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We study the Domany–Kinzel model, which is a class of discrete time
Markov processes with two parameters (p1,p2) ∈ [0,1]2 and whose states
are subsets of Z, the set of integers. When p1 = αβ and p2 = α(2β − β2)

with (α,β) ∈ [0,1]2, the process can be identified with the mixed site–bond
oriented percolation model on a square lattice with the probabilities of open
site α and of open bond β. For the attractive case, 0 ≤ p1 ≤ p2 ≤ 1, the
complete convergence theorem is easily obtained. On the other hand, the case
(p1,p2) = (1,0) realizes the rule 90 cellular automaton of Wolfram in which,
starting from the Bernoulli measure with density θ , the distribution converges
weakly only if θ ∈ {0,1/2,1}. Using our new construction of processes
based on signed measures, we prove limit theorems which are also valid for
nonattractive cases with (p1,p2) 	= (1,0). In particular, when p2 ∈ [0,1] and
p1 is close to 1, the complete convergence theorem is obtained as a corollary
of the limit theorems.

1. Introduction. The Domany–Kinzel model is a two parameter family of
discrete time Markov processes whose states are subsets of Z, the set of integers,
which was introduced by Domany and Kinzel (1984) and Kinzel (1985). Let
ξAn ⊂ Z be the state of the process with parameters (p1,p2) ∈ [0,1]2 at time n

which starts from A ⊂ 2Z. Its evolution satisfies the following:

(i) P (x ∈ ξAn+1|ξAn ) = f (|ξAn ∩ {x − 1, x + 1}|);
(ii) given ξAn , the events {x ∈ ξAn+1} are independent, where f (0) = 0,

f (1) = p1 and f (2) = p2.

If we write ξ(x,n) = 1 for x ∈ ξAn and ξ(x,n) = 0 otherwise, each realization
of the process is identified with a configuration ξ ∈ {0,1}S = X with S = {s =
(x, n) ∈ Z × Z+ :x + n = even}, where Z+ = {0,1,2, . . .}. As special cases
the Domany–Kinzel model is equivalent to the oriented bond percolation model
(p1 = p, p2 = 2p−p2) and the oriented site percolation model (p1 = p2 = p) on
a square lattice. The two-dimensional mixed site–bond oriented percolation model
with α the probability of an open site and with β the probability of an open bond
corresponds to the case of p1 = αβ and p2 = α(2β −β2). When (p1,p2) = (1,0),
Wolfram’s (1983, 1984) rule 90 cellular automaton is realized. See Durrett [(1988),
pages 90–98] for details.
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For any p1,p2 ∈ [0,1] and A ⊂ 2Z, limn→∞ P (ξA2n 	= ∅) exists, since ∅ is an
absorbing set. Let Y = {A ⊂ 2Z : 0 < |A| < ∞}, where |A| is the cardinality of A,
and we write the connectedness from A ⊂ 2Z to B ⊂ 2Z as

σ(A,B) = lim
n→∞P (ξA2n ∩B 	= ∅)

if the right-hand side exists.
When 0 ≤ p1 ≤ p2 ≤ 1, this process has the following good property called

attractiveness: if ξAn ⊂ ξBn , then we can guarantee that ξAn+1 ⊂ ξBn+1 by using an
appropriate coupling. For the attractive case, it is easy to prove the following:

(i) If A ⊂ 2Z, B ∈ Y , then σ(A,B) exists. In particular, σ(2Z,B) exists.
(ii) Let 0 (resp. 1) denote the configuration η(x) = 0 (resp. = 1) for any x ∈ 2Z.

For any A ⊂ 2Z,

P (ξAn ∈ ·) ⇒ (
1 − P (�A∞)

)
δ0 + P (�A∞)µ∞ as n → ∞,

where ⇒ means weak convergence, �A∞ = {ξAn 	= ∅ for any n ≥ 0}, δ0 is the
point mass on the configuration 0, and a limit µ∞ is a stationary distribution of
the process ξ2Z

2n . This complete convergence theorem can be obtained by similar
arguments for the lemma in Griffeath (1978) [see also Durrett (1988), Section 5c]
which treated a continuous time version. It should be remarked that the complete
convergence theorem is equivalent to the equality

σ(A,B) = σ(A,2Z)σ (2Z,B) for any A,B ∈ Y.

