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LONG TIME EXISTENCE FOR THE WAVE EQUATION
WITH A NOISE TERM?

By CaARL MUELLER

University of Rochester

We consider the equation u,, = Au + a(u) N for x € R* or R2. N is a
Gaussian noise term, which is white noise if x € R If a(u) grows no
faster than u(log u)*/2~#, then there is a unique solution valid for all
time.

1. Introduction. We prove long time existence for the wave equation
with a noise term, in one and two spatial dimensions,

utt=uxx+a(u)V§/(t,x), XER,t>0,
(1.1) u(0, x) = ug( x),
u,(0, x) = uy(x).
Uy = Au + a(u)G(t, x), x € R? t>0,
(1.2) u(0, x) = uy( x),
U0, X) = uy( ).
Here, W(t, x) is two-parameter white noise. G(t, x) is a generalized Gaussian
field with covariance E[G(t, x)G(s, y)] = 6(s — t)R(|x — y].
We assume
(1.3) IR(x)| < 1.
Of course, if |R(x)| were bounded by a constant greater than 1, then we could
reduce to the above case by rescaling u. G must be smoother than white
noise, since if a=1 and G is white noise, then the solution to (1.2) is a
distribution, not a function [see Walsh (1986a), equation (3.20) and the
succeeding comments], and then the meaning of a(u) in the nonlinear case is
not clear. We could handle a more general noise term in equation (1.1), but
white noise is the canonical case. Our assumption on a(u) is
la(u)| < c(lul + D)log(Jul + 2)%, 0<a< 2,

(1.4)
a(u) is locally Lipschitz

so that a(u) is close to linear. We do not know if these conditions are sharp.
We also assume

(1.5) Ug,u; € C([0,) x RY), d=1or2.
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134 C. MUELLER

As the dimension rises, the fundamental solution of the wave equation
becomes more and more singular. Our methods break down for x € R¢,
d=> 3.
Perhaps it is worth noting that in the deterministic case,
Vie = Vi + v(log v)“,
where v(t, x) = v(t) does not depend on X, an elementary calculation shows
that v can blow up iff a > 2.

VeV, = Vyv(log v) “,

3(v)? = 0(v3(log v)“) if v is large,
Vt

—— =,

v(log v)*/?

(log v)" ™% = ¢yt — ¢,

logv = (cot — ¢ )"/,
So it is possible that v(t) — < in finite time if « > 2, in the deterministic
case.

Many mathematicians have studied long time existence of solutions to
nonlinear partial differential equations. If a random noise term is added,
much less is known. The noise term could be very rough, so that the usual
methods might not apply. In Mueller (1991c) it was shown that solutions to
U, = u,, + UYW(t, x), t > 0, x €[0, J] (with Dirichlet boundary conditions)
exist for all time, provided 1 < y < 3. Computer simulations by Terry Lyons
give evidence that solutions can blow up in finite time if y > 2. Recently, the
author and R. Sowers have shown that blow-up can occur for large y. The
main reason for blow-up would be that u” is not a Lipschitz function of u. In
a wide variety of equations with Lipschitz coefficients, long time existence
follows from standard techniques [see Walsh (1986a), Chapter 3].

Here is a rough idea of the proof of long time existence for (1.1) and (1.2).
We consider light cones {(t, x): 0 <t < T, [x| < T —t}. If u is bounded on
such a region, then a(u) is Lipschitz, with the Lipschitz constant depending
on the bound. This, in turn, allows us to estimate the probability that u is
bounded on the region and so bootstrap our way up. We consider a sequence
of regions with T growing logarithmically with n, and the bound on u
growing exponentially with n.

Now we discuss the rigorous meaning of (1.1) and (1.2).

First, remember that the fundamental solution S(t, x) of the wave equa-
tion is as follows; see Treves [(1975), Chapter 1, Sections 7 and 8], for
example. Here S(t, £) is the Fourier transform of S(t, x) in the x variable.

sin(| ¢ t)

(1.6) S(t, &) = 7]
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This formula is valid in any dimension. For x € RY, we have

%1(|x|st), d=1,
(1.7) S(t, x) = )
51(|x|st)(t2—|x|2)’”, d=2.

