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LARGE DEVIATIONS FROM A KINETIC LIMIT1

By Fraydoun Rezakhanlou

University of California, Berkeley

We study a one-dimensional particle system in which particles travel
deterministically in between stochastic collisions. As the total number of
particles tends to infinity, the empirical density converges to a solution of
a discrete Boltzmann equation. We establish the large deviation principle
for the convergence with a rate function that is given by a variational
formula. Some of the properties of the rate function are discussed and a
nonvariational expression for the rate function is given.

0. Introduction It is often the case in probability theory that the con-
vergence in a law of large numbers is exponentially fast. The exponential rate
at which the convergence occurs is of great interest, especially for problems
coming from statistical mechanics. For these problems, the exponential rate
function is usually a familiar physical quantity (such as entropy, action func-
tional, thermodynamic potential, etc.) that retains a great amount of valuable
information about the model under study.

In a previous article, Rezakhanlou and Tarver [13] estalished a law of large
numbers for some one-dimensional particle systems associated with the dis-
crete Boltzmann equation. Such a law of large numbers is known as a kinetic
or Boltzmann–Grad limit in the context of statistical mechanics. In this arti-
cle, our goal is to establish a large deviation principle for a kinetic limit and
study the corresponding rate function.

The derivation of the full Boltzmann equation for models with deterministic
collision rules was carried out by Lanford [8] and King [7]. Lanford established
the kinetic limit for short times for a model of interacting spheres with elas-
tic collisions. King in his thesis utilizes Lanford’s method to treat particle
systems with collision rules based on Newton’s second law. Later Illner and
Pulvirenti [5, 6] showed that Lanford’s restriction on time can be replaced by
an assumption on the smallness of the collision rates.

The tradition of discretizing the velocity goes back to Maxwell. However,
the first realistic step was taken by Broadwell, who proposed a simple model
of gases with six velocities. Since Broadwell’s work, discrete Boltzmann equa-
tions have been successfully used to model dilute gases and study shock waves
in fluid mechanics (see, e.g., [9] and [4]).

Recently Caprino and Pulvirenti [2] have derived a discrete Boltzmann
equation for particle systems on a line with four velocites. Their derivation
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is valid globally in time with no smallness condition on the initial densities.
Their approach, as in [5, 6], is based on a detailed anlysis of the hierarchy
equations for the correlation functions. A new approach for the derivation of
Boltzmann type PDE’s was proposed in [11] and [13]. This new viewpoint
utilizes some probabilistic techniques which explore the Markov property of
the microscopic system, the entropy bound and some microscopic bounds on
the total number of collisions. The key idea behind the latter is that some
well-established PDE techniques of Tartar [15] and Bony [1] have indeed mi-
croscopic counterparts that can be exploited for our purposes. Using the same
general ideas, one can go beyond the macroscopic description given by the
Boltzmann equation. In [12], the author derives an Ornstein–Uhlenbeck equa-
tion for the fluctuations of the system about its equilibrium states. In [11], it
is shown that the dynamics of a tagged particle in the system is governed by
an inhomogeneous Markov process with an infinitesimal generator that can
be expressed in terms of the macroscopic densities.

The models studied in this article are continuous time Markovian parti-
cle systems with the following rules. Each particle has a label α in the set
�1� � � � � n�. A particle with label α travels deterministically with velocity vα

on the circle. Two particles within a distance of order ε collide stochastically
through a smooth potential with probability ε and go ahead with no collision
with probability 1 − ε, where ε−1 is of the same order as the total number of
particles N. If two particles of labels α and β collide, they gain new labels γ
and δ with a rate K�αβ� γδ�. If fα denotes the macroscopic density of particles
with label α, then in [13] it was shown that fα solves the discrete Boltzmann
equation

�0�1� ∂fα

∂t
+ vα

∂fα

∂x
= ∑

βγδ

K�γδ� αβ�fγfδ − K�αβ� γδ�fαfβ�

Roughly speaking, we have that as N → ∞ and N/L converges to a nonzero
constant,

�0�2� lim
L→∞

PL

(
1
L

N∑
i=1

δxi�t��dx��
(
αi�t� = α

)
is close to fα�x� t�dx

)
= 1�

where xi�t� and αi�t� denote the location and the label of the ith particle at
time t. In other words, the empirical measure of most configurations converge
weakly to a measure that is absolutely continuous with respect to the Lebesgue
measure dx, with a density fα�x� t� that is a solution to (0.1).

The main result of this article establishes the large deviation principle for
the convergence in (0.2). Roughly speaking, we show

�0�3�
PL

(
1
L

N∑
i=1

δxi�t��dx��
(
αi�t� = α

)
is close to gα�x� t�dx for t ∈ �0�T�

)

∼ exp
(−LJ�g� + o�L�)�
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where J�·� is a suitable nonnegative functional that vanishes if and only if g
is a solution of (0.1). The rate function J = J0 + Jd is the sum of the static
rate function J0 (coming from the deviation from the initial data), and the
dynamical rate function that for a smooth g is given by

�0�4�
Jd�g� = sup

∫ T

0

∫ [∑
α

pαDαgα − 1
2

∑
αβγδ

K�αβ� γδ�gαgβ

× (
exp�pγ + pδ − pα − pβ� − 1

)]
dxdt�

where the supremum is over smooth functions p = �p1� � � � � pn�, and Dαgα =
�∂gα/∂t�+vα�∂gα/∂x�. For a nonsmooth g, Jd�g� is defined after an integration
by parts. See Section 1 for the definition J and the precise statement of (0.3).

It turns out that the function H� R
n × R

n → R, defined by

�0�5� H�g�p� = 1
2

∑
αβγδ

K�αβ� γδ�gαgβ

(
exp�pγ + pδ − pα − pβ� − 1

)

is convex in the p-variable, and the rate function Jd can be expressed in terms
of G, the convex conjugate of H in the p-variable. Indeed, G� R

n × R
n →

�0�+∞�, and

Jd�g� =
∫ T

0

∫
G�g�x� t��Dg�x� t��dxdt�

where g = �g1� � � � � gn� and Dg = �D1g1� � � � �Dngn�.
In previous works [10, 11, 12] and [13], some microscopic analog of Tartar’s

argument [15] and the duality formula played an essential role [see for exam-
ple [10], formula (3.5), or [13], formula (3.12)]. We have not been able to use
the same general ideas for the large deviation bounds. In fact, in this article
we will initiate some new ideas which in spirit are close to those of Bony [1].

The organization of the paper is as follows. In the next section we describe
our results. In Section 2 we discuss our strategy. Section 3 is devoted to an
entropy bound. In Section 4 we establish some exponential bounds for the
total number of collisions. Section 5 is devoted to an exponential form of
Stosszahlansatz (Boltzmann’s molecular chaos principle). In Sections 6 and
7 we improve the bounds of Section 4 by establishing the uniform integrabil-
ity of the collision term. The large deviation upper bounds will be established
in Section 8 and the lower bounds will be given in Section 9. Sections 10 and
11 are devoted to the properties of the rate function.

1. Notation and main results. This section is devoted to the statement
of our main results. We first describe the model for which the large deviation
principle will be established.

We define T to be the interval �− 1
2 �

1
2 � with the endpoints identified. Let

I = �1�2� � � � � n�; I denotes the set of labels of the n different types of particles.
Each α ∈ I corresponds to a velocity vα ∈ R. The state space E = �T × I�N
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consists of N-tuples q = �q1� � � � � qN� with qi = �xi� αi� where xi and αi denote
the location and the label of the ith particle, respectively.

The dynamics of q�t� are Markovian and are characterized by the infinites-
imal generator � �L� = �0 + �c. Here �0 corresponds to the free motion, �c

describes the interaction among particles and the relation between N and L
is N = ZL where Z is a nonzero constant. More precisely,

�0F�q� =
N∑
i=1

vαi

∂F

∂xi

�q��(1.1)

�cF�q� = 1
2

∑
i�=j

V
(
L�xi − xj�

)∑
γ� δ

K�αiαj� γδ�(F�Sγ�δ
i� jq

) − F�q�)�(1.2)

where S
γ�δ
i� jq is the configuration obtained from q by changing the labels of

the ith and jth particles from αi� αj to γ� δ� respectively, and V� R → �0�∞�
is an even, continuously differentiable function of compact support with

�1�3�
∫
V�z�dz = 1�

In the sequel �−r0� r0� denotes an interval that contains the support of V.

Convention 1.1. In (1.2), xi − xj is defined to be the signed distance be-
tween xi and xj. Hence the argument of V belongs to R. In (1.1) and several
places below, the function F is regarded as a periodic function of period one
in each xi variable. In the sequel, for every z ∈ R, the sum xi + z is defined
periodically so that xi + z is regarded as a point in T.

Our assumptions on K are:

(1.4) (i) K�αβ� γδ� ≥ 0;
(1.4) (ii) K�αβ� γδ� = K�βα� γδ� = K�αβ� δγ�;
(1.4) (iii) K�αβ� γδ� = 0 if vα = vβ;
(1.4) (iv) K�αβ� γδ� = 0 if �vα� vβ� = �vγ� vδ�;
(1.4) (v) K�αβ� γδ� = 0 if vα + vβ �= vγ + vδ;
(1.4) (vi) There exists ( = �λ1� � � � � λn�, λα > 0, such that for all α�β� γ� δ ∈ I,

K�αβ� γδ�λαλβ = K�γδ� αβ�λγλδ.

Since we are thinking of K as a collision rate, K is necessarily positive;
(ii) states that the collision rates depend upon the labels only and are inde-
pendent of the particle numbers; (iii) implies that only particles of different
velocities can collide; (iv) ensures that a collision always results in a change
in velocities; (v) means that a microscopic conservation of momentum holds;
(vi) states that ( is a Maxwellian [i.e., ( is an equilibrium solution of our dis-
crete equation (0.1)]. A consequence of our assumptions on K is the following:

�1�5� if K�αβ� γδ� �= 0 then vα �= vγ� vδ and vβ �= vγ� vδ�

We use the last assumption on K to help determine an invariant measure
for our process q�t�. Given ( = �λ1� λ2� � � � � λn� with λα > 0, we define a
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measure ν( on E by

�1�6�

∫
F�q�ν(�dq�

=
∫

· · ·
∫ n∑

α1=1

· · ·
n∑

αN=1

F�x1� α1� � � � � xN� αN�λα1
� � � λαN

dx1 � � � dxN�

where dx denotes the Lebesgue measure on T. It is not hard to see that ν( is
invariant with respect to �0. Moreover, if ( satisfies the Maxwell conditions
(1.4)(vi), then ν( is also invariant with respect to �c.

Initially, particles are located on T independently and with probability den-
sity �1/Z�f0

α�x� where Z is a normalizing constant.