It is easy to see that the process with p1 ∈ [0,1/2] and p2 ∈ [0,1] starting from
a finite set dies out. That is,

σ(A,B) = 0 if p1 ∈ [0,1/2], p2 ∈ [0,1], A ∈ Y, B ⊂ 2Z.(1.1)

It is concluded by comparison with a branching process.
The purpose of the present paper is to prove limit theorems which are valid also

for the nonattractive cases except Wolfram’s rule 90 cellular automaton (p1,p2) =
(1,0). For this purpose we introduce σ(ν,B) for a probability distribution ν on X

and B ∈ Y defined by

σ(ν,B) = lim
n→∞P (ξν2n ∩B 	= ∅),

if the right-hand side exists, where ξνn is the process with initial distribution ν. We
first prove the following lemma.

LEMMA 1. We assume that (p1,p2) ∈ [0,1]2 with (p1,p2) 	= (1,0) and
p2 < 2p1. Let νθ be the Bernoulli measure with θ ∈ (0,1] and B ∈ Y . Then we
have

σ(νθ ,B) =




∑
D⊂B,D 	=∅

α|D|(1 − α)|B\D|σ(D,2Z),

if p2 	= 0 or 0 < θ < 1,

0, if p2 = 0 and θ = 1,

(1.2)

where α = p2
1/(2p1 − p2).
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Remark that (1.1) implies σ(νθ ,B) = 0, B ∈ Y if p2 ≥ 2p1 with (p1,p2) 	=
(1

2 ,1). When (p1,p2) = (1
2 ,1), the model is the discrete time voter model and

σ(νθ ,B) = θ if B ∈ Y . In Theorem 1 of Katori, Konno and Tanemura (2000),
(1.2) for σ(2Z,B) with p1 ∈ [0,1),p2 ∈ (0,1] was given. The present lemma is
an extension of it which includes the interesting cases where p2 = 0 or p1 = 1. In
the proof of Lemma 1, we use the new construction of the process using a signed
measure with α = p2

1/(2p1 − p2) and β = 2 − p2/p1 which was introduced in
Katori, Konno and Tanemura (2000). From this lemma we can immediately get
the next limit theorem. [The standard argument can be found in Durrett (1988),
page 71.]

PROPOSITION 2. We assume that (p1,p2) ∈ [0,1]2 with (p1,p2) 	= (1,0) and
p2 < 2p1. Then we have

P (ξ
νθ
2n ∈ ·) ⇒ µ∞ as n → ∞,

where µ∞ is the translation invariant probability measure such that

µ∞(ξ ∩B 	= ∅) = ∑
D⊂B,D 	=∅

α|D|(1 − α)|B\D|σ(D,2Z),

for any B ∈ Y .

We note that P (�
{0}∞ ) = σ({0},2Z) = 0 (resp. = 1) is equivalent to P (�A∞) =

σ(A,2Z) = 0 (resp. = 1) for any A ∈ Y . It is obvious that if P (�
{0}∞ ) = 0, then

µ∞ = δ0. From this corollary, we obtain the following interesting result, since
σ(D,2Z)= 1 for any D ∈ Y if p1 = 1.

COROLLARY 3. When p1 = 1 and p2 ∈ (0,1], µ∞ is the Bernoulli mea-
sure να , where α = 1

2−p2
.

We should remark that when (p1,p2) = (1,0), that is, in the case of rule 90
of Wolfram’s cellular automaton, Miyamoto (1979) and Lind (1984) proved that,
starting from the Bernoulli measure νθ , the distribution converges weakly only if
θ ∈ {0,1/2,1}.

Proposition 2 can be generalized as follows. Let N = {1,2,3, . . .}, X = {0,1}2Z

and P (X) be the collection of probability measures on X. We introduce the
following conditions (C.1) and (C.2) for ν ∈ P (X):

(C.1) For any ε > 0 there exists k ∈ 2N such that

ν(ξ ∩ [x − k, x + k] = ∅) ≤ ε for any x ∈ 2Z.

(C.2) For any ε > 0 there exists k ∈ 2N such that

ν(ξc ∩ [x − k, x + k] = ∅) ≤ ε for any x ∈ 2Z.
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THEOREM 4. (i) Suppose that p1 ∈ [0,1],p2 ∈ (0,1] and p2 < 2p1. If
ν satisfies (C.1), then

P (ξν2n ∈ ·) ⇒ µ∞ as n → ∞.

(ii) Suppose that p1 ∈ [0,1),p2 = 0. If ν satisfies (C.1) and (C.2), then

P (ξν2n ∈ ·) ⇒ µ∞ as n → ∞.