We note for later use that
[, s(t,x) dx = §(t,0) = t.
Rd

We reformulate (1.1) and (1.2) in a weak form. To that end, suppose that
Vit = Vix
v(0, X) = Ug(%)
v¢(0, X) = uy(x)
and that V(t, ¢) denotes the Fourier transform of v(t, x) in the x-variable:

U(t, &) = [ra e '¥*v(t, x)dx. Then we easily see that, under appropriate
conditions,
sin(tl¢])

U(t,£) = Qo £)cos(tI€]) + By(€) —

If K(t, X) is a kernel satisfying K(t, &) = cos(t | £)), then

v(t.x) = [ S(tx=y)u(y) dy + [ K(t,x=y)ug(y) dy.

This motivates the weak form for (1.1):

(1.8) u(t, x) =v(t,x)+ ftf S(t—s,x—y)a(u(s,y))T(dyds),
0 “R¢
where T (s, y) is the noise term

W(s,y), ifd=1,

T(sy) = G(s,y), ifd=2.

The integral involving T should be interpreted in the sense of Walsh’s theory
of martingale measures. See Walsh [(1986a), Chapter 2]. The reader can
check that W is an orthogonal martingale measure and that G is a martin-
gale measure with nuclear covariance. For future use, we note the following.
By Theorem 13.2 of Treves (1975), since u, and u, are C” functions, we know
that v(t, x) is a C” function of (t, x), and hence bounded on finite regions.
Here is our main theorem.

THEOREM 1. Suppose that conditions (1.3), (1.4) and (1.5) are satisfied,
and d =1 or 2. Then (1.8) has a unique solution u(t, x) defined for t > 0,
x € R4,
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For d = 1, the proof is easier, since we can use two-parameter martin-
gales, after a change of variables. This technique allows us to estimate the
maximum of u(t, x) over certain regions in the (t, x) plane. To make such
estimates for d = 2, we must estimate the modulus of continuity of u(t, x),
using an argument reminiscent of Kolmogorov's criterion for the continuity of
processes [see McKean (1969), page 16, or Walsh (1986a), Corollary 1.2].

In Section 2 we give the proof of Theorem 1. Section 3 contains the proof of
existence and uniqueness when a(u) is bounded and Lipschitz.

2. Maximum estimates and the proof of Theorem 1. First we prove
Theorem 1 for x € R, where we can use two-parameter martingales to give a
relatively simple proof. Let

C(t,x) ={(s,y) R |x—yl<t—s,s=>0}

be the light cone with apex (t, x). The strategy is to replace a(u(s, x)) by
a(u(s, x) A L), and to show that the new solution T(t, x) satisfies |T(t, x)| < L
with high probability, at least for (t, x) in some light cone C(t(L),0). Then
u = U inside this cone, and we have a bound on u. Letting L — «, we get a
bound for u over all space. This strategy is easiest to carry out with equation
(1.1), since we can use maximal estimates for two-parameter martingales. We
give this argument first.

For equation (1.2), with d = 2, we estimate the maximum of u(t, x) by
considering differences u(t,, x,) — u(t,, x,) over nearest neighbor points on a
grid. This general idea goes back to Kolmogorov's criterion for the continuity
of processes, and Lévy’s modulus of continuity for Brownian motion.

Now consider equation (1.1). It is convenient to stop the solution when it
becomes too large. Let

- _ fu(s,x), iflu(r,z)[ <Lforall(r,z) € C(s,x),
(s, x) = 0, if [u(r, z)| > L for some (r, z) € C(s, X),

and let

F(t, x) = a{ffh(s, y)W(dyds): h is supported on C(t, x)}.
Note that T(t, x) is F(t, x)-measurable, and that |T(t, x)| < L.
Let T(t, x) satisfy
Ty (t, X) =T, (t, x) + a(T(t, x))W(t, x),
(2.1) u(0, x) = ug(x),
U (0, xX) = uy(x).
Note that T(t, x) = u(t, x) if |u] < L on C(t, x). Recall that v(t, x) was the
solution to v, = v,,, V(0, X) = u,(x) and v,(0, x) = u,(x). Recall also that
v(t, x) is a C* function of (t, x), so that for T > 0,

V= sup | v(t, x)| <.
(t, )eC(T,0)
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We prove that u(t, x) has a unique solution in C(T,0) with probability 1.
Since T is arbitrary, the theorem will be true for the entire half-space.
Let

N(t, x) = ftfs a(l(s, x —y))W(dyds)
(2.2) 07
N(ty, t, x) = /‘[C(t,x)\C(t 'O)a(U(s, X —y))W(dyds).