Notation 1.2. Let µL be a sequence of probability measures on E, and
let f0 = �f0

1� � � � � f
0
n�� T → �0�∞�n be a nonnegative bounded measurable

function. We then write µL ∼ f0 if for every continuous function F,

�1�7�

∫
F�q�µL�dq� = 1

ZN

∫
· · ·

∫ ∑
α1���αN

F�x1� α1� � � � � xN� αN�

× f0
α1

�x1� � � � f0
αN

�xN�dx1 � � � dxN

where Z = ∫ ∑
α f

0
α�x�dx. The relationship between L and N is

�1�8� L = N

Z
�

Given f0 as in Notation 1.2, we define f = �f1� � � � � fn�� T × �0�+∞� →
�0�∞�n to be the unique solution to the initial value problem

�1�9�
∂fα

∂t
+ vα

∂fα

∂x
= Qα�f�f�� α ∈ I�

fα�x�0� = f0
α�x�� α ∈ I�

where

Qα�f�f� �= ∑
βγδ

K�γδ� αβ�fγfδ − K�αβ� γδ�fαfβ�

Where there is no danger of confusion we write Qα�x� t� for Qα�f�f��x� t�.
A solution to (1.9) is understood in the following sense:

1. fα ∈ C��0�T��L1�T��;
2. fβfγ ∈ L1��0�T� × T� for every positive T and whenever vβ �= vγ;
3. For every t and α ∈ I, and almost all x,

�1�10� fα�x� t� = f0
α�x − vαt� +

∫ t

0
Qα�x − �t − s�vα� s�ds�
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Let q�t� = �x1�t�� α1�t�� � � � � xN�t�� αN�t�� denote the process generated by
� �L� with q�0� distributed according to µL�dq�. Let PL and EL denote the
probability and expectation with respect to the process q�·�. For each trajectory
q�·�, we define the empirical density

�1�11� mα�t� dx� = 1
L

N∑
i=1

δxi�t��dx��
(
αi�t� = α

)
�

which is a random measure on T, for every t ∈ �0�T�. We take a version
of q�t� that is right continuous and has left limits. As a result, mα�t� dx�
is weakly right continuous with left limits. If Mn�T� denotes the space of
vector measures m = �m1� � � � �mn� with

∑n
α=1 mα�T� = Z, we can regard

m�t� dx� = �m1�t� dx�� � � � �mn�t� dx�� as an element of the Skorohod space
� �= D��0�T��Mn�T�� where Mn�T� is endowed with the topology of weak
convergence. The transformation q �→ m with m defined by (1.11) and q dis-
tributed according to PL, induces a probability measure �L on � . The main
result of [13] in our setting asserts the theorem.

Theorem 1.3. For every continuous function r� �0�T�×T → R, every α ∈ I,
and each positive δ,

lim
L→∞

�L

(∣∣∣∣
∫ T

0

∫
r�x� t�mα�t� dx�dt −

∫ T

0

∫
r�x� t�fα�x� t�dxdt

∣∣∣∣ > δ

)
= 0�

To prepare for the statement of the main result, we start with the definition
of the large deviation rate function J� � → �0�+∞�.

Definition 1.4. We say that a measurable function gα is α-differentiable
if there exists an L1-function Dαgα such that for any smooth function r�x� t�
with support in T × �0�T�,

�1�12�
∫ T

0

∫
gαDαrdxdt = −

∫ T

0

∫
rDαgα dxdt�

We set J�m� = +∞ unless mα�t� dx� = gα�x� t�dx, gα is α-differentiable
for every α,

∫ ∑
α gα�x�0�dx = Z and for any pair �α�β� with vα �= vβ�

∫ T

0

∫
gαgβ dxdt < ∞�

Note that gα� �0�T� → L1�T� is weakly right continuous in t with left limits
because m ∈ � . We then define

�1�13� J0�m� =
∫ ∑

α

(
gα�x�0� log

gα�x�0�
f0
α�x� − gα�x�0� + f0

α�x�
)
dx�
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Jd�m� = sup
p

Jd�m�p��

Jd�m�p� =
∫ T

0

∫
p�x� t�Dg�x� t�dxdt

−
∫ T

0

∫
1
2

∑
αβγδ

K�αβ� γδ�gα�x� t�gβ�x� t�(1.14)

× (
exp�pγ�x� t� +pδ�x� t�
− pα�x� t� − pβ�x� t�� − 1

)
dxdt�

where the supremum is over bounded measurable functions p = �p1� � � � � pn��
T × �0�T� → R

n,

�1�15� Dg = �D1g1� � � � �Dngn��
and a · b denotes the inner product of a� b ∈ R

n. Finally, we define J�m� =
J0�m� + Jd�m�, and when there is no danger of confusion we write J�g�,
J0�g� and Jd�g� for J�m�, J0�m� and Jd�m�� respectively.

If there exists a bounded measurable function p̂ so that g satisfies

�1�16�
Dαgα = ∑

βγδ

K�γδ� αβ� exp�p̂α + p̂β − p̂γ − p̂δ�gγgδ

− K�αβ� γδ� exp�p̂γ + p̂δ − p̂α − p̂β�gαgβ�

in the distributional sense, then the rate function is equal to (see Proposi-
tion 11.7)

�1�17� J�m� =
∫ T

0

∫
1
2

∑
αβγδ

K�αβ� γδ�gαgβψ�p̂γ + p̂δ − p̂α − p̂β�dxdt�

where ψ�z� = ez�z − 1� + 1. Let � (resp. � ) denote the set of measures
m�t� dx� = g�x� t�dx for which (1.16) holds for a bounded measurable (resp.
smooth) p̂.

The main result of this paper is Theorem 1.5.

Theorem 1.5. For every open set � ⊆ � and compact set � ⊆ � we have

lim sup
L→∞

1
L

log �L�� � ≤ − inf
m∈�

J�m��(1.18)

lim inf
L→∞

1
L

log �L�� � ≥ − inf
m∈�∩�

J�m��(1.19)

The proof of (1.18) will be given in Section 8. In Section 9 we establish (1.19)
but with � replaced with � . In the final section we will establish various
properties of J that would eventually lead to the statement

�1�20� inf
m∈�∩�

J�m� = inf
m∈�∩�

J�m�

for every open subset � ⊆ � .
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The large deviation bound (1.18) for noncompact closed sets � remains
open. We also conjecture that

inf
m∈�∩�

J�m� = inf
m∈�

J�m��

Remark 1.6. The condition (1.4)(v) can be replaced by a weaker condition.
With some slight changes in the proofs, one can establish the results of this
paper for a larger class of systems. Basically we need to replace (1.4)(v) with
a condition that would provide us with a Lyapunov functional similar to (2.1)
of the next section. For example, we may assume that there exists a vector
�b1� � � � � bn� such that

�1�4� �v�′ K�αβ� γδ� = 0 if bα + bβ �= bγ + bδ�

�1�4� �iv�′′ �vα − vβ��bα − bβ� ≥ 0 and bα �= bβ if vα �= vβ�

We end this section with an example of a model for which the new condition
is satisfied.

Example 1.7. (The left–right model). There exists a decomposition I =
I1 ∪I2 such that vα > 0 for α ∈ I1 and vα < 0 for α ∈ I2, and if K�αβ� γδ� �= 0,
then

�α�β�� �γ� δ� ∈ �I1 × I2� ∪ �I2 × I1��
One can readily verify �1�4��iv�′ and �1�4��iv�′′ by choosing bα = 1 if α ∈ I1
and bα = 0 otherwise.

2. Sketch of proofs. Two well-known methods for the existence of so-
lutions to the Boltzmann equation (1.9) are due to [1] and [15]. In [10], a
combination of these methods was employed to establish the kinetic limit for
some particle systems on one-dimensional lattices. The arguments of [13],
however, were largely modeled upon Tartar’s method [15]. As will be apparent
below, we have adopted a new approach that is essentially different from [13]
and in spirit is close to one of the arguments used in Section 5 of [10]. The
reason behind our change of strategy is that although the arguments of [13]
and most of [10] were successful for the kinetic limit, we have not been able
to utilize them for purposes of the present article. However, it is worth men-
tioning that our approach in this article seems to be strictly one-dimensional,
whereas it might be possible to carry out some of the arguments of [13] for
multidimensional models.

Let f be a solution to (1.9). We define

�2�1� X�t� =
∫

T

∫
T

∑
α�β

�vα − vβ�fα�x� t�fβ�y� t�ξ�x − y�dxdy�

where ξ�z� is a periodic function of period one that is defined to be z − 1
2 for

z ∈ �0�1�. By conservation of mass and momentum, the integrand is invariant
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with respect to the collision term. From this and after some integration by
parts, we obtain

d

dt
X�t� = −

∫
T

∑
α�β

�vα − vβ�2fα�x� t�fβ�x� t�dx

+
∫

T

∫
T

∑
α�β

�vα − vβ�2fα�x� t�fβ�y� t�dxdy�

This in turn implies

�2�2�
∫ ∞

0

∫
T

∑
α�β

�vα − vβ�2fα�x� t�fβ�x� t�dxdt ≤ const.
(∫ ∑

α

f0
α�x�dx

)2

�

A microscopic version of the above argument would lead to an exponential
bound on the collision term of the form

�2�3� sup
L

1
cL

log EL exp
[
c
∫ TL

0

∑
i�=j

�vαi�t� −vαj�t��2V�L�xi�t� −xj�t���dt
]
<∞�

where TL is a suitable sequence of stopping times and c is any constant. As
we will see in Section 4, the sequence TL will be chosen so that the probability
of TL �= T is super exponentially small.

Remark 2.1. Note that if instead of the conservation of momentum, we
have the conditions (1.4)�v�′ and (1.4)�v�′′, then the factor vα − vβ in (2.1) is
replaced with bα − bβ.

The functional X�t� is known as Bony’s Lyapunov functional and it was
employed in [10] to obtain a uniform (nonexponential) bound on the collision
term. In the microscopic model studied in [10], particles travel as independent
random walks, and whenever two particles occupy the same site, they collide
stochastically. The derivative of the microscopic analog of X�t� in [10] was a
sum of a nonpositive term and an error term where the error term comes from
the randomness of the free motion part of the dynamics. In the model studied
in this paper the error term comes from the fact that the particles can collide
without being at the same location. To treat the error term, we will appeal to
some entropy bounds that will be discussed in Section 3. The entropy bound
(3.3) of Section 3 should be regarded as the microscopic (exponential) analog
of the entropy bound

�2�4� sup
0≤t≤T

∫ ∑
α

fα log+ fα�x� t�dx < ∞�

In Section 4 we use (3.3) and Bony’s Lyapunov functional to establish (2.3).
It turns out that we can do better than (2.3). As we will see in Theorem 4.1,
we can afford to substitute for c in (2.3) a sequence that diverges like log log L.