Let S(X) = {ν ∈ P (X) :ν is translation invariant}. We remark that ν ∈ S(X)

with ν({0}) = 0 [resp. ν({1}) = 0] satisfies (C.1) [resp. (C.2)]. Then we have the
following corollary of Theorem 4.

COROLLARY 5. (i) Suppose that ν ∈ S(X). If p1 ∈ [0,1],p2 ∈ (0,1] and
p2 < 2p1, then

P (ξν2n ∈ ·) ⇒ ν({0})δ0 + (
1 − ν({0}))µ∞ as n → ∞.

Also, if P (�
{0}∞ ) > 0, then µ∞({0}) = 0.

(ii) Suppose that ν ∈ S(X). If p1 ∈ [0,1),p2 = 0, then

P (ξν2n ∈ ·) ⇒ ν({0,1})δ0 + (
1 − ν({0,1}))µ∞ as n → ∞.

Also, if P (�
{0}∞ ) > 0, then µ∞({0,1})= 0.

We also obtain the following complete convergence theorem.

THEOREM 6. There exists p̂1 ∈ (0,1) such that, for any A ⊂ 2Z,

P (ξA2n ∈ ·) ⇒ (
1 − P (�A∞)

)
δ0 + P (�A∞)µ∞ as n → ∞,

when p1 ∈ [p̂1,1] and p2 ∈ [0,1], but (p1,p2) 	= (1,0).

We conjecture that the complete convergence theorem holds for any (p1,p2) ∈
[0,1]2 except (p1,p2) = (1,0). In attractive particle systems, the block construc-
tion arguments have been used to prove the complete convergence theorem; see
Durrett [(1984), Section 9] and Durrett [(1988), Section 5b]. One of the essential
properties used in the proofs is that if P (�0∞) > 0, then the probability P (�A∞) is
close to 1 for any sufficiently large initial set A. In general it is unknown whether
the property holds for nonattractive systems. Here we can show that it holds for
the nonattractive Domany–Kinzel model.

PROPOSITION 7. (i) Suppose that p1 ∈ [0,1], p2 ∈ (0,1] and P (�
{0}∞ ) > 0.

Then

lim|A|→∞P (�A∞) = 1.(1.3)
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(ii) Suppose that p1 ∈ [0,1), p2 = 0 and P (�
{0}∞ ) > 0. Then

lim|∂A|→∞P (�A∞) = 1,(1.4)

where ∂A = (A+ 1)�(A− 1) for A ⊂ 2Z.

The paper is organized as follows. Section 2 is devoted to the proof of
Lemma 1. The proof of Theorem 4 is given in Section 3. We prove Theorem 6
and Proposition 7 in Section 4.

2. Proof of Lemma 1. First we introduce these spaces:

S = {
s = (x, n) ∈ Z × Z+ :x + n = even

}
,

B = {
b = (

(x, n), (x + 1, n+ 1)
)
,
(
(x, n), (x − 1, n + 1)

)
: (x, n) ∈ S

}
,

X(S) = {0,1}S, X(B) = {0,1}B, X = X(S)× X(B),

where Z+ = {0,1,2, . . .}. For given ζ = (ζ1, ζ2) ∈ X, we say that s = (y, n + k)

∈ S can be reached from s′ = (x, n) ∈ S and write s′ → s, if there exists a sequence
s0, s1, . . . , sk of members of S such that s′ = s0, s = sk and ζ1(si) = 1, i =
0,1, . . . , k, ζ2((si, si+1)) = 1, i = 0,1, . . . , k − 1. We also say that G ⊂ S can
be reached from G′ ⊂ S and write G′ → G (resp. G′

� G), if there exist s ∈ G

and s′ ∈ G′ such that s′ → s (resp. if not). Furthermore we define

S(N) = {
s = (x, n) ∈ S : |x|, n ≤ N

}
,

B(N) = {
(s, s′) ∈ B : s, s′ ∈ S(N)

}
and let F (N) be the σ -field generated by the events of configurations depending
on S(N) and B(N).