Here is the key lemma.

Lemma 1. If A > 0,0 <t, <t, then

P{ sup |N(t0,s,x)|z/\‘F(t0,0)}
(s, x)eC(t,0)

—C, A%
< Cy€ex .
0Pl 2 log( L + 2)°“ty(t — ty)

Here, ¢, and c, depend only on t.
Proor. We will need the following inequality.

N(t,,t,0)) < L2 log(L + 2)*“ dyds
(Nt t,0) < ff - Llog(L+2)* dy
<, L2 log(L + 2)*“ty(t — t,).

Here, { N(t,, t, 0)) denotes the compensator of the martingale N, up to time t.
Observe, if (s, x) € C(t,0), then N(t,, s, x) is a time-changed Brownian
motion with time scale bounded by L =c, L? log(L + 2)?*t,(t? — t3). There-
fore, for A > 0,
sup  P{IN(ty,s, x)|> A}
(s, x)eC(t,0)

P{| B(c, L% log( L +2)*“ty(t — t))| > )‘}

IA

(2.3)

C L1/2

< exp[ —A%L "1 /2]
by standard estimates of the Normal.

To prove the lemma, we use Cairoli's maximum inequality for multiparam-
eter submartingales [see Walsh (1986b), Theorem 2.2]. This theorem is stated
for a countable index set, but it easily extends to continuous parameter
martingales. It states that, if X, is a positive n-parameter submartingale on
a parameter set I, and if the o-fields satisfy certain conditions, then for
n >0,

,uP{sup X, = ,u} < ¢ + ¢ sup E{X,(log* Xt)”_l}.
1 |



138 C. MUELLER

To apply this inequality to N(t,, s, X) we rotate the (s, x) plane by 45
degrees and dilate by V2. Let t; =s + x, t, = s — x, and let

I={(t;,t,):0<t, +t,,|t, —t,| <2t —t, —t,}.

Thus, | corresponds to (s, x) € C(t,0). It is not hard to check that Cairoli’s
inequality still holds with the conditioning on F(t,, 0), as in the statement of
Lemma 1.

For the duration of the proof, let

f(x) = exp[ x2L ~1/4].
Since f(x) is a convex function,
X(ty,t,) = f(N(t,,s, X))

is a two-parameter submartingale. Let u = f(A). Then, by Cairoli's inequality
(with conditioning), we have

P{ sup |N(t0,s,x)|2)\‘F(t0,0)}
(s, x)e C(t,0)

(2.4)

P{sup X(ty, 1) > M‘ F(tO,O)}
|
1
< —[c + ¢ sup E{X(t;, t,)log* X(t,, tz)}].
I |
Using inequality (2.3), we find
sup E{X(t,, t,)log* X(t;,t,)}
1

= sup me{f(N(to,s, x))log™* (f(N(t,, s, X)))
(s, x)eC(t,0) "0

> f(A)log* f(A))
x d[ f(A)log*™ f(A)]

sup fwP{|N(to,s,x)|z)\}
(s, x)eC(t,0) "0

(2.5)

ML Y||2AaL"r  2A°L7?
dA

Xex +
P74 4 16
w L1/2 —A2L 1 AL HaLTt a%L? dx
+
scfo Iy exp 5 exp 1 5 8

From (2.4) and (2.5) we find

o

P{ sup | N(tg, s, x)|2/\‘F(t0,0)}s
(s, x)eC(t,0)
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Since u = f(A) = exp[A°L ~'/4], and recalling L = c,L? log(L + 2)?*t,(t —
ty), we see that Lemma 1 is established. O

Now we finish the proof of Theorem 1, in the case d =1. Let t,=
(1/K)Xg_11/k, ty = 0. Consider the solution U,(t, x) to (2.1) with cut-off
L, =V + K2""! and let N, be the corresponding noise term.