We next sketch another argument for the solutions to (1.9) that will be
carried out microscopically in Section 5.
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Let f be a solution to (1.9). Set Vε�z� = ε−1V�ε−1z� and fα� ε = fα ∗ Vε. To
show that for every smooth function r�x��

lim
ε→0

∫ T

0

∫
T

�fα� εfβ� ε − fαfβ�rdxdt = 0�

it suffices to prove

�2�5� lim
ε→0

sup
�z�≤ε

∫ T

0

∫
T

fα�x� t��fβ�x + z� t� − fβ�x� t��r�x�dxdt = 0�

Fix a pair �α�β� with vα �= vβ, and define

�2�6� Y�z� t� =
∫

T

∫
T

fα�x� t�fβ�y + z� t�ξ�x − y�r�x�dxdy�

Then after a differentiation and an integration by parts,

�2�7�

dY

dt
= −�vα − vβ�

∫
fα�x� t�fβ�x + z� t�r�x�dx

+ �vα − vβ�
∫ ∫

fα�x� t�fβ�y + z� t�r�x�dxdy

+
∫ ∫

vαfα�x� t�fβ�y + z� t�ξ�x − y�r′�x�dxdy

+
∫ ∫

Qα�x� t�fβ�y + z� t�ξ�x − y�r�x�dxdy

+
∫ ∫

fα�x� t�Qβ�y + z� t�ξ�x − y�r�x�dxdy

=
5∑

j=1

;j�z� t��

To prove (2.5), it suffices to show

�2�8� lim
ε→0

sup
�z�≤ε

∣∣∣∣
∫ T

0
�;j�z� t� − ;j�0� t��dt

∣∣∣∣ = 0

for j = 2�3�4�5 and

�2�9� lim
ε→0

sup
�z�≤ε

sup
0≤t≤T

∣∣Y�z� t� − Y�0� t�∣∣ = 0�

As an example, we sketch the proof of (2.8) for j = 5. Suppose 0 ≤ z ≤ ε.
Then it is not hard to see that

�2�10�

∣∣∣∣
∫ T

0
�;3�z� t� − ;3�0� t��dt

∣∣∣∣
≤

∫ T

0

∫ ∣∣Qα�x� t�r�x�∣∣ ∫ x+z

x
fβ�y� t�dydxdt�

The entropy bound (2.4) implies (see Lemma 10.8)

�2�11�
∫ x+z

x
fβ�y� t�dy ≤ const.� log z�−1�
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This and (2.2) imply that the right-hand side of (2.10) is bounded by a multiple
constant of � log ε�−1, proving (2.8) in the case of j = 5. Similar arguments
would treat (2.9) and (2.8) in the remaining cases. See Section 5 for more
details.

We now turn to the uniform integrability of the collision term. Let �α�β� γ�
be three labels for which vα� vβ� vγ are distinct. We have

�2�12�
∫
<1

(∫ T

0
fαfβ�x + vγt� t�dt

)
dx < ∞�

where <1�z� = z�log+ z�b for some 0 < b < 1. Let U�x� denote the argument
of the function <1 in (2.12). It turns out that (2.12) is followed by∫

U�x���U�x� > l�dx ≤ const.�log l�−1�

Let A = �x� U�x� > l�. By the collision bound (2.2), we have that �A�, the
Lebesgue measure of A, is bounded above by a constant multiple of l−1. Hence
it suffices to show

�2�13� sup
�A�≤δ

∫
U�x��A�x� ≤ const.� log δ�−1�

For this we define

�2�14�
Z�t� =

∫ ∫
fα�x� t�fβ�y� t�ξ�x − y�

× H

(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y − vγt

)
dxdy

with H�z� = �A�z�. The integrand of Z is chosen in such a way that dZ/dt
is a sum of four terms with one term of the form (2.13) (without supremum),
and the other terms of order � log δ�−1. As was demonstrated in Section 8 of
[10], (2.12) can be used to yield the uniform integrability of the collision

�2�15�
∫

T

∫ T

0
<1�fαfβ�dxdt < ∞�

We omit the details and refer the reader to Sections 6 and 7 for microscopic
calculations similar to the above argument.

Morally speaking, the large deviation rate function J�g� tells us at what
price the profile g can be reached. We know that J�g� = 0 if and only if g
is a solution to the Boltzmann equation (1.9). If J�g� > 0, we may regard g
as an atypical profile for the microscopic model. The reader may wonder how
our macroscopic arguments for f, a solution to (1.9), are relevant when we
are interested in atypical profiles! The point is that for the large deviation
principle we are only interested in atypical profiles with J�g� < ∞, and it
turns out that such g will solve a perturbed Boltzmann equation (1.16) for a
suitable p̂. This new PDE may be regarded as a Boltzmann equation with a
new jump rate

�2�16� K̂�αβ� γδ�x� t� = K̂�αβ� γδ� �= K�αβ� γδ� exp�p̂γ + p̂δ − p̂α − p̂β��
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When p̂ is bounded, with a minor modification, all the above macroscopic
arguments can be repeated, in spite of temporal and spatial dependence of K̂.
For example, (1.4) holds for K̂, which in particular implies the conservation
of momentum. Hence (2.2) holds for such g. In general, p̂ is not bounded.
Nonetheless a condition of the form J�g� < ∞ implies (2.2) and (2.12) (see
Section 10). As we will see in Theorem 10.6, (2.15) is also true but with <2�z� =
z�log+ log+ z�b instead of <1.

It turns out that there is a price of two logarithms to pay as we go from
the macroscopic bounds of Section 10 to the microscopic bounds of Sections 6
and 7. For the microscopic analogs of (2.12) and (2.15), we are forced to replace
<1 with

�2�17� <3�z� = z�log+ log+ log+ z�b and <4�z� = z�log+ log+ log+ log+ z�b�
respectively. The additional logarithms are apparently related to the fact that
a collision between two particles xi and xj can occur when �xi −xj� is of order
O�L−1� (as opposed to xi = xj). Because of this we can only afford to choose
c in (2.2) that grows like log log L and not faster!

3. Entropy bound. In this section we recall an entropy bound from [13]
and discuss some of its consequences.

For each set R ⊆ T, set

�3�1� � �R�q� = #�i� xi ∈ R��
If R = �a� b�, we simply write � �a� b�q� for � �R�q�. Set φ�z� = z log z−z+1.
Define

�3�2� C�q� = 1
L

L−1∑
i=0

φ

(
�

(
−1

2
+ i

L
�−1

2
+ i + 1

L
�q

))
�

Recall that f0 is bounded. Fix θ0 ∈ �0�1�. In Section 2 of [13] we showed
one following lemma.

Lemma 3.1. There exists a constant C0�T� such that for every L,

�3�3� EL exp
[
Lθ0 sup

0≤t≤T

C�q�t��
]

≤ exp�C0�T�L��

An easy consequence of (3.3) and Hölder inequality is

�3�4� EL exp
[
Lθθ0 sup

0≤t≤T

C�q�t��
]

≤ exp�C0�T�θL��

for every θ ∈ �0�1�.
Let h�δ� = �1 + log δ�−1 if δ < 1; h�δ� = 1 otherwise. Let ζ� R → R be a

nonnegative function of compact support. For each measurable ρ, define

ρL�x� =
∫
Lζ�L�x − z��ρ�z�dz�

The proof of the following lemma can be found in the Section 5 of [13].
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Lemma 3.2. There exists a constant Ĉ0�ζ� such that for every nonnegative ρ�

�3�5� 1
N

N∑
i=1

ρL�xi� ≤ Ĉ0�ζ��ρ�L∞h��ρ�L1��1 + C�q���

If we choose a ζ that is identically 1 in the interval [0,1], Lemma 3.2 yields
Lemma 3.3.

Lemma 3.3. There exists a constant Ĉ0 such that for every nonnegative mea-
surable function ρ,

�3�6�
∫
�

(
z� z + 1

L
�q

)
ρ�z�dz ≤ Ĉ0�ρ�L∞h��ρ�L1��1 + C�q���

In particular, for every interval �a� b�,

�3�7� 1
L
� �a� b�q� ≤ Ĉ0h�b − a��1 + C�q���

Note that (3.7) follows from (3.6) by choosing ρ�x� to be the indicator func-
tion of the interval �a� b�.

4. Exponential bounds on the collision term. Recall that the support
of V is contained in the interval �−r0� r0�. We take W� R → R to be an odd
function with W′ = V, W�z� = − 1

2 if z ≤ −r0, and W�z� = 1
2 if z ≥ r0. We then

take a twice continuously differentiable periodic odd function WL� R → R of
period one such that �WL�z�� ≤ 1

2 , WL�z� = W�Lz� for z ∈ �−r0/L� r0/L�, and
�W′

L�z�� ≤ 2, �W′′
L�z�� ≤ 3 for z ∈ �r0/L�1−r0/L�. Such WL exists if we choose

L sufficiently large. As a result, we can write

�4�1� W′
L�z� = LV�Lz� + RL�z�

for z ∈ �−r0/L�1 − r0/L�, where RL is a continuously differentiable periodic
function with �RL� ≤ 2, �R′

L� ≤ 3.
In the sequel Pq and Eq denote the probability and the expectation of the

process q�t� with q�0� = q. Define

�4�2�

AL�q� z� = ∑
i� j

V
(
L�xi − xj + z�)�vαi

− vαj
�2�

AL�q� = AL�q�0��
v̄ = max

α
�vα��

The main result of this section is the following exponential bound on the
total number of collisions.

Theorem 4.1. There exist a sequence of stopping times TL ∈ �0�T� and

four positive constants η1 = η1�T�, η̂1 = η̂1�T�, C2 = C2�T� and Ĉ2 = Ĉ2�T�
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such that

�4�3� lim
L→∞

1
L

log PL�TL �= T� = −∞�

and

(a) for every positive c,

�4�4� C1�c�T� �= sup
L

sup
z∈T

1
L

log EL exp
∫ TL

0
cAL�q�t�� z�dt < ∞�

(b) if c ≤ η1 log log L, then

�4�5� EL exp
∫ TL

0
cAL�q�t��dt ≤ exp�C2cL��

(c) if c ≤ η̂1 log log log L then

�4�6� sup
z∈T

EL exp
∫ TL

0
cAL�q�t�� z�dt ≤ exp�Ĉ2L + Ĉ2ce

16v̄ZcL��

Proof.
Step 1. Clearly, part (c) implies (4.4). So we only establish parts (b) and (c).