For given α,β ∈ R, we introduce the signed measure m(N) on (X,F (N))

defined by

m(N)(() = αk1(1 − α)j1βk2(1 − β)j2,

for any cylinder set

( = {
(ζ1, ζ2) ∈ X : ζ1(si) = 1, i = 1,2, . . . , k1, ζ1(s

′
i) = 0, i = 1,2, . . . , j1,

ζ2(bi) = 1, i = 1,2, . . . , k2, ζ2(b
′
i) = 0, i = 1,2, . . . , j2

}
,

where s1, . . . , sk1, s
′
1, . . . , s

′
j1

are distinct elements of S(N) and b1, . . . , bk2,

b′
1, . . . , b

′
j2

are distinct elements of B(N). We define the conditional signed mea-

sures on (X,F (N)) as follows:

m
(N)
k (·) = m(N)

(·|ζ1(s) = 1, s ∈ S(N)
k

)
,

m
(N)
k,j (·) = m(N)(·|ζ1(s) = 1, s ∈ S(N)

k ∪ S(N)
j

)
,
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where S(N)
k = {(x, n) ∈ S(N) :n = k}. We should remark that F (N) ⊂ F (N+1) and,

for any ( ∈ F (N),

m(N)(() = m(N+1)((),

m
(N)
k (() = m

(N+1)
k ((),

m
(N)
k,j (() = m

(N+1)
k,j (().

From this consistency property, there exist the unique real-valued additive
functions m,mk and mk,j on

⋃∞
N=1 F (N) such that, for any ( ∈ F (N),

m(() = m(N)((),

mk(() = m
(N)
k ((),

mk,j (() = m
(N)
k,j (().

See Figure 1. In this paper, we take α = p2
1/(2p1 − p2) and β = 2 − p2/p1.

For A,B ⊂ Z, k, j ∈ Z+ with A×{k},B×{j} ⊂ S we write A×{k} ⇒ B×{j}
if A × {k} → (x, j) for any x ∈ B and A × {k} � Bc × {j}. Then the observation
shown by Figure 2 and the Markov property of the Domany–Kinzel model give

P (ξAn+1 = B|ξAn = D) = mn(D × {n} ⇒ B × {n+ 1})
and

P (ξAn = B) = m0(A× {0} ⇒ B × {n}),
where B is finite. From the above equation, the following equations can be quickly
derived:

P (ξAn � y) = m0
(
A× {0} → (y, n)

)
,(2.1)

P (ξAn ∩B 	= ∅) = m0(A× {0} → B × {n}).(2.2)

If p2 < 2p1 and p2 > 2p1 − p2
1, then α > 1 and β ∈ (0,1). If p2 ≤ 2p1 − p2

1 and
p2 ≥ p1, then α,β ∈ [0,1]. This case corresponds to the mixed site–bond oriented
percolation with α the probability of an open site and with β the probability of
an open bond, where p1 = αβ and p2 = α(2β − β2). That is why we choose
α = p2

1/(2p1 −p2) and β = 2 −p2/p1 in our construction. Moreover, if p2 <p1,
then α ∈ (0,1) and β ∈ (1,2].

For a fixed even nonnegative number k, we introduce the map rk from S to S
defined by

rk(x, n) =
{
(x, k − n), n = 0,1, . . . , k,
(x, n), otherwise,

and the map Rk from x to x defined by

Rkζ = (
(Rkζ )1, (Rkζ )2

)
,

where (Rkζ )1(s) = ζ1(rks) and (Rkζ )2((s, s
′)) = ζ2((rks

′, rks)). Note that m is
Rk-invariant. To prove Lemma 1 we use the following lemma.
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FIG. 1.

LEMMA 8. Suppose that p1,p2 ∈ [0,1] with (p1,p2) 	= (1,0). Then, for any
positive integer , and A ⊂ 2Z, we have

lim
n→∞P (1 ≤ |ξAn | ≤ ,,�A∞) = 0.

When p1 	= 1, the lemma was proved in Katori, Konno and Tanemura [(2000),
Lemma 4]. When p1 = 1, the lemma is derived from Lemma 10, which is given in
Section 4.

Now we prove Lemma 1. Suppose that n is even. Let ν be a probability measure
on X and let Aν be a random variable with distribtion ν which is independent
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FIG. 2.

of ξDn ,D ⊂ 2Z. Then from (2.2) we can show that

P (ξνn ∩B 	= ∅) =
∫
X
ν(dη)P (ξηn ∩B 	= ∅)

=
∫
X
ν(dη)m0(η × {0} → B × {n})

=
∫
X
ν(dη)

∑
D⊂B,D 	=∅

m0,n(η × {0} → D × {n})α|D|(1 − α)|B\D|

=
∫
X
ν(dη)

∑
D⊂B,D 	=∅

m0,n(D × {0} → η × {n})α|D|(1 − α)|B\D|
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and

m0,n(D × {0} → η × {n})
= ∑

0<|C|<∞
m0(D × {0} ⇒ C × {n− 1})mn−1,n(C × {n − 1} → η × {n})

= ∑
0<|C|<∞

m0(D × {0} ⇒ C × {n− 1})[1 − (1 − β)|η∩(C+1)|+|η∩(C−1)|]

= P (ξDn−1 	= ∅)−E
[
(1 − β)|η∩(ξDn−1+1)|+|η∩(ξDn−1−1)|; ξDn−1 	= ∅

]
.