Let E, = E,(K) be the event that

sup | N, (t, x)| < K2"
(t, x)eC(t,,0)
and F, = F(K) be the event that
sup INL(t, o, t, x)| < K2M 1,
(t, x)e C(t,,ONC(t,_;.0)
Using Lemma 1, we have, for large K,

P{Fr? | Enfl}
CK222n72
= &Xp{ ~ n+1y2 n—1y2¢ 2
(V+K2"5) log(V + 2 + K2"7 %) "log(n + 1) /K*n
cnl—ZaKZ
<exp|—————|,
=o® log(n + 1)

where ¢ does not depend on K, and may change from line to line.
Thus,

Y P{FSIE, ,} <c exp(—cK?).
=1

Next, note that if E,_, and F, occur, then E, occurs. Also, E, trivially
occurs. Thus,

P{ U F,;’} < Y P{FENF_; N nNF}
n=1 n=1
< Y P{FCNF,_,Nn--NF NEy)
n=1
< X P{RINE, 4}
n=1
< X P{RIIE,4)

n=1

< c,exp(—cK?).
However, if F, N -~ N F, occurs, then for (t, x) € [C(t,,0)\ C(t,_;,0]N
C(T,0) we have T(t,x) <V + K2"*! and therefore T(t, x) = u(t, x) on
[C(t,,0)\ C(t,_;,0)] N C(t,0). If all F, occur, then u(t, x) is defined for all
(t, x) € C(T,0). Since T is arbitrary, long time existence is established. This
proves Theorem 1, in the case d = 1 (modulo the proof of unigueness).



140 C. MUELLER

Now we turn to the case d = 2. Define C(t, x) as in the case d = 1. Let
7= 7(T, L) be the first time t € [0, T ] such that

sup  |u(t, x)| = L.
xe C(t,0)

If there is no such time, let 7 = T. Let T(t, x) satisfy

U, (t, x) = AU(t, x) + a(u(t A 7, x))G(t, x),
(2.6) u(0, x) = uy(x),

T,(0, X) = uy(X).

Of course, this is shorthand for an integral equation similar to (1.8).

We wish to estimate the maximum of T(t, x) over a region C(t,0)\ C(s,0).
We shall do this by giving an estimate on the modulus of continuity of T(t, x).
Related estimates in the case of the heat equations were given in Sowers
(1992a, b) and Mueller (19914, b, ¢). Again, let

N(t, x) = ft/ S(t—s,x—y)a(u(s A 7,y))G(dyds).
0 ’R2
This integral is well defined by Lemma 2.4 of Walsh (1986a).

LEMMA 2. Suppose 0 <s <t and x, y € C(T,0). Then, for A sufficiently
large, we have

A P{IN(t, x) — N(t A A A
B P{IN - N |> A -2 A&
] t! > —_ y
( ) { (S X) ( X) } <cC exp ZTB
where

To=cL?log(L + 2)**(t3+ 0V logt — 0 A log Ix[)(Ix — yI? +Ix — yl),
Tg =cL?log(L + 2)%*(1 + t? log(t + 1))[(t —s)® +t— s].

The proof of Lemma 2 relies on the following result. Let S(t, x) = 0 if
t<O0.

LEMMA 3.

@ [][Istrx=2) —S(r,y—z>|dz]2dr
<c(t*+0Vlogt—0 A log |x)(Ix +1xl),

(8) [{[ 18- r2) =565 v o)lce ar

<c(1+t?log t)[(t —s)° + (t— s)].
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ProoF oF LEMMA 3(A). For ease of notation, we let y = —Xx, so |x — y| =
2 |x|. Then,

/Ot[f2|8(r,x—z) —S(r,—x—z)ldz}2 dr

< 4/2|X|M(fRZS(r, z) dz)2 dr

(0]

2
+2f" (f |S(r,z+x)—S(r,z—x)|dz) dr
lzl<r—2]x]

2 |x|At

2
t
+ 2 S(r,z+ —S(r.z— d d
'[ZXAt(/z|>r_2|x|| (r.z+x) (r.z X)l Z) r
= (1) + (1) + ().
By Plancherel’s theorem, since S(t, £) = (sin(t LED) /1€,

sin(r &) B

S(r,z)ds = lim =r,
‘/RZ (r.2) £~0 [€]

and thus,
(1 = 2]:|X|Mr2 dr = 2(1xI® A t3).

By the mean-value theorem,

(=

where Z = Z(z) € R? lies on the line segment joining z + x and z — x. Thus,
|Z| < |z| + |x|, and in the domain of integration,

_ |Z|
j[ (27T) 1/2WZ|X|C‘Z dr,

IxIant|“lzl<sr—2x] (r‘2 —Z] )

r2 —|zl> = (r+lzlh)(r—lzl) = r(r —|z| = |x]).