Recall the function WL defined right before (4.1), and define

F�q� = 4c
L

∑
i� j

WL�xi − xj + z��vαj
− vαi

��

G�y� = 1
2L

∑
k

WL�xk − y + z� + WL�xk − y − z��

Since WL is odd,

F�q� = 4c
L

∑
i� j

(
WL�xi − xj + z� + WL�xi − xj − z�)vαj

= 8c
∑
j

G�xj�vαj
�

It is well known that the process

Mt = exp
(
F�q�t�� − F�q�0�� −

∫ t

0
e−F� �L�eF�q�s��ds

)

is a martingale for t ∈ �0�T�. Hence

�4�7� EqMτ = 1�
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for every stopping time τ. On the other hand,

�4�8�

;1�q� �= e−F�0e
F�q� = �0F�q�

= −4c
∑
i� j

V
(
L�xi − xj + z�)�vαi

− vαj
�2

− 4c
L

∑
i� j

RL�xi − xj + z��vαi
− vαj

�2

�= ;11�q� + ;12�q��
;2�q� �= e−F�ce

F�q�
= 1

2

∑
i� j

∑
γ� δ

K
(
αiαj� γδ

)
V
(
L�xi − xj�

)
× [

exp
[
8c�G�xi� − G�xj���vγ − vαi

�] − 1
]
�

where for ;1 we have used (4.1) and for ;2 we have used the conservation of
momentum (1.4)(v):

�4�9� F
(
S

γδ
ij q

) − F�q� = 8cG�xi��vγ − vαi
� + 8cG�xj��vδ − vαj

�
= 8c

(
G�xi� − G�xj���vγ − vαi

)
�

We rewrite (4.7) as

�4�10� E
q
L exp

[
F
(
q�τ�) − F

(
q�0�) −

∫ τ

0
;1

(
q�s�)ds −

∫ τ

0
;2

(
q�s�)ds] = 1�

Step 2. Applying the Schwarz inequality in the form E
q
LB

1/2 ≤ �Eq
LAB�1/2 ·

�Eq
LA

−1�1/2 to (4.10) yields

�4�11�
E

q
L exp

(
− 1

2

∫ τ

0
;11

(
q�s�) + ;2

(
q�s�)ds)

≤
(
E

q
L exp

(
F�q�0�� − F�q�τ��) +

∫ τ

0
;12�q�s��ds

)1/2

�

Since �WL� ≤ 1
2 , �RL� ≤ 2, for some constant C2 the right-hand side of (4.11)

is bounded above by

�4�12� exp
(

�2cv̄ + 16cTv̄2�N
2

L

)
≤ exp�C2cL�

so long as τ ∈ �0�T�. We would like to choose τ sufficiently small so that ;2
can only cancel at most one-half of ;11. For this we need to obtain a suitable
upper bound on ;2.

Step 3. To bound ;2, first observe that �G�∞ ≤ N/2L = Z/2, and as a
result,

�4�13� ∣∣8c(G�xi� − G�xj�
)�vγ − vαi

�∣∣ ≤ 16v̄cZ�
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Further, the inequality �A� ≤ B implies �eA − 1� ≤ eB�A�. Therefore, (4.13)
implies

∣∣exp
[
8c�G�xi� − G�xj���vγ − vαi

�] − 1
∣∣ ≤ 16v̄ce16v̄cZ

∣∣G�xi� − G�xj�
∣∣�

This in turn implies

�4�14� ∣∣;2�q�∣∣ ≤ c1ce
16v̄cZ ∑

i� j

V
(
L�xi − xj�

)∣∣G�xi� − G�xj�
∣∣�vαi

− vαj
�2

for some constant c1. Notice that V�L�xi−xj�� �= 0 only if xi ∈ �xj−r0/L�xj+
r0/L�. Since W′

L is bounded by two on the interval �r0/L�1 − r0/L�, we have
�WL�xk − a� − WL�xk − b�� ≤ 2�r0/L� whenever b ∈ �a − r0/L� a + r0/L� and
xk �∈ �a − 2r0/L� a + 2r0/L�. Therefore,

∣∣G�xi� − G�xj�
∣∣ ≤

∣∣∣∣ 1
2L

∑
k

[
W

(
L�xk − xi + z�) − W

(
L�xk − xj + z�)]∣∣∣∣

+
∣∣∣∣ 1
2L

∑
k

[
W

(
L�xk − xi − z�) − W

(
L�xk − xj − z�)]∣∣∣∣

≤ 1
L

�W�∞�

(
xi + z − 2r0

L
�xi + z + 2r0

L
�q

)

+ 1
L

�W�∞�

(
xi − z − 2r0

L
�xi − z + 2r0

L
�q

)
+ 2

r0

L

N

L

≤ 1
L

sup
a

�

(
a − 2r0

L
�a + 2r0

L
�q

)
+ 2r0Z

L
�

whenever V�L�xi − xj�� �= 0. Using this for (4.14) yields

∣∣;2�q�∣∣ ≤ c1ce
16v̄cZ ∑

i� j

V
(
L�xi − xj�

)

×
[

1
L

sup
a

�

(
a − 2r0

L
�a + 2r0

L
�q

)

+ 2r0Z

L

]
�vαi

− vαj
�2�

∣∣;2�q�∣∣ ≤ c1ce
16v̄cZ

[
Ĉ0h

(
4r0

L

)(
1 + C�q�) + 2r0Z

L

]

× ∑
i� j

V�L�xi − xj���vαi
− vαj

�2�
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where for the last inequality we applied (3.7). This, (4.11) and (4.12) imply

�4�15�

E
q
L exp

{
2c

∫ τ

0

∑
i� j

V
(
L�xi − xj + z�)�vαi

− vβj
�2 ds

− cC2�c�
[

1
L

sup
a

sup
0≤t≤T

�

(
a − 2r0

L
�a + 2r0

L
�q�t�

)
+ r0Z

L

]

×
∫ τ

0
AL�q�s��ds

}

≤ exp�C2cL��
where C2�c� is a constant multiple of e16v̄cZ. In the case of z = 0 we may write

�4�16�
E

q
L exp

{[
2c − cC2�c�h

(
4r0

L

)(
1 + sup

0≤s≤T

C�q�s��
)] ∫ τ

0
AL�q�s��ds

}

≤ exp�C2cL��
Step 4. We choose η1 so that for c�L� = η1 log log L,

�4�17� lim
L→∞

C2
(
c�L�)h(4r0

L

)
= 0�

We then define TL by

�4�18� TL = inf
{
t ∈ �0�T�� C2�c�L��h

(
4r0

L

)(
1 + sup

0≤s≤t
C�q�t��

)
≥ 1

}
�

For such TL, the inequality (4.16) implies (4.5). On the other hand, by the
Chebyshev inequality,

�4�19�

PL�TL �= T�

= PL

(
C2�c�L��h

(
4r0

L

)(
1 + sup

0≤s≤T

C�q�s��
)

≥ 1
)

≤ E
q
L exp

(
θ0L

(
1 + sup

0≤s≤t
C�q�s��

))
exp

(
− θ0L

C2�c�L��h�4r0/L�
)

≤ exp
(
θ0L + C0�T�L − θ0L

C2�c�L��h�4r0/L�
)
�

where for the last inequality we used (3.3). Evidently, (4.19) and (4.17) im-
ply (4.5).

Final Step. From (4.15) and the Schwarz inequality ELB
1/2 ≤ �ELAB�1/2 ·

�ELA
−1�1/2� we obtain

�4�20�
EL exp

(
c
∫ TL

0
AL�q�s�� z�ds

)

≤ exp
(

1
2
C2cL

)(
EL exp

(
cC2�c�

(
N

L
+ r0Z

L

) ∫ t

0
AL�q�s��ds

))1/2

�
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Now we apply (4.4) to conclude that if

cC2�c�
(
Z + r0Z

L

)
≤ η1 log log L�

then the right-hand side of (4.20) is bounded above by the right-hand side of
(4.6). This completes the proof of part (c). ✷

5. Molecular chaos. The main result of this section asserts that if ζε is
an approximation to identity, the empirical density mα�t� dx� can be replaced
with mα ∗ ζε, with an error that has a superexponentially small probability
distribution.

For the sake of definiteness, we pick a nonnegative smooth function ζ of
compact support with

∫
ζ�z�dz = 1, and we set ζε�z� = ε−1ζ�ε−1z�. Define

�5�1� mα�ε�x� t� = mα�ε�x� t� q� = 1
L

N∑
i=1

ζε
(
x − xi�t�

)
�
(
αi�t� = α

)
�

Theorem 5.1. For every pair �α�β� with vα �= vβ, and any smooth func-
tion H,

lim sup
ε→0

lim sup
L→∞

×
{

1
L

log EL exp
[∫ TL

0

∑
i�=j

V
(
L�xi�t� − xj�t��

)
× �

(
αi�t� = α� αj�t� = β

)
H�xi�t�� t�dt

−L
∫ T

0

∫
mα�ε�x� t�mβ�ε�x� t�H�x� t�dxdt

]}
≤ 0�

(5.2)

The main ingredient for the proof of (5.2) is the following lemma.

Lemma 5.2. Let �α�β� and H be as in Theorem 5.1. Then there are con-
stants C4 and C5 (depending only on T and H) such that for every L and ε,

�5�3�

sup
�z1���z2�≤ε

EL exp
{∫ TL

0

∑
i� j

V�L�xi�t� − xj�t� + z1 − z2��H�xi�t� + z1� t�

− V�L�xi�t� − xj�t���H�xi�t�� t�dt
}

≤ C4 exp
[
C5L�h�L−1 + ε��1/2

]
�

We first demonstrate how (5.3) implies (5.2).

Proof of Theorem 5.1. Without loss of generality we assume that the
support of ζ is contained in �−1�1�. As a result, the support of ζε is contained
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in �−ε� ε�. We integrate the term with expectation in (5.3) against ζε�z1�ζε�z2�.
If X�z1� z2� denotes the exponent in (5.3), we have

�5�4�
EL

∫ ∫
exp�X�z1� z2��ζε�z1�ζε�z2�dz1 dz2

≤ C4 exp
[
C5L

(
h�L−1 + ε�)1/2]

�

Write

�5�5� Y�t�q� = ∑
i�=j

V
(
L�xi − xj�

)
H�xi� t���αi = α� αj = β��

Then by Jensen’s inequality the right-hand side of (5.4) dominates

�5�6�

EL exp
(∫ ∫

X�z1� z2�ζε�z1�ζε�z2�dz2 dz2

)

= EL exp
{∫ TL

0

∫ ∫ ∑
i� j

V
(
L�xi�t� − xj�t� + z1 − z2�

)
H

(
xi�t� + z1� t

)
× �

(
αi�t� = α� αj�t� = β

)
ζε�z1�ζε�z2�dz1 dz2 dt

−
∫ TL

0
Y�t�q�t��dt

}

= EL exp
{∫ TL

0

∑
i� j

∫ ∫
V
(
L�z1 − z2�

)
H�z1� t�

× �
(
αi�t� = α� αj�t� = β

)
× ζε

(
z1 − xi�t�

)
ζε
(
z2 − xj�t�

)
dz1 dz2 dt

−
∫ TL

0
Y
(
t�q�t�)dt}

= EL exp
{
L
∫ TL

0

∫ ∫
LV

(
L�z1 − z2�

)
× H�z1� t�mα�ε�z1�mβ�ε�z2�dz1 dz2 dt

−
∫ TL

0
Y�t�qt�dt

}
�

Since (5.6) is bounded by the right-hand side of (5.4), we obtain

lim sup
ε→0

lim sup
L→∞

×
{

1
L

log EL exp
{
L
∫ TL

0

∫ ∫
LV

(
L�z1 − z2�

)
H�z1� t�

× mα�ε�z1� t�mβ�ε�z2� t�dz1 dz2 dt

−
∫ TL

0
Y
(
t�q�t�)dt}} ≤ 0�

(5.7)
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Since the function H�z1� t�mα�ε�z1� t�mβ�ε�z2� t� is continuous and uniformly
bounded in a z1-variable, we have

�5�8�

∣∣∣∣
∫ ∫

LV�L�z1 − z2��H�z1� t�mα�ε�z1� t�mβ�ε�z2� t�dz1 dz2

−
∫
H�z� t�mα�ε�z�mβ�ε�z�dz

∣∣∣∣ ≤ aL�ε��

where aL�ε� is a nonrandom constant with limL→∞ aL�ε� = 0. This and (5.7)
imply (5.2) because L → ∞ before ε → 0. ✷

We end this section with the proof of (5.3). A review of (2.5)–(2.11) should
motivate some of the steps of the following proof.