Then we have

P (ξνn ∩B 	= ∅) = ∑
D⊂B,D 	=∅

P (ξDn−1 	= ∅)α|D|(1 − α)|B\D|

− ∑
D⊂B,D 	=∅

E
[
(1 − β)|Aν∩(ξDn−1+1)|+|Aν∩(ξDn−1−1)|; ξDn−1 	= ∅

]
(2.3)

× α|D|(1 − α)|B\D|.

Then, to prove

σ(ν,B) = ∑
D⊂B,D 	=∅

σ(D,2Z)α|D|(1 − α)|B\D|

for B ∈ Y , it is enough to show that, for any D ⊂ B with D 	= ∅,

lim
n→∞E

[
(1 − β)|Aν∩(ξDn−1+1)|+|Aν∩(ξDn−1−1)|; ξDn−1 	= ∅

] = 0.(2.4)

We show (2.4) for ν = νθ to prove Lemma 1. We set Aθ = Aνθ . If p1 ∈ [0,1]
and p2 ∈ (0,1], we see that 1 − β ∈ (−1,1). So (2.4) is derived from Lemma 8. If
p1 ∈ [0,1) and p2 = 0, then 1 − β = −1. Since

|Aθ ∩ (ξDn−1 + 1)| + |Aθ ∩ (ξDn−1 − 1)| = |Aθ ∩ ∂ξDn−1| mod 2

and ξDn−1 and Aθ are independent, we have

E
[
(−1)|Aθ∩(ξDn−1+1)|+|Aθ∩(ξDn−1−1)|; ξDn−1 	= ∅

] = E
[
(−1)|Aθ∩∂ξDn−1|; ξDn−1 	= ∅

]
= E

[
(1 − 2θ)|∂ξDn−1|; ξDn−1 	= ∅

]
.

Noting that 1 − 2θ ∈ (−1,1) for θ ∈ (0,1), and that ∂ξDn−1 ⊃ ξDn , we obtain (2.4)
from Lemma 8.
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3. Proof of Theorem 4. In this section we show equation (2.4) under
condition (C.1) if p2 	= 0, and under conditions (C.1) and (C.2) if p2 = 0. Then,

we obtain Theorem 4. Since P (ξn+k ∈ ·) = P (ξ
ξ̂ νk
n ∈ ·), k ∈ 2N, it is enough to

show that for any ε > 0 there exists k ∈ 2N such that

lim
n→∞E

[
(1 − β)|̂ξ νk ∩(ξDn−1+1)|+|̂ξ νk ∩(ξDn−1−1)|; ξDn−1 	= ∅

] ≤ ε,(3.1)

for any D ∈ Y , where ξ̂ νk is an independent copy of ξνk .
First we consider the case p2 	= 0. By (C.1), for any δ ∈ (0,1) there exists

k = k(δ) ∈ 2N so that

ν(η ∩ [x − k, x + k] = ∅) ≤ δ for any x ∈ 2Z.

If η∩[x−k, x+k] 	= ∅, then P (̂ξ
η
k (x) = 1) ≥ (p1 ∧p2)

k . Put γ = 1−(p1 ∧p2)
k .

Then

ν
(
η :P

(
ξ̂
η
k (x) = 0

)
> γ

) = ν
(
η :P

(
ξ̂
η
k (x) = 1

) ≤ 1 − γ
) ≤ δ, x ∈ 2Z.

Put hk(ζ ) = P (̂ξνk ∩ ζ = ∅) for ζ ⊂ 2Z with |ζ | < ∞. If ζ satisfies �(ζ ) =
minx,y∈ζ,x 	=y |x − y| ≥ 2k, then

hk(ζ ) =
∫
X
ν(dη)E

[∏
x∈ζ

(
1 − ξ̂

η
k (x)

)]

=
∫
X
ν(dη)

∏
x∈ζ

P
(
ξ̂
η
k (x) = 0

)
.

Here we refer to Lemma 9.13 in Harris (1976).