We may assume 2 |x| A t = 2 |x|, or else (11) = 0. Using polar coordinates, we
have

2 [z + [x]

(1) = lexl(ﬁzerﬂ V2w r3/2(|’ —lzl - |X|)3/2

2
| X] dz) dr

| x|? v2 dv

2
t r—21x|
<c dr
/2|x| re (/0 (r—lxl—v)3/2)
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4
N ¢ Ix] r—2 x| vdv
oL,
21x ¥ o (r—Ixl—v)*?
2
t 2 r—21x| dv
<cf| Ix| rf 57| dr
2 x| 0 (r—Ixl—=v)
2
t -2 dv ]
+cf  Ix*rt fr " 57z | dr (sincev<r)
21x| 0 (r—=1Ixl—=v)

t t
scflxlrdr+c I r—tdr
0 2 |x|

<ct?|x| +c|x®logt — c|x|® log | x|

< ct? x|+ c|x|*(0 Vv log t) — c|x*(0 A log | x]).
Finally, again assuming 2 | x| A t = 2| x|,

(|||)szf2t|X|(

2 2IX|(
c r vdv ?
szu(fr—sx [(r+v)(r-— V)]l/z) o

r dv 2

t

c r — 5| dr
f2|x\ (fr3|x(r—v)1/2)

< ct?|x|.
Putting together these estimates, we get Lemma 3(A). O

2
f S(r,z+x) dz) dr
[z|>r—21x]|

IA

2
/ S(r, z) dz) dr
[z|>r—31x]|

IA

IA

ProoF oF LEMMA 3(B).

fw(/ |S(t—r,z) —S(s— r,z)|dz)2 dr
0 \/R?

= /t(fst(t -r,z) dz)2 dr

+fos(fR2|S(t— r,z) —S(s-—r, z)|dz)2 dr
< f:(t —r)’dr+ j;(t_S)AS(fR2|S(t -r,z) —S(s—r, z)|dz)2 dr

+ [ (fR2|S(t—r,z)—S(s—r,z)ldz)zdr

(t—s)As

=)+ (1) + ().
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Now
(1) <c(t—s)°
and
2

(m sfts(f2|8(t—r,z) +S(s—r,z)|dz| dr
scfot_s[t—r+s—r]2dr

< ct?(t—s).
For term (111), we may assume (t —s) A s =t — s since otherwise the inte-

gral is 0. Setting A =t — s, we have
2

(1) s/SA(f2|S(r+A,z) —S(r,z)ldz) dr
sf:(fm<r_A|S(r+A,z)—S(r,z)|dz) dr

+/:(IIZINA(S(r +4,2) +8(r, 2)) d2)2 dr

= (H1L1) + (111.2).
Using the mean-value theorem, we find, for some b  [r, r + A] that
IS A S | ! b A
r+A,z) —S(r,z)| =
( ) =S D)= e
1 r+A

< A
V2 (rz —|Z|2)3/2
Thus, using polar coordinates, we have

s r+ A
1.1) <c — = Adz
( ) '/’A(‘/l-z<rA (rz _|Z|2)3/2

2
5 (S| fr-a 2r
scAfA(/; —r3/2(r—v) vdv| dr

< cAzfsr(/r_A rdvv)z dr
a \Jo -

= cAZ/Sr(Iog r —log A)® dr
A

< cA%s%(log s + log A)?
< cA’t?(log t + log A)?
= ¢(t —s)’t?(log t + log(t — s))°.
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Finally, again using polar coordinates, we find
2
(1.2) < cfs(fr+A[(r +4)° — 2| 1/zvdv) dr
A r—A
2
+ cfs(fr [r2 - vz]_l/zvdv) dr
A r—A

2
scfs(/r r‘l/z[r—v]_l/z(r+A)dv) dr
A r—2A
S
<c| rAdr
J
<ct?’(t—s).
Putting together (1), (11), (111.1) and (111.2), we have Lemma 3(B). O

Now we apply Lemma 3 to prove Lemma 2. Lemma 2.4 in Walsh (1986a),
shows that for appropriate nonanticipating (in r) f(t, r, y) that

M, = joafsz(t, r,y)G(dydr)

is a continuous martingale with quadratic variation

(M)a = ]Oa/szsz(t, roy) f(t 1 y2) R(ys = y2) dy, dy, dr

< /Oa[fRzlf(t, r, y)|dy}2 dr,

since |R(y; — y,)I < 1.
By an abuse of notation, we write

</ot fsz(t’ r V)G(dydr>> = (MDala-t.