Proof of Lemma 5.3.
Step 1. Recall the function WL that was defined in the beginning of the

previous section. Fix a pair �α�β� with vα �= vβ and a pair �z1� z2� with
�z1�� �z2� < ε. Set z3 = z2 − z1 and define F�t�q� to be

�5�9�
1
L

∑
i� j

[
WL�xi − xj + z3�H�xi + z1� t� − WL�xi − xj�H�xi� t�

]
× ��αi = α� αj = β��

Using exponential martingales, we obtain

�5�10�
EL exp

(
F
(
TL�q�TL�) − F

(
0�q�0�) −

∫ TL

0

∂F

∂t

(
t�q�t�)dt

−
∫ TL

0
e−F� �L�eF

(
t�q�t�)dt) = 1�

In the succeeding steps we will study various terms that appeared in the
exponent. In the sequel, c� c1� c2 � � � denote constants whose values may change
from line to line.

Step 2. We start with ;1 = F�TL�q�TL�� = ;11 + ;12, where

�5�11�

;11 = 1
L

∑
i� j

WL�xi − xj + z3�
(
H�xi + z1�TL� − H�xi�TL�)

× ��αi = α� αj = β��

;12 = 1
L

∑
i� j

(
WL�xi − xj + z3� − WL�xi − xj�

)
H

(
xi�TL�

× ��αi = α� αj = β��
By smoothness of H, we clearly have

�5�12� �;11� ≤ c1
N2

L
�z1� ≤ c1LZ

2ε�
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Recall that the support of V is contained in �−r0� r0� and that T is the inter-
val �− 1

2 �
1
2 � with the endpoints identified. Recall that W′

L is bounded by two,
outside the interval �−r0/L� r0/L�. We then write

�5�13� ;12 = ;121 + ;122 + ;123�

where ;121 is obtained from ;12 by restricting the summation to i� j with
either L�xi −xj� ∈ �−r0� r0� or L�xi −xj + z3� ∈ �−r0� r0�, ;122 is obtained by
restricting the summation to the case of either L�xi−xj�, L�xi−xj+z3� ≤ −r0
or L�xi − xj�, L�xi − xj + z3� ≥ r0 and ;123 is obtained by restricting the
summation to the remaining cases.

Step 3. If either L�xi − xj� or L�xi − xj + z3� belongs to �−r0� r0�, then
either xi ∈ �xj − r0/L�xj + r0/L� or xi ∈ �xj − z3 − r0/L�xj − z3 + r0/L�. As
a result,

�5�14� �;121� ≤ Z�WL�∞�H�∞ sup
a

�

(
a − r0

L
�a + r0

L
�q�TL�

)
�

We now turn to ;122. If both L�xi−xj� and L�xi−xj+z3� are outside �−r0� r0�
and on the same side, then �WL�xi − xj + z3� − WL�xi − xj�� ≤ 2�z3�. Hence

�5�15� �;122� ≤ 2ε�H�∞
N2

L
= 4εZ2�H�∞L�

For ;123, assume for example L�xi − xj� < −r0 but L�xi − xj + z3� > r0. This
implies z3 > 2r0/L and

xi ∈
(
xj + r0

L
− z3� xj − r0

L

)
�

Hence

�5�16� �;123� ≤ 2�WL�∞�H�∞ sup
a

�

(
a� a + 2ε − 2r0

L
�q�TL�

)
�

Combining (5.13)–(5.16) yields

�;12� ≤ c sup
a

�

(
a� a + 2ε + 2r0

L
�q�TL�

)

for some constant c. From this and (5.12) we conclude

�;1� ≤ cLε + c sup
a

�

(
a� a + 2r0

L
+ 2ε�q�TL�

)

for some constant c. The term F�0�q�0�� can be treated likewise. Thus

�5�17�

∣∣F�TL�q�TL�� − F�0�q�0��∣∣
≤ cLε + c sup

a
sup

0≤t≤T

�

(
a� a + 2r0

L
+ 2ε�q�t�

)
�
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Step 4. Next we study another term in the exponent of (5.10):

�5�18�

∂F

∂t
�t�q� = 1

L

∑
i� j

[
WL�xi − xj + z3�

∂H

∂t
�xi + z1� t�

− WL�xi − xj�
∂H

∂t
�xi� t�

]

× ��αi = α� αj = β��
This term can be treated in the same way we established (5.17). The only
difference is that H is replaced with ∂H/∂t. As a result

�5�19�

∣∣∣∣
∫ TL

0

∂F

∂t
�t�q�t��dt

∣∣∣∣
≤ cLε + c sup

a
sup

0≤t≤T

�

(
a� a + 2r0

L
+ 2ε�q�t�

)

for some constant c.
Step 5. For the last integral in (5.10), we write

�5�20� e−F� �L�eF = �0F + e−F�ce
F =� ;2 + ;3�

A straightforward calculation yields that ;2 = �0F is equal to

�5�21�

�vα − vβ�∑
i� j

[
V�L�xi − xj + z3��H�xi + z1� t�

− V�L�xi − xj��H�xi� t�
]
��αi = α� αj = β�

+ vα − vβ

L

∑
i� j

[
RL�xi − xj + z3�H�xi + z1� t�

− RL�xi − xj�H�xi� t�
]
��αi = α� αj = β�

+ vα

L

∑
i� j

[
WL�xi − xj + z3�

∂H

∂x
�xi + z1� t�

− WL�xi − xj�
∂H

∂x
�xi� t�

]
��αi = α� αj = β�

=� ;21 + ;22 + ;23�

where RL is defined by (4.1). Note that ;21 is a constant multiple of the
integrand in (5.3). The term ;23 is nothing other than (5.18) with ∂H/∂x
instead of ∂H/∂t. Hence we can bound it as in (5.19):

�5�22�
∣∣∣∣
∫ TL

0
;23 dt

∣∣∣∣ ≤ cLε + sup
a

sup
0≤t≤T

�

(
a� a + 2r0

L
+ 2ε�q�t�

)
�

On the other hand, since �R′
L� ≤ 3 and H is smooth, it is not hard to show

that

�5�23�
∣∣∣∣
∫ TL

0
;22 dt

∣∣∣∣ ≤ cLε�
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Step 6. We now turn to e−F�ce
F:

�5�24�

;3 = e−F�ce
F�t�q�

= 1
2

∑
i� j

∑
γδ

K�αiαj� γδ�V(
L�xi − xj�

)

× [
exp

(
F�t�Sγδ

ij q� − F�t�q�) − 1
]
�

where

�5�25�

F
(
t�S

γδ
ij q

) − F�t�q�

= 1
L

[
WL�xi − xj + z3�H�xi + z1� t� − WL�xi − xj�H�xi� t�

]
× (

��γ = α� δ = β� − ��αi = α� αj = β�)
+ 1

L

∑
k �=i� j

[
WL�xi − xk + z3�H�xi + z1� t�

− WL�xi − xk�H�xi� t�
]

× (
��γ = α� αk = β� − ��αi = α� αk = β�)

+ 1
L

∑
k �=i� j

[
WL�xk − xj + z3�H�xk + z1� t�

− WL�xk − xj�H�xk� t�
]

× (
��αk = α� δ = β� − ��αk = α� αj = β�)

= R1 + R2 + R3�

First observe that the right-hand side of (5.25) is bounded:

∣∣F�t�Sγδ
ij q� − F�t�q�∣∣ ≤ 3

N

L
�H�∞ = 3Z�H�∞�

Since the inequality �A� ≤ B implies �eA − 1� ≤ eB�A�, we have

�5�26�

�;3� ≤ 1
2

∑
i�=j

∑
γδ

K
(
αiαj� γδ

)
V
(
L�xi − xj�

)
exp

(
3Z�H�∞

)

× ∣∣F(
t�S

γδ
ij q

) − F�t�q�∣∣
≤ ;31 + ;32 + ;33�

where ;3i is obtained by replacing the term with absolute values with �Ri�.
Since �R1� ≤ ��H�∞/L�, we have

�5�27� ;31 ≤ c

L
AL�q��
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where AL�q� is defined by (4.2). We now turn to ;32:

�5�28�

;32 ≤ c

L

∑
i� j

V
(
L�xi − xj�

)
��vαi

�= vαj
�

×
∣∣∣∣ ∑
k �=i� j

[
WL�xi − xk + z3�H�xi + z1� t�

− WL�xi − xk�H�xi� t�
]∣∣∣∣

≤ c

L

∑
i� j� k

V
(
L�xi − xj�

)
��vαi

�= vαj
�∣∣WL�xi − xk + z3�

∣∣
× ∣∣H�xi + z2� t� − H�xi� t�

∣∣
+ c

L

∑
i� j� k

V
(
L�xi − xj�

)
��vαi

�= vαj
�

× ∣∣WL�xi − xk + z3� − WL�xi − xk�
∣∣ ∣∣H�xi� t�

∣∣
=� ;321 + ;322�

By smoothness of H,

�5�29�

;321 ≤ c1ε

L

∑
i� j� k

V�L�xi − xj����vαi
�= vαj

�

= c1εN

L

∑
i� j

V
(
L�xi − xj�

)
��vαi

�= vαj
�

≤ c2εAL�q��

for some constants c1 and c2.
Step 7. To treat ;322, we argue as in Steps 2 and 3. We first write

�5�30� ;322 = ;3221 + ;3222 + ;3223�

where ;3221 is obtained from restricting the summation to i� j� k with L�xi −
xk� ∈ �−r0� r0� or L�xi − xk + z3� ∈ �−r0� r0�, ;3222 is obtained by restricting
to the case of either L�xi − xk�, L�xi − xk + z3� < −r0 or L�xi − xk�, L�xi −
xk + z3� > r0, and ;3223 is obtained by restricting to the case L�xi − xk�,
L�xi − xk + z3� �∈ �−r0� r0� but one is less than −r0 and the other greater
than r0. As in (5.15) we can show

�5�31� �;3222� ≤ cε
N

L
AL�q��
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By taking the summation over k first, we can estimate ;3221 as

�5�32�

;3221 ≤ 2c
L

�W�∞
∑
i� j

V
(
L�xi − xj�

)
��vαi

�= vαj
�

× �

(
xj − r0

L
− ε� xj + r0

L
+ ε�q

)