LEMMA 9 (Harris). Let X1,X2, . . . ,Xk be random variables with 0 ≤Xi ≤1
and P (Xi > γ )≤ ε for any i ∈ {1,2, . . . , k}. Then we have

E[X1X2 · · ·Xk] ≤ ε + γ k.

Applying Lemma 9 implies that if �(ζ ) ≥ 2k, then

hk(ζ ) ≤ δ + γ |ζ |.
From the fact that, for ζ ⊂ 2Z with |ζ | < ∞, max{l ≥ 1 : {y1, y2, . . . , yl} ⊂ ζ,

yi + 2k ≤ yi+1 (i = 1,2, . . . , l − 1)} is bounded from below by |ζ |/k, we see
that

P (̂ξνk ∩ ζ = ∅) ≤ δ + γ |ζ |/k.

Let , ∈ N and ζi ⊂ 2Z with |ζi | < ∞ (i = 1,2, . . . , ,) satisfying ζ = ⋃,
i=1 ζi and

ζi ∩ ζj = ∅(i 	= j). Then

P (|̂ξνk ∩ ζ | < ,)≤ ,δ +
,∑

i=1

γ |ζi |/k.(3.2)
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Since 1−β ∈ (−1,1) if p2 	= 0, for any ε > 0 we can take , ∈ N with (1−β), ≤ ε
2

and then take k(δ) such that ,δ ≤ ε
2 . Then,

lim|ζ |→∞E
[
(1 − β)|̂ξ νk ∩ζ |] ≤ ε.(3.3)

Combining this with Lemma 8 gives (3.1).
Next, we consider the case p2 = 0 and p1 ∈ (0,1). In this case β = 2 and (3.1)

is rewritten as

lim
n→∞E

[
(−1)|̂ξ νk ∩∂ξDn−1|; ξDn−1 	= ∅

] ≤ ε.(3.4)

By (C.1) and (C.2), for any δ ∈ (0,1) there exists k = k(δ) ∈ 2N so that

ν
(
η(y) = η(y + 2), y ∈ [x − k, x + k − 2] ∩ 2Z

) ≤ δ, x ∈ 2Z.

If η(y) 	= η(y + 2) for some y ∈ [x − k, x + k − 2] ∩ 2Z, then P (̂ξ
η
k (x) = 1) ≥

pk
1(1 − p1)

2k. Put γ = 1 − pk
1(1 − p1)

2k . Then

ν
(
η :P

(
ξ̂
η
k (x) = 0

)
> γ

) = ν
(
η :P

(
ξ̂
η
k (x) = 1

) ≤ 1 − γ
) ≤ δ, x ∈ 2Z.

Using the same argument as in the case of p2 	= 0, we obtain (3.2) in the present
case. Since ξ̂ νk ⊂ ∂ξ̂ νk−1, we have

P (|∂ξ̂ νk−1 ∩ ζ | < ,) ≤ ,δ +
,∑

i=1

γ |ζi |/k.(3.5)

By the Markov property we have

E
[
(−1)|̂ξ νk ∩ζ |] = E

[∏
x∈ζ

(−1)|̂ξ νk (x)|
]

= ∑
S⊂(ζ±1)

E

[∏
x∈ζ

(−1)|̂ξ νk (x)|
∣∣∣ ξ̂ νk−1 ∩ (ζ ± 1) = S

]

× P
(
ξ̂ νk−1 ∩ (ζ ± 1) = S

)
= ∑

S⊂(ζ±1)

(1 − 2p1)
|∂S∩ζ |P

(
ξ̂ νk−1 ∩ (ζ ± 1) = S

)

=
∞∑
j=0

(1 − 2p1)
jP (|∂ξ̂ νk−1 ∩ ζ | = j),

where ζ ± 1 = (ζ + 1)∪ (ζ − 1). Then

E
[
(−1)|̂ξ νk ∩ζ |] ≤ P (|∂ξ̂ νk−1 ∩ ζ | < ,)+ (1 − 2p1)

,.(3.6)

From (3.5) and (3.6), for any ε > 0 we can take , ∈ N and k(δ) ∈ 2N such that

lim|ζ |→∞E
[
(−1)|̂ξ νk ∩ζ |] ≤ ε.(3.7)
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From Lemma 8 and the fact that ∂ξDn−1 ⊃ ξDn we have

lim
n→∞P (|∂ξDn−1| ≤ ,;�D∞) = 0, D ∈ Y.(3.8)

Combining (3.7) and (3.8), we have the desired conclusion (3.4).