If T is a bound for {(M,), we may regard M, as a time changed Brownian
motion, with time scale bounded by T. Using the reflection principle for
Brownian motion and standard estimates for the normal, we find

(2.7) P{IM,/>A} < P{ sup |B,| > A}
O<t<T
< 4P{B; > A}
28 T A?
(2.8) <cep| oo |-

We apply this estimate to Lemma 2. For part (A), we let M, = N(t, x) —
N(t, y). Since |a(u)| < cL log(L + 2)*, Lemma 3(A) implies that

(M) < cL?log(L + 2)**(t® + log t)2(|x|3 + |x|)2.
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Then, estimate (2.7) implies Lemma 2(A). For part (B), we let M, =
N(t—r,z) — N(s —r, z). We find

(M) < el log(L +2)**(1 + t? log(t + 1))[(t — 8)° + t — 5],
so estimate (2.7) implies Lemma 2(B), also. O

Now we use Lemma 2 to prove Theorem 1 in the case x € R?. The strategy
is reminiscent of the proof for u,, = u,, + a(u)W. As before, we let t, =0
and t, = (1/K)Xp_;1/k. Let L, =K2". We give an argument similar to
Kolmogorov's proof of continuity for processes [see McKean (1969), page 16 or
Walsh (1986a), Corollary 1.2] to show that on the dyadic rationals, u(t, x) is
bounded with high probability. The “dyadic rationals” are vectors (t, x) € R®
with components of the form k/2™.

Again, we restrict attention to (t, x) € C(T, 0). Recall that v(t, x), defined
in the introduction, was the solution to the wave equation without noise.
Since v(t, x) is a C” function, V = sup e c(t,0) [V(t, X)| < . Choose K > V.

Let E, be the event that

sup  u(t, x) < sup u(t, x) + 2V + K2n?2
(t, x)eC(t,,0) (t, x)eC(t,_,,0)
and let E, be the event that

sup u(t,x)sv+5.
(t, x)&C(t,, 0) 2
LEMMA 4.
P{ES I E,_; N NE;} <coexp(—c, K ont~ 274
for Klargeand 1 — 2a — 4¢ > 0.

Proor. Fix &> 0. For m > log(Kn), let F, .. be the event that for all
pairs
k1 k2 k3
(t,x) = (z—mz—mz—) € C(t,,0)
and
Il I2 IS
(s,y) = (Z_m' om 2_”‘) € C(t,,0),
such that (t, x),(s, y) are nearest neighbors (i.e., |(t, x) — (s, y)|=(1/2™)
and such that at least one of (t, x), (s, y) lies in C(t,,0) \ C(t,_,,0), we have
IN(t, x) — N(s,y)| < K2 ™,

Let F, = mmzlog(Kn) I:n,m'
First we show that
(2.9) E,Nn---NE,_;,NF,CcE, N--NE,
so that
(2.10) P{ESIE,_;N--NE} <P{FSIE,_;N--NE]}.

Then we estimate P{FS | E,_; N - N E}.
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To show (2.6), suppose that E;, n---NE,_; holds and that (t, x) €
C(t,,0)\ C(t,_;,0). Assume without loss of generality that x = (x,, x,) and
that x,, x, > 0. Let (s, y) be the closest point in C(t,_,, 0) to (t, x). Of course,
y=(y;,y,) where 0 <s<t O<y, <X, i=12 Choose m, such that
2 M2 < (1/Kn) < 2 ™01 Then

1
t—s| <|(t, x) = (s, <— <2 M1
=8l <l(t, %) = (5, y) | <

and

Ix; —y;l <27 Mot i=1,2.
The reader can check that k, 1;, 1, > 0 can be chosen such that

k k+1
Eﬁg <s<t< Smo

and

l; I+t ]

Ega:gyisgxis T;ET, i=1,2

As mentioned, we assume that the entries of (t, x) are dyadic rationals,
relying on continuity to deal with other cases.