≤ c1

L
AL�q� sup

a
�

(
a� a + 2r0

L
+ 2ε�q

)

for some constant c1. We can repeat the derivation of (5.16) for ;3223 to obtain

�5�33� ;3223 ≤ c

L
AL�q� sup

a
�

(
a� a + 2r0

L
+ 2ε�q

)
�

Combining (5.30), (5.31), (5.32) and (5.33) yields

;322 ≤ c1

L
AL�q� sup

a
�

(
a� a + 2r0

L
+ 2ε�q

)
+ c1εAL�q�

for some constant c1. This, (5.29) and (5.28) imply

�5�34� ;32 ≤ c

L
AL�q� sup

a
�

(
a� a + 2r0

L
+ 2ε�q

)
+ cεAL�q��

The term ;33 is treated likewise. This, (5.34), (5.26) and (5.27) yield

�5�35� �;3� ≤ cAL�q�
(

sup
a

1
L
�

(
a� a + 2r0

L
+ 2ε�q

)
+ ε + L−1

)

for some constant c. This and (5.24) imply

�5�36�

∣∣∣∣
∫ TL

0
e−F�ce

F�t�qt�dt
∣∣∣∣

≤
(∫ TL

0
AL�q�dt

)

×
(

sup
0≤t≤T

sup
a

1
L
�

(
a� a + 2r0

L
+ 2ε�q�t�

)
+ ε + L−1

)
�

Final step. From (5.10), (5.17), (5.19), (5.21), (5.22), (5.23) and (5.36), we
conclude ELe

X+Y = 1 with X equal to vβ − vα times

�5�37�

∫ TL

0

∑
i� j

[
V�L�xi − xj + z1��H�xi + z2� t� − V�L�xi − xj��H�xi� t�

]
× ��αi�t� = α� αj�t� = β�dt�
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�5�38�

�Y� ≤ R �= c1

(
L +

∫ TL

0
AL�q�dt

)

×
(

sup
0≤t≤T

sup
a

1
L
�

(
a� a + 2r0

L
+ 2ε�q�t�

)
+ ε + L−1

)

+ c1εL

for some constant c1. We use the Schwarz inequality in the form ELe
X/2 ≤

�ELe
X+Y�1/2�Ee−Y�1/2 to deduce

�5�39� ELe
X/2 ≤ �ELe

R�1/2�

We then replace H with −H to deduce

ELe
−X/2 ≤ �ELe

R�1/2�

From this, (5.39) and the elementary inequality e�x� ≤ ex + e−x we deduce

�5�40� ELe
�X/2� ≤ 2�ELe

R�1/2�

Recall that by (3.7) and (3.4),

EL exp
(
c1 sup

a
sup

0≤t≤T

�

(
a� a + 2r0

L
+ 2ε�q�t�

))

≤ EL exp
[
Ĉ0Lh

(
2r0

L
+ 2ε

)(
1 + sup

0≤t≤T

C�q�t�
)]

≤ exp
(
Ĉ0Lh

(
2r0

L
+ 2ε

))
exp

(
Ĉ0

θ0
Lh

(
2r0

L
+ 2ε

)
C0�T�

)
�

Because of this, (5.40), (5.38) and (5.37), the (5.5) follows if we can show

�5�41�

EL exp
[
c1 supa sup0≤t≤T

1
L
�

(
a� a + 2r0

L
+ 2ε�q�t�

)

×
∫ TL

0
AL�q�t��dt

]

≤ exp
[
cL�h�L−1 + ε��1/2]�

for some constant c. For every λ, the left-hand side of (5.41) is bounded
above by

�5�42�

EL exp
(
c1λ

∫ TL

0
AL�q�t��dt

)

+ EL exp
(
c1

N

L

∫ TL

0
AL�q�t��dt

)

× �

(
1
L

sup
a

sup
0≤t≤T

�

(
a� a + 2r0

L
+ 2ε�q�t�

)
≥ λ

)
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because � is always bounded by N. The first term in (5.42) is bounded above
by exp�C1�c1λ�T�L� by Theorem 4.1. By Lemma 3.3, the second term in (5.42)
is bounded by

EL exp
(
c1Z

∫ TL

0
AL�q�t�dt

)

× �

(
Ĉ0

L
h

(
2r0

L
+ 2ε

)(
1 + sup

0≤t≤T

C�q�t��
)

≥ λ

)

≤
(
EL exp

(
2c1Z

∫ TL

0
AL�q�t��dt

))1/2

× PL

(
Ĉ0

L
h

(
2r0

L
+ 2ε

)(
1 + sup

0≤t≤T

C�q�t��
)

≥ λ

)1/2

≤ exp
( 1

2C1�2c1Z�T�L)
× exp�−λML�EL exp

[
MĈ0h

(
2r0

L
+ 2ε

)(
1 + sup

0≤t≤T

C�q�t��
)]

for every positive constant M, where for the first inequality we used the
Schwartz inequality, and for the second inequality we applied (4.4) and then
the Chebyshev inequality. We now choose λ = �h�2r0/L + 2ε��1/2 and M =
1
2C1�2c1Z�T��h�2r0/L + 2ε��−1/2 and apply (3.4). As a result we have (5.40)
and this completes the proof of the theorem. ✷

6. Uniform integrability, part I. In this section we establish an expo-
nential bound for the collision term that is slightly stronger than (4.4).

We start with some definitions. Fix a number b ∈ �0�1�:

�6�1� <3�x� �= x�w3�x��b =�
{
x�log log log x�b� x ≥ ee�

0� x < ee�

�6�2�
Xt�x� �=

∫ t

0

∑
i�=j

V
(
L�xi�s� − xj�s��

)
× ��αi�s� = α� αj�s� = β�V�L�xi�s� − x − vs��ds�

�6�3� τ�x� = τl�x� �= inf
{
t� Xt�x� ≥ l

}
� σ�x� = σl�x� �= τ�x� ∧ TL�

where v ∈ R, and l > 0 are given. Throughout this section we assume v� vα� vβ

are distinct.
The following is the main result of this section.

Theorem 6.1. There exists a positive constant η2 = η2�b� such that for
every positive T,

�6�4� C6�T� �= sup
L

1
L

log EL exp
[
η2L

∫
<3�XTL

�x��dx
]
< ∞�
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The following lemma is the main ingredient for the proof of (6.4).

Lemma 6.2. There exist positive constants η3 and C′
6�T� such that for every

positive l and L with l ≤ exp��log L�2�,

�6�5� 1
L

log EL exp
[
2η3Lw3�l�

∫
�XTL

�x� − Xσl�x��x��dx
]

≤ C′
6�T��

We first demonstrate how (6.5) implies (6.4).

Proof of Theorem 6.1. First observe that (6.5) means

�6�6� 1
L

log EL exp
[
2η3Lw3�l�

∫
�XTL

�x� − l���τl�x� ≤ TL�dx
]

≤ C′
6�T��

In particular,

1
L

log EL exp
[
2η3Lw3�l�

∫
�XTL

�x� − l���XTL
�x� ≥ 2l�dx

]
≤ C′

6�T��

which in turn implies

�6�7� 1
L

log EL exp
[
2η3Llw3�l�

∫
�
(
XTL

�x� ≥ 2l
)
dx

]
≤ C′

6�T��

Moreover,

�6�8�

1
L

log EL exp
[
η3Lw3�l�

∫
XTL

�x��1�XTL
�x� ≥ l�dx

]

= 1
L

log EL exp
[
η3Lw3�l�

∫
�XTL

�x� − l���XTL
�x� ≥ l�dx

+ η3Llw3�l�
∫

��XTL
�x� ≥ l�dx

]

≤ 1
L

log
{

1
2
EL exp

[
2η3Lw3�l�

∫
�XTL

�x� − l���XTL
�x� ≥ l�dx

]

+ 1
2
EL exp

[
2η3Llw3�l�

∫
��XTL

�x� ≥ l�dx
]}

≤ C′
6�T��

where for the first inequality we used ea+b ≤ 1
2e

2a + 1
2e

2b, and for the second
inequality we used (6.7) and (6.6).

Put ŵ3 = wb
3. First observe that since XTL

is bounded above by a constant
multiple of L2, there exists L0 such that XTL

≤ exp��log L�2� for L ≥ L0. For
X ≥ ee�

<3�X� = (
ŵ3�X� − ŵ3�ee�

)
X =

∫ ∞

ee
ŵ′

3�l�X��X ≥ l�dl�
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From this we deduce that if L ≥ L0�

�6�9�

1
L

log EL exp
[
η2L

∫
<3�XTL

�x��dx
]

= 1
L

log EL exp
[
η2L

∫ exp��log L�2�

ee

∫
w3�l�XTL

�x�

× ��XTL
�x� ≥ l�y�l�dxdl

]
�

where y�l� = bw3�l�b−2�log log l�−1�log l�−1l−1. Choose η2 = η3/c0 where c0 =∫∞
ee y�l�dl. From Jensen’s inequality and (6.8) we conclude that the right-hand

side of (6.9) is bounded above by

�6�10�
1
L

log EL

∫ exp��log L�2�

ee
exp

[
η2c1Lw3�l�

∫
XTL

�x���XTL
�x� ≥ l�dx

]

× y�l�
c1

dl ≤ C′
6�T��

where c1 = ∫ exp��log L�2�
ee y�l�dl� This evidently completes the proof of (6.4). ✷

In the sequel, �λ denotes the σ-field generated by �q�s�� 0 ≤ s ≤ λ�. Define

�6�11� g�x� t�q� = ∑
i� j

V�L�xi − xj����αi = α� αj = β�V�L�xi − x − vt���

Note that we can write

�6�12�
∫

�XTL
�x� − Xσ�x��x��dx =

∫ ∫ TL

σ�x�
g�x� t�q�t��dtdx�

Proof of Lemma 6.2.
Step 1. The expression (2.14) suggests looking at the exponential martin-

gale corresponding to the process

∑
i� j

WL�xi − xj�H
(

vβ − v

vβ − vα

xi + v − vα

vβ − vα

xj − vt

)
��αi = α� αj = β��

where H is the indicator function of the set �τl > TL�. The randomness of the
set and the nonsmoothness of the indicator function will not allow us to choose
such H. Because of this, we introduce several approximation procedures. Let
ε be a positive constant such that k0 = ε−1 is an integer and put λ0 = 0. We
divide the interval �0�T� into smaller subintervals �λk� λk+1�� each of which
is of length εT. Put

�6�13�
H�x� k� ε� = �

(
τl�x� ∈ �λk� λk+1�

)
�

HL�x� k� ε� =
∫
ζL�x − z�H�z� k� ε�dz�
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where zL�z� = Lζ�Lz� and ζ = � R → �0�∞� is a smooth function of compact
support and will be chosen later. We fix ε and for each integer k ∈ �0� k0� we
define Fk�q� t� = Fk�q� t� ε� to be

c̄

L�vβ − vα�
∑
i� j

ŴL�xi − xj�HL

×
(

vβ − v

vβ − vα

xi + v − vα

vβ − vα

xj − vt� k� ε

)
��αi = α� αj = β��

where ŴL = WL − 1 if vβ − vα > 0, ŴL = WL + 1 if vβ − vα < 0 and c̄ is a
positive constant. We also define