4. Proofs of Theorem 6 and Proposition 7. We consider a collection of
random variables {w(x,n) : (x, n) ∈ S} with values in {0,1} having the following
property: if any sequence (xj , nj ), 1 ≤ j ≤ ,, satisfies |xi −xj | > 4 whenever both
i 	= j and ni = nj , then P (w(xj , nj ) = 1, for 1 ≤ j ≤ ,) = q, with q ∈ [0,1]. Let
A ⊂ 2Z and

WA
k = {z : there is an open path from (y,0) to (z, k) for some y ∈ A}.

This is called a 2-dependent oriented site percolation. The following result can be
obtained by a slight modification of argument in Durrett and Neuhauser [(1991),
Appendix] for 1-dependent oriented site percolation. [See also Bramson and
Neuhauser (1994), Lemma 2.3.] For any δ > 0, there exists q̂(δ) ∈ [0,1] such that
if q ∈ [q̂(δ),1], then

lim inf
n→∞

|WA
n |
n

> 1 − δ a.s. on �A,W∞ ,

where �A,W∞ = ⋂∞
n=1{WA

n 	= ∅}.
Now we prove Theorem 6. When p2 = 0, Bramson and Neuhauser (1994)

developed block construction method and compared the process with the 2-de-
pendent oriented site percolation. Their technique and argument can be extended
to the case p2 	= 0. Then we have the following.

LEMMA 10. For any δ > 0, there exists p̂1(δ) ∈ (0,1) such that if p1 ∈
(p̂1(δ),1] and p2 ∈ [0,1] with (p1,p2) 	= (1,0), then there exists k ∈ 2N so that

lim inf
n→∞

1

n
8
{
x ∈ 2kZ ∩ [−kn, kn) : ξAnk ∩ [x − k, x + k) 	= ∅

}
(4.1)

> 1 − δ a.s. on �A∞,

for any A ⊂ 2Z.

A sufficient condition for the proof of Theorem 6 is

lim
n→∞P (ξA2n ∩B 	= ∅) = µ∞(ξ ∩B 	= ∅)P (�A∞), B ∈ Y.

Since P (ξ2n ∈ ·) = P (ξ
ξ̂An
n ∈ ·), by the same way we obtained (2.3) we have

P (ξA2n ∩B 	= ∅) = P
(
ξ
ξ̂An
n ∩B 	= ∅

)
= E

[
m0(̂ξ

A
n × {0} → B × {n}); ξ̂An 	= ∅

]
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= ∑
D⊂B,D 	=∅

P (ξDn−1 	= ∅)α|D|(1 − α)|B\D|P (̂ξAn 	= ∅)

− ∑
D⊂B,D 	=∅

E
[
(1 − β)|̂ξAn ∩(ξDn−1+1)|+|̂ξAn ∩(ξDn−1−1)|;

ξ̂An 	= ∅, ξDn−1 	= ∅

]
α|D|(1 − α)|B\D|.

Then it is sufficient to show that

lim
n→∞E

[
(1 − β)|̂ξAn ∩(ξDn−1+1)|+|̂ξAn ∩(ξDn−1−1)|; ξ̂An 	= ∅, ξDn−1 	= ∅

]
= 0,(4.2)

for D ⊂ B . By Lemma 10 if p1 ∈ [p̂1(
2
3 ),1] and p2 ∈ [0,1] with (p1,p2) 	= (1,0),

then

lim inf
n→∞

1

n
8
{
x ∈ 2kZ ∩ [−kn, kn) : [x − k, x + k)∩ ξ̂Ank 	= ∅,

[x − k, x + k)∩ ξDnk 	= ∅

}
(4.3)

>
1

3
a.s. on �̂A∞ ∩�D∞,

where �̂A∞ = ⋂∞
n=1{̂ξAn 	= ∅}. Suppose that η, ζ ⊂ 2Z satisfy [xi − k, xi + k) ∩

η 	= ∅ and [xi − k, xi + k)∩ ζ 	= ∅ for some xi ∈ 2kZ, i = 1,2, . . . ,m. Then

P
(
ξ̂
η
k ∩ (ξ

ζ
k−1 + 1) � xi

) ≥ (p1 ∧ p2)
2k−1, i = 1,2, . . . ,m,(4.4)

and {̂
ξ
η
k ∩ (ξ

ζ
k−1 + 1) � xi

}
, i = 1,2, . . . ,m, are independent.(4.5)