We intend to break N(t, x) — N(s, y) into a telescoping sum

M

2 [NCsives Yier) = N(si, vl

i=0
where (sg, yo) = (s, y) and (s, yu) = (t, x). Furthermore, we require that
s; <tfori=0,..., M. Also each difference (s;,,, y;,1) — (s;, ¥;) should be of
the form (2-™,0,0), (0,27™,0) or (0,0,2™™), m > m,,.

Also, each of the above difference vectors should occur only once, so that
there are at most three differences (s;, ;, ¥i.1) — (s;, y;) of magnitude 27 ™.
To see that this is possible, we need only express the entries of (t, x) and
(s, y) in terms of base 2 notation. For example, in the one dimensional case, if
s=2and t= 2, wewouldwrite sy =1%,s, =32, 5,=12, s, =2,

Now, assume that F, occurs, so that if [(s;,, ¥;,1) — (s;, y))l < 2™ ™ then

|N(Si+1’ Yie1) — N(s;, yi)l < K2"me,
We find that

IN(t, x) = N(s, ¥)| < 2 [N(Sitq, Yier) = N(Si, Y|

i=0

<3 Y K2nme

k=mg
< c(eg)K2N™ Mo
Klfa‘
<c 2"
(&) =

since 2-Mo"2 < (1/Kn).



WAVE EQUATION WITH NOISE 147

Therefore, since u(t, x) = v(t, x) + N(t, x), and since (s, y) € C(t,_;,0)
we have
lu(t, x)| <[u(s, )| +[v(t, x) = v(s, y)| +IN(t, x) = N(s, y)]
1-¢
< sup u(s,y) +2V +c(e) —— 2"
(s, y)eC(t,_,,0) n

< sup u(s,y) +2Vv + K2"
(s,y)eC(t,_,,0)

for K large.

This shows that E, N ---NE,_;NF, CE, n--NE,.

Now we estimate P{F’ | E,_, N --- N E,;}. Taking into account the defini-
tion of U, we can drop the conditioningon E,_, N --- N E, provided we define
F, in terms of T(t, x), not u(t, x). Note that C(t,,0)\ C(t,_,,0) has volume
bounded by ct2(t, — t,_,) or cK~2(log n)>’n~*. Now the event F, , involves
differences of N(t, x) over nearest neighbors on the grid of order m. There
are at most ¢23"K~3n~*(log n)? such differences. Using Lemma 2, we find

P{FS .} <c23"K 3n~(log n)2Iexp —A—z
e A 2T )

6
]z—m.

Thus, for K large, and therefore m large (since m > m, where 2"Mo"2 <
(1/Kn) < 27Mo~1),

where
A =K2n—me
log n

T = cK 222" Jog( K2" + 2)*“[1 + (T

P{Fs m} < coexp(—c,2m* ) (log K + n)_za)

1-2¢

< coexp(—c,2 ™ (Kn)' *“(log K + n) ).

Summing from m = m, to », we find

1-2¢

P{F3)

IA

Co exp(—C,27 ™07 (Kn)'"**(log K + n)~*“)

1-4¢

IA

Co exp(—Cy(Kn)™ ™ **(log K + n) %)

Co exp(_ClKl_S“’nl—Za—48)

IA

if Kislargeand 1 — 2a — 4¢ > 0. This proves Lemma 4. O

So finally,

IA

Z Co exp(_ClKl_sgnl—Zu—%)
n=1

=0(1) as K— «.

Y P{EfIE, 1N NEy
n=1



148 C. MUELLER

Thus,

{(EENE,_; N NE]}

‘U
—_—
L
=}
)8
A

m

=}
L]
—_ 2

IA

= {ERlEq 1N NEyY

> P
n=1
> P
n=1
=0(1) as K- .

So E = N;_, E, occurs with high probability, if K is large. But if all of the
E,, occur, then 7=« and T(t, x) = u(t, x) for all t > 0, x € R. Thus u(t, x)
exists for all time, with high probability. Since K is arbitrary, u(t, x) exists
for all time with probability 1. This completes the proof of Theorem 1. O

3. Existence and uniqueness. In this section we prove existence and
uniqueness for solutions u(t, x) to

Uy = U, + a(u)W, t>0,xeR,
(3.1) u(0, xX) = uy(x),
u(0, x) = uy(x),
Uy =Au+a(u)G, t=0,xeR%d=2,
(3.2) u(0, X) = uy(x),
LU0, %) = uy(x).
Here W, G, u,, u, are as in Section 2.
We assume that a(u) is a bounded, Lipschitz function of u. Thus, if
necessary, we consider a(u) = a((u A L) vV (—=L)) where a is what we called
a in Section 2. As in (1.8), we give these equations rigorous meaning by

reformulating them as integral equations. The proofs given here use standard
Picard iteration arguments, but we have not found them elsewhere.