�6�14� G�q� t� = G�q� t� ε� =
k0−2∑
k=0

Fk�q� t���t ≥ λk+1��

Note that our choice of ŴL implies

�6�15� − 2c̄
�vα − vβ� ≤ c̄

vβ − vα

ŴL ≤ 0 and Fk�q� t� ≤ 0�

Consider the process

M�t� = exp
[
G�q�t�� t� −

k0−2∑
k=0

Fk�q�λk+1�� λk+1���t ≥ λk+1�

−
k0−2∑
k=0

��t ≥ λk+1�
∫ t

λk+1

(
∂Fk

∂t
+ �0Fk

)
�q�s�� s�ds

−
∫ t

0
e−G�ce

G�q�s�� s�ds
]
�

We claim

�6�16� ELM�TL� = 1�

To see this, we first define the following process for t ∈ �λk+1�T�:

Mk�t� = exp
[
G�q�t�� t� − G�q�λk+1�� λk+1�

−
∫ t

λk+1

(
∂G

∂t
+ �0G

)
�q�s�� s�ds −

∫ t

λk+1

e−G�ce
G�q�s�� s�ds

]
�
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Since HL�x� k� ε� is measurable with respect to the σ-field �λk+1
, the process

Mk�t� is an exponential martingale. As a result,

ELM�TL� = ELEL

[
M�TL���λk0−1

]

= EL exp
(
G
(
q�λk0−1� λk0−1�

) −
k0−3∑
k=0

Fk

(
q�λk+1�� λk+1

)

+
k0−3∑
k=0

∫ λk0−1

λk+1

(
∂Fk

∂t
+ �0Fk

)
�q�s�� s�ds

−
∫ λk0−1

0
e−G�ce

G�q�s�� s�ds
)

× ��TL > λk0−1�EL

[
Mk0−2�T���λk0−1

]
+ ELM�TL���TL ≤ λk0−1�

= ELM�TL ∧ λk0−1��
where the last equality follows from the fact that we replace EL�Mk0−2�TL��
�λk0−1

� with 1 because Mk is an exponential martingale with Mk�λk+1� = 1.
Inductively we can show

ELM�TL� = ELM�TL ∧ λk��
From this we can deduce (6.16) because M�0� = 1.

Step 2. Put

�6�17�

;1�ε� = G�q�TL��TL� −
k0−2∑

0

Fk

(
q�λk+1�� λk+1

)
��TL ≥ λk+1��

;2�q� t� k� ε� =
(
∂Fk

∂t
+ �0Fk

)
�q� t��

;3�q� t� ε� = e−G�ce
G�q� t��

Using the decomposition (4.1), we have

;2�q� t� k� ε� = ;21�q� t� k� ε� + ;22�q� t� k� ε��

;21�q� t� k� ε� �= −c̄
∑
i� j

V�L�xi − xj��

× HL

(
vβ − v

vβ − vα

xi + v − vα

vβ − vα

xj − vt� k� ε

)

× ��αi = α� αj = β��(6.18)
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;22�q� t� k� ε� = − c̄

L

∑
i�j

RL�xi − xj�

× HL

(
vβ − v

vβ − vα

xi + v − vα

vβ − vα

xj − vt� k� ε

)
× ��αi = α� αj = β��

Note that the argument of HL is chosen in such a way that when we apply
∂/∂t + �0 on the HL term, we obtain zero. Use (6.16)–(6.18) and apply the
Schwarz inequality in the form ELB

1/2 ≤ �ELAB�1/2�ELA
−1�1/2 with A =

exp;1�ε�. As a result,

�6�19�

EL exp
(

− 1
2

k0−2∑
k=0

��TL ≥ λk+1�
∫ TL

λk+1

;21�q�t�� t� k� ε�dt
)

≤
[
EL exp

(
−;1�ε� +

k0−1∑
k=0

��TL ≥ λk+1�

×
∫ TL

λk+1

;22�q�t�� t� k� ε�dt +
∫ TL

0
;3�q�t�� t�dt

)]1/2

�

Step 3. We start with bounding ;1. We clearly have

�6�20�
KL�x� �=

k0−1∑
k=0

HL�x� k� ε���TL ≥ λk+1�

≤
∫
Lζ�L�x − z����z ∈ Bl�dz�

where Bl = �z� τl�z� < TL�. Put ω = �v − vα�/�vβ − vα�. We use (6.15) and
(6.20) to obtain

�6�21�
−;1�ε� ≤ −

k0−1∑
k=0

Fk�q�TL��TL���TL ≥ λk+1�

≤ c1c̄ sup
z

∑
j

KL�ωxj�TL� + z�

for some constant c1. The term ;22 can be treated likewise; using �RL� ≤ 2 we
obtain

�6�22�

∣∣∣∣
k0−1∑
k=0

∫ TL

λk+1

;22�q�t�� t� k� ε�dt
∣∣∣∣

≤ c2c̄T sup
0≤t≤T

sup
z

∑
j

KL�ωxj�t� + z�

for some constant c2.
Step 4. We now turn to ;3.

�6�23�
;3�q� t� = 1

2

∑
i� j

∑
γδ

K�αiαj� γδ�V�L�xi − xj��

× [
exp

(
G
(
S

γδ
ij q� t

) − G�q� t�) − 1
]
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Moreover G�Sγδ
ij q� t� − G�q� t� equals

k0−1∑
k=0

c̄

L�vβ − vα�
ŴL�xi − xj�

× HL

(
vβ − v

vβ − vα

xi + v − vα

vβ − vα

xj − vt� k� ε

)

× (
��γ = α� δ = β� − ��αi = α� αj = β�)��t ≥ λk+1�

+
k0−1∑
k=0

c̄

L�vβ − vα�

× ∑
m �=i� j

ŴL�xm − xj�HL

(
vβ − v

vβ − vα

xm + v − vα

vβ − vα

xj − vt� k� ε

)

× (
��αm = α� δ = β� − ��αm = α� αj = β�)��t ≥ λk+1�

+
k0−1∑
k=0

c̄

L�vβ − vα�

× ∑
m �=i� j

ŴL�xi − xm�HL

(
vβ − v

vβ − vα

xi + v − vα

vβ − vα

xm − vt� k� ε

)

× (
��γ = α� αm = β� − ��αi = α� αm = β�)��t ≥ λk+1�

=� R1 + R2 + R3�

(6.24)

Recall that an inequality �A� ≤ B implies �eA −1� ≤ eB�A�. On the other hand,
since

k0−1∑
0

HL�x� k� ε� ≤ a =
∫
ζ dx�

we have ∣∣G�Sγδ
ij q� t� − G�q� t�∣∣ ≤ 6c̄aN

�vα − vβ�L = c3c̄�

Hence

�6�25�

∣∣;3�q� t� ε�∣∣ ≤ 1
2

∑
i�=j

∑
γ� δ

K�αiαj�γδ�V�L�xi − xj��ec3 c̄

× ∣∣G�Sγδ
ij q� t� ε� − G�q� t� ε�∣∣

≤ ;31�q� t� ε� + ;32�q� t� ε� + ;33�q� t� ε��
where ;3i�q� t� k� ε� is obtained by replacing the term with absolute values on
the first line with �Ri�. Set

;3i�ε� =
∫ TL

0
;3i�q�t�� t� ε�dt�
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Note that

�6�26�

lim
ε→0

k0−1∑
k=0

�
(
τl ∈ �λk� λk+1��TL ≥ λk+1� t ∈ �λk+1�TL�)

= �
(
τl < TL� t ∈ �τl�TL�)�

k0−1∑
k=0

�
(
τl ∈ �λk� λk+1��TL ≥ λk+1� t ∈ �λk+1�TL�)

≤ �
(
τl < T� t ∈ �τl�TL�)�

Using this and the fact that L�R1� is uniformly bounded, we deduce

�6�27� ∣∣;31�ε�∣∣ ≤ c4c̄ exp�c3c̄�
L

∫ TL

0
AL�q�t��dt

for some constant c4. Next we concentrate on ;32. For some constant c5,

∣∣;32�ε�∣∣ ≤ 1
L
c5c̄ exp�c3c̄�

k0−1∑
k=0

��TL ≥ λk+1�

×
∫ TL

λk+1

∑
i�=j �=m

V
(
L�xi�t� − xj�t��

)
��vαi�t� �= vαj�t��

× ∣∣ŴL�xi�t� − xm�t��∣∣
× HL

(
vβ − v

vβ − vα

xi�t� + v − vα

vβ − vα

xm�t� − vt� k� ε

)
dt

≤ 1
L

2c5c̄ exp�c3c̄�
∫ TL

0

∑
i�=j �=m

V
(
L�xi�t� − xj�t��

)
× �

(
vαi�t� �=vαj�t�

)
×KL

(
vβ − v

vβ − vα

xi�t� + v − vα

vβ − vα

xm�t� −vt

)
dt

≤ 2c5c̄ exp�c3c̄�Z
(∫ TL

0
AL�q�dt

)

× sup
z

sup
0≤t≤T

1
L

∑
m

KL

(
v − vα

vβ − vα

xm�t� + z

)
�

(6.28)

where for the first inequality we have used (6.26). The term ;33�ε� is treated
likewise. This, (6.28), (6.27), (6.26) and (6.25) imply∫ TL

0
;3�t�q�t�� ε�dt ≤ c6c̄ exp�c3c̄�

∫ TL

0
AL�q�t��dt

×
[
L−1 + sup

z
sup

0≤t≤T

1
L

∑
k

KL�ωxk�t� + z�
](6.29)

for some constant c6.
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Step 5. From (6.29), (6.22), (6.21) and (6.19) we learn

EL exp
(

−1
2

k0−1∑
k=0

��TL ≥ λk+1�
∫ TL

λk+1

;21�q�t�� t� k� ε�dt
)

≤
{
EL exp

[
c7c̄ exp�c3c̄�L−1

∫ TL

0
AL�q�t��dt

+ c7c̄ exp�c3c̄� sup
z

sup
0≤t≤T

1
L

∑
m

KL�ωxm�t� + z�

×
∫ TL

0
AL�q�t��dt + c7c̄ sup

z

1
L

∑
m

KL�ωxm�T� + z�
]}1/2

=� {EL exp�X1 + X2 + X3�
}1/2

≤ (
EL exp�3X1�

)1/6(
EL exp�3X2�

)1/6(
EL exp�3X3�

)1/6
�

(6.30)

We let ε go to zero. By (6.26) the exponent on the left-hand side of (6.30)
converges to