From (4.3), (4.4) and (4.5) we see that

lim
n→∞P

(|̂ξAk ∩ (ξDk−1 + 1)| ≤ ,, �̂A∞ ∩�D∞
) = 0,

for any , ∈ N. Hence we have (4.2) when p2 	= 0.
When p2 = 0 and p1 ∈ (0,1), (4.2) is rewritten as

lim
n→∞E

[
(−1)|̂ξAn ∩∂ξDn−1|; ξ̂An 	= ∅, ξDn−1 	= ∅

] = 0.(4.6)

Suppose that η, ζ ⊂ 2Z satisfy (xi − k, xi + k) ∩ ∂η 	= ∅ and (xi − k, xi + k) ∩
∂ζ 	= ∅ for some xi ∈ 2kZ, i = 1,2, . . . ,m. Then

P
(
∂ξ̂

η
k−1 ∩ ∂ξ

ζ
k−1 � xi

) ≥ p2k−2
1 , i = 1,2, . . . ,m,(4.7)

and {
∂ξ̂

η
k−1 ∩ ∂ξ

ζ
k−1 � xi

}
, i = 1,2, . . . ,m, are independent.(4.8)

From (4.3), (4.7) and (4.8) we see that

lim
n→∞P

(|∂ξ̂An−1 ∩ ∂ξDn−1| ≤ ,, �̂A∞ ∩�D∞
) = 0,(4.9)
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for any , ∈ N. By the same procedure used to get (3.6), we have

E
[
(−1)|̂ξAn ∩∂ξDn−1|; ξ̂An 	= ∅, ∂ξDn−1 	= ∅

]
≤ P

(|∂ξ̂An−1 ∩ ∂ξDn−1| < ,, ξ̂An 	= ∅, ∂ξDn−1 	= ∅

) + (1 − 2p1)
,.

Hence we obtain (4.6) from (4.9).
Next we prove Proposition 7:

P (ξA2n ∩ 2Z 	=∅) = m0(A × {0} → 2Z × {2n})
=

∫
X
να(dη)m0,2n(A × {0} → η × {2n})

=
∫
X
να(dη)m0,2n(η × {0} → A× {2n})

=
∫
X
να(dη)

∑
D⊂(A±1),D 	=∅

m0(η × {0} ⇒ D × {2n− 1})

×m2n−1,2n(D×{2n−1}→A×{2n})
= P

(
ξ
Aα

2n−1 ∩ (A ± 1) 	= ∅

)
−E

[
(1 −β)|ξ

Aα
2n−1∩(A+1)|+|ξAα

2n−1∩(A−1)|; ξAα

2n−1 ∩ (A±1) 	=∅

]
.

Taking n → ∞, by Lemmas 1 and 2, we have

σ(A,2Z) = µ∞
(
η : (η − 1)∩ (A± 1) 	= ∅

)
−

∫
(η−1)∩(A±1) 	=∅

µ∞(dη)(1 − β)|(η−1)∩(A+1)|+|(η−1)∩(A−1)|,

where we used the fact that

lim
n→∞P (ξ

Aα

2n−1 ∩B 	= ∅) = µ∞
(
η : (η − 1)∩B 	= ∅

)
, B ∈ Y.

It is obvious that

lim|A|→∞µ∞
(
η : (η − 1)∩ (A+ 1) 	= ∅

) = lim|A|→∞µ∞
(
η :η ∩ (A + 2) 	= ∅

) = 1,

lim|A|→∞µ∞
(
η : (η − 1)∩ (A− 1) 	= ∅

) = lim|A|→∞µ∞(η :η ∩A 	= ∅) = 1.

Then, to prove Proposition 7 it is sufficient to show that

lim|A|→∞

∫
X
µ∞(dη)(1 − β)|η∩(A+2)|+|η∩A| = 0,(4.10)

for the case of p2 	= 0, and

lim|∂A|→∞

∫
X
µ∞(dη)(−1)|η∩∂(A+1)| = 0,(4.11)
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for the case of p2 = 0. Note that µ∞ is an invariant probability distribution
satisfying (C.1) and (C.2). Then we have∫

X
µ∞(dη)(1 − β)|η∩(A+2)|+|η∩A| = E

[
(1 − β)|ξ

µ∞
k ∩(A+2)|+|ξµ∞

k ∩A|]
and ∫

X
µ∞(dη)(−1)|η∩∂(A+1)| = E

[
(−1)|ξ

µ∞
k ∩∂(A+1)|],

for any k ∈ 2Z, and (4.2) and (4.3) are derived from (3.3) and (3.7), respectively.
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