THEOREM 2. Under the above conditions, (3.1) and (3.2) possess unique
solutions.

ProoF. We begin with (3.1). Let u©(t, x) satisfy
uQ = ue,
u®(0, x) = uy(x),
u?(0, x) = uy(x)
and define u‘™(t, x) by induction:

um(t, x) = uO(t, %) + [ [Fa(u(s, y)w(dyds).
0 “x—t
Let K be the Lipschitz constant of a, and also the bound on a, and let

M,(t) = sup  E[u™*D(s, x) — u™(s, x)]*.
(s, x)eC(0,t)
Since a is bounded, we easily compute that M,(t) < « for all t > 0.
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Then one finds
S X+Ss
M,(t) <K?  sup / f M,_,(r) dydr.
(s,x)eC(,t) "0 “x—s

Now a standard application of Gronwall's lemma implies that for t fixed,
M,(t) is a summable sequence. The reader can follow similar arguments in
Walsh [(1986a), page 322], to show that u(t, x), the L? limit of u‘™(t, x) as
n — «, exists a.s. for each (t, x), and that u(t, x) satisfies (3.1). Actually,
Walsh leaves the calculation as “an exercise for iteration enthusiasts.”

Uniqueness is also standard. Suppose that u®(t, x), u®(t, x) are two
solutions. Let

M(t) = sup  E[u®(s, x) — u@(s, x)]%.
(s, x)eC(t,0)

Since |a(u)| is bounded, we see from equation (3.1) that M(t) < « for all t.
Also,

S X+s
M(t) <K?  sup f f M(r) dr
(s, x)eC(t,0) "0 “x—s

and so by Gronwall's lemma, M(t) =0 for all t. Thus, for each (t, x),
u®(t, x) = u@(t, x) a.s. Now we deal with equation (3.2), using the same
basic ideas as for (3.1). Let u©(t, x) satisfy

U = AU,
u®(0, x) = ug(x),
u?(0, x) = uy(x)

and define u‘™(t, x) by induction:
t
u™(t, x) = u9(t, x) + f j S(t—s,x—y)a(u(s, y))G(dyds).
0 “R?
Again, let

M,(t) = sup  E[u™*D(s, x) — u™(s, x)]*.
(s, x)eC(t,0)

Then,

M, (t) = E[fotfRZS(t -s,x—y)a(u(s, y))G(dyds)}2

2
t
sKZ[ S(t—s, X — dds]
[ y) dy
t4
<K?—.
4

Here, as in Section 2, we have used the fact that |R(x)| < 1.
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Now,

Mya(0) = E[ [ [ S(t=5.x =)
x{a(u" (s, y)) —a(u™(s, y))}G(dyds)}

<k2f S(t—s;, X —y,)S(t—s,, X —
= /(J/R2fR2 ( S1, X — Y1) S( Sy, X —Y>)
X E[[u™ V(s y;) — u™(s, y)|
'|u(n+l)( S2,Y2) — U™(s,, Y2)” dy, dy, ds

< Kzfot[fRZS(t -5, X —y)M}Y?(s) dy}2 ds

< K2['(t=5)*My(s) ds.
0

Here we have used the Cauchy—-Schwartz inequality. Then Gronwall’'s lemma
shows that ¥7,_, M,(t) converges for all t. Again, we leave it to the reader to
show that u(t, x), the L? limit of u™(t, x) as n — o, exists a.s. for each
(t, x), and that u(t, x) satisfies (3.3).

The proof of uniqueness is also easy. Let u®(t, x) and u®(t, x) be two
solutions, and let

M(t) = sup  E[u®(s, x) — u@(s, x)]%.
(s, x)eC(t,0)
Again, equation (3.3) and the fact that a is bounded shows that M(t) < « for
all t. As in the previous calculation,

M(t) < K2 [*(t = 5)*M¥2(s) ds.
0

Then Gronwall’'s lemma implies that M(t) = 0 for all t. This proves unique-
ness. O
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