�6�31�

;21 �= c̄

2

∫
Bl

∫ TL

τl�z�

∑
i�j

V�L�xi�t� − xj�t���

× ζL

(
vβ − v

vβ − vα

xi�t� + v − vα

vβ − vα

xj�t� − vt − z

)
× �

(
αi�t� = α� αj�t� = β

)
dtdz

As a result,

�6�32� EL exp;21 ≤ (
EL exp�3X1�

)1/6(
EL exp�3X2�

)1/6(
EL exp�3X3�

)1/6
�

We now choose c̄ = ηw3�l� where w3 is defined by (6.1) and η ∈ �0�1� will be
chosen later. Then for l ∈ �exp�e�� exp��log L�2���
�6�33� c̄ exp�c3c̄� = η log log log l�log log l�c3η�

If l ≤ exp��log L�2�, then we can use (6.33) to show that for some constant c8,
c̄ exp�c3c̄� ≤ c8L. Using Theorem 4.1,

�6�34� EL exp�3X1� ≤ EL exp
(
c8

∫ TL

0
AL�q�t��dt

)
≤ exp

[
LC1�c8�T�]�

Step 6. We now turn to X2. Recall

�6�35� EL exp�3X2� = EL

[
3c7c̄ exp�c3c̄�YL

∫ TL

0
AL�q�t��dt

]
�

where

YL = sup
z

sup
0≤t≤T

1
N

∑
k

KL�ωxk�t� + z��
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By Lemma 3.2,

�6�36� YL�q� ≤ c8

(
1 + sup

0≤t≤T

C�q�t��h��Bl��
)
�

Moreover YL is bounded by aZ, where a = ∫
ζ�z�dz. From this, (6.36) and

(6.35), we deduce that EL exp�3X3� is bounded above by

�6�37�

EL exp
[
3c7c̄ exp�c3c̄�λ

∫ TL

0
AL�q�t��dt

]

+ EL exp
[
3c7c̄ exp�c3c̄�aZ

∫ TL

0
AL�q�t��dt

]

× �
(
c8

(
1 + sup

0≤t≤T

C�q�t��
)
h
(�Bl�

)
> λ

)

≤ EL exp
[
3c7c̄ exp�c3c̄�λ

∫ TL

0
AL�q�t��dt

]

+
(
EL exp

[
6c7c̄ exp�c3c̄�aZ

∫ TL

0
AL�q�t��dt

])1/2

×
(
PL

(
c8

(
1 + sup

0≤t≤T

C�q�t��
)
h��Bl�� > λ

))1/2
�

where for the second inequality we applied the Schwarz inequality. First we
choose λ = c̄−1 exp�−c3c̄� so that by Theorem 4.1 the first term in (6.37) is
bounded above by exp�C1�3c7�T�L�. For the second term we would like to
apply (4.5) and for this we need

�6�38� 6c7c̄ exp�c3c̄�aZ ≤ η1 log log L�

First we assume η is small enough so that c3η ≤ 1
2 . For such a choice we have

�6�39� c̄ exp�c3c̄� ≤ c9η log log l

for some constant c9. This in turn implies that (6.38) is satisfied if

�6�40� 6c7c9aZη log log l ≤ η1 log log L�

It is not hard to see that if η is sufficiently small then (6.40) is satisfied for all l
with l ≤ exp��log L�2�. Using (6.37), (4.4), (4.5) and the Chebyshev inequality,

�6�41�

EL exp�3X2� ≤ exp
[
C1�3c7�T�L]

+ exp
[

3
2
C2�T�c7c9aZLη log log l

]

×
(
EL exp

[
1
2
θ0L

(
1 + sup

0≤t≤T

C�q�t��
)

− θ0λL

2c8h��Bl��
])1/2

�



LARGE DEVIATIONS FROM A KINETIC LIMIT 1295

On the other hand, by the Chebyshev inequality and the elementary inequality
log x ≤ x�

−(
h��Bl��

)−1 = 1 + log �Bl� ≤ 1 + log
1
l

∫
XTL

�x�dx

≤ 1 − log l + log
c10

L

∫ TL

0
AL�q�t��dt

≤ − log l + ∫ TL

0
1
L
AL�q�t��dt + 1 + c10

for some constant c10. This, (6.41) and the Schwartz inequality imply

�6�42�

EL exp�3X2� ≤ exp�C1�3c7�T�L�

+ exp
[

3
2
C2�T�c7c9aZηL log log l

]

×
(
EL exp

[
θ0L

(
1 + sup

0≤t≤T

C�q�t��
)])1/4

×
(
EL exp

[
θ0λ

c8

∫ TL

0
AL�q�t��dt

])1/4

× exp
(

−θ0λ�log l − 1 − c10�L
4c8

)
�

Recall λ = exp�−c3c̄�/c̄. If η is sufficiently small, we can guarantee

λ log l = �log log l�−1�log l�1−c3η > c11�log l�1/2�

From this, Theorem 4.1 and Lemma 3.1, we conclude that (6.42) implies

�6�43� EL exp�3X2� ≤ exp�c12L�
for some constant c12. The term X3 is treated likewise. From this, (6.43), (6.34)
and (6.32), we conclude

�6�44� EL exp;21 ≤ exp�c13L�
for some c13.

Final step. Recall the definition of ;21 given by (6.31). Suppose that ζ ≥ 1
on the interval �−r1� r1�. Then

�6�45�

;21 ≥ c̄

2

∫
Bl

∫ TL

τl�z�
L
∑
i� j

V
(
L�xi�t� − xj�t��

)

× �

(
vβ − v

vβ − vα

xi�t� + v − vα

vβ − vα

xj�t�

− vt − z ∈
[
−r1

L
�
r1

L

])
dtdz�



1296 F. REZAKHANLOU

If V�L�xi − xj�� �= 0, then xj ∈ �xi − r0/L�xi + r0/L�. As a result,∣∣∣∣ vβ − v

vβ − vα

xi + v − vα

vβ − vα

xj − xi

∣∣∣∣ =
∣∣∣∣ v − vα

vβ − vα

�xj − xi�
∣∣∣∣ ≤

∣∣∣∣ v − vα

vβ − vα

∣∣∣∣r0

L
�

We choose r1 large enough so that

r1

L
−

∣∣∣∣ v − vα

vβ − vα

∣∣∣∣ r0

L
≥ r0

L
�

For such r1, (6.45) implies

;21 ≥
∫ ∫ T

σl�z�
c̄

2
L
∑
i� j

V
(
L�xi�t� − xj�t��

)
�
(
αi�t� = α� αj�t� = β

)
× �

(
xi�t� − vt − z ∈

[
−r0

L
�
r0

L

])
dtdz�

This, (6.44), (6.12) and (6.11) imply (6.5). ✷

7. Uniform integrability, part II. In the previous section, we estab-
lished the uniform integrability of Xt�x�, which is the time average of the
collision term. What we really need in the succeeding sections is the uniform
integrability of the collision term without a time average. To achieve this,
we are forced to replace <3 with a slightly slower function <4. Fix a number
b ∈ �0�1�:

�7�1� <4�x� �= x�w4�x��b =
{
x�log log log log x�b� x ≥ ee

e
�

0� x < ee
e
�

The main result of this section is the following theorem.

Theorem 7.1. For every ρ and T, there exists a constant C7�ρ�T� such
that if

�7�2� lim sup
L→∞

1
L

log �L�� � ≥ −ρ

for every open neighborhood � of m̄, then m̄�t� dx� = ḡ�x� t�dx and for any
pair (α�β� with vα �= vβ,

�7�3� sup
z∈T

∫ T

0

∫
<4

(
ḡα�x + z� t�ḡβ�x� t�)dxdt ≤ C7�ρ�T��

To prepare for the proof of Theorem 7.1, we start with some definitions. For
any pair �α�β� with vα �= vβ, define

�7�4�

Yt�x� α�β� = ∑
i�=j

V
(
L�xi�t� − xj�t��

)
× �

(
αi�t� = α� αj�t� = β

)
V
(
L�xi�t� − x�)�

Xt�x� α�β� γ� =
∫ TL∧t

0
Ys�x + vγs� s�ds�
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Clearly Y and X are random functions that depend on the trajectory �q�t�� 0 ≤
t ≤ T�. We define the vector valued random measure

�7�5�
µ�dx�dt� = (

µ1�dx�dt�� � � � � µn�dx�dt�)�
µα�dx�dt� = ∑

vγ� vδ �=vα

Yt�x + vαt� γ� δ�dxdt�

Recall mα defined by (1.11). Put Mα�dx�dt� = mα�t� dx�dt and M =
�M1� � � � �Mn�. The transformation q �→ �M�µ�, with q distributed according
to �L, induces a probability measure �̃L on � × 	 where 	 denotes the
space of measures on T × �0�T�. The space 	 with weak convergence is not a
good topological space. We therefore consider the spaces 	 k of measures on
T × �0�T� of total mass at most k:

	 k = {
µ ∈ 	 � µ�T × �0�T�� ≤ k

}
�

Each 	 k is a compact metric space with respect to weak convergence. In this
connection we have the following:

�7�6� lim
k→∞

lim sup
L→∞

1
L

log �̃L�� × 	 − � × 	 k� = −∞�

Roughly speaking, (7.6) says that the large deviation principles take place on
	 k with k large but fixed. We omit the proof of (7.6) because it follows from
Lemma 7.3 below.

The measure �̃L is concentrated on �M�µ� with µ absolutely continuous
with respect to the Lebesgue measure. Unfortunately, the space of absolutely
continuous measures is not closed with respect to weak convergence. For our
purposes in this section we would rather restrict �̃L to the following closed
subset of 	 :

�7�7�
	k =

{
µ ∈ 	 � µ�dx�dt� = ν�x�dt�dx�

sup
α

∫
<3�να�x� �0�T��dx ≤ k

}
�

In other words, µ is absolutely continuous in the x-variable and we have a
bound on its total variation in the t-variable.

Lemma 7.2. The set 	k is closed.

Proof. Suppose µi�dx�dt� = νi�x�dt�dx, and

sup
i

sup
α

∫
<3

(
νiα�x� �0�T��)dx ≤ k�

Since <3 grows faster than the linear function at infinity, we can choose a sub-
sequence νi

′
, such that νi

′ �x� �0� t�� → f�x� t� weakly for each rational number
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t ∈ �0�T�, where f is a measureable function with

sup
α

∫
<3�fα�x� t��dx ≤ k�

It is not hard to see that f is nondecreasing in t. Therefore it can be extended
to all of �0�T� in such a way that f�x� t� is right continuous in the t-variable.
Hence there exists a measure ν�x�dt� with ν�x� �0� t�� = f�x� t�. It is not hard
to see that in fact µi ⇒ µ where µ�dx�dt� = ν�x�dt�dx. ✷

Lemma 7.3.

�7�8� lim
k→∞

lim sup
L→∞

1
L

log �̃L�� × 	 − � × 	k� = −∞�

Proof. By the Chebyshev inequality and Theorem 6.1,

�̃L�� × 	 − � × 	k� ≤ exp�kη3L�
∫

exp
(
η3L

∫
<3

(
ν�x� �0�T��)dx)d�̃L

≤ exp�−kη3L + c1L�
for some constant c