1<j<n

Moreover, if ® is convex on [0, »),

E<D( ¥ fij(xi,vj))

1<i, j<n
(4.15) =, max{ElSr?’aj)inCD(fij(Xi,Yj)), Eggﬂ@(vli(xi)),
Eerian>(vzj(Yj)),q>(v)},
where
(4.16) Vii(x) = zn‘, Ef,(X.Y)),
-1
(4.17) Voi(y) = iil Ef;( X, y)
and
(4.18) v= ¥ ER(X.Y).
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1498
ProoF. Since f;;(X;,Y;) > 0 for all i, j it is clear that
eo| T fy(x.))
1<i,j<n

zmax{E max & (f;(X;,Y;)), E max @(Zf”(x,, J))

1<i,j<n
n
E max (I)( 2 (X, J))}
1<j<n i=1

Let o be the first index in [1, n] satisfying v, (X,) = max, _; ., V1;(X)).

E max cp(._i (X5, J))

1<ix<n

I(o=i)X,..., X,

n
> Y E|E

i=1

=, Xn: E®(vy(X;))I(o=1i) [by(2.6) of Corollary 2.5]

(_i( IJ( i J)/\Vli(xi))

= m X (D(Vll(x))

Hence
E<I>( Y fij(Xi,Yj)) >, E max ®(vy;(X;))
1<i,j<n 1<i<n

and similar reasoning gives the third lower bound E max;, _;_, ®(v,;(Y)).
Suppose (4.12) fails. Then

eo[ T 6%y

1<i,j<n

>, E max ®(vy;(X;)) + E max ®(vy;(Y;))
l1<i<n 1<j<n

> O(Vyy V Vz*)(P(_LnJ {(Vii(Xi) > vy v Vz*})

+P

J_C)l{vzj(Yj) >V, V Vz*}))

n

> (v, \/vz*)inf{l— ﬁ(l—xi) +1-JI(Q-y):0=<x,y <1,

i=1 j=1

3
o
X
—_—
(N
X
™
<
N
\%
NI
7

= %(I)(Vl* VVyy).
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On the other hand, if (4.12) holds, then by Lemma 4.1,

ED( X 1,00 Y)) 2 v V V),

1<i,j<n

Incorporating (4.10) we may conclude that the right-hand side of (4.14) is of
no larger order than the left-hand side. Bounding above, we obtain

v ¥ (%)

2| £ 000
+ E® i ( i fIJ i J)) (Cgl)
+E(I)( f ( i J)I(AlleZIJB ))

I/\

i,j<n

+ECI>( )y (fij(xi'Yj)/\W*)I(AlijAZij))

+ EcI)( > (fij(xiij) A (Vll(x) v vy(Y )))I(DIJ))

1<i,j<n

=T, + T, + T+ T, + Ts.

By Lemma 4.1, T, + T, <, ®(v,, V Vv, VW,). Lemma 4.2 gives T, <
Emax,_; j., ®(f; (X,,Yj)) Conditioning on the set of {Y;} and invoking
Lemma 2.6 and uncondltlonlng,

Zl E<I>( Y f,J(X,, J)) I(C5)

~, i (Ji( £ (X Y)/\vl.(X)))l(Cfi)

- eo £ 0,008 1e5)

<, Zn‘, E®(vy;( X)) 1(CS) + Z E max q>(f (X,,YJ))I(Aliiji)

<J<n
(by Lemmas 2.5 and 2.6 and another conditioning argument)
« E max ®(vy;( X)) + E max ®(f;(X;,Y;))

1<i<n 1<i,j<n

(by Lemma 2.6 and conditioning as above).
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Similarly,

T, <, E max ®(v,;(Y;)) + E_max ®(f;(X;,Y;)).

1<j<n 1<i,j<n
Hence the left-hand side of (4.14) is no larger order than the right-hand side.
O

REMARK 4.4. Let &, (f;;,{X;},{Y;}) denote the right-hand side of (4.14).
Fix any « > 0 and let R, denote the collection of all ratios of the form

E@(lei,jsn fij(Xi’Yj))
© o fip (X3 (Y))

which occur as we take all possible choices of & € A, of parameter «,

integers n=1,2,... independent rv's X;,Y,,..., X,,Y,, and nonnegative
functions f;;(x, y) such that @, (f;;, {X;},{Y;}) > 0. Put

(4.19) C,=sup R,

(4.20) ¢, =inf R,.

Since ® has parameter « whenever it has parameter 0 < B8 < «, it follows
that €, is nondecreasing in « and c, is nonincreasing in «. Theorem 4.3

[e3

shows that
0<c,<C, <oo

Obviously, a similar story holds for Theorem 3.5.

REmMARK 4.5. Due to a decoupling theorem of de la Pena and
Montgomery-Smith (1995), Theorem 4.3 continues to apply if Y; = X, pro-
vided f;;(x,y) =0and L(f;(X;,Y;)=L(f;(Y;, X))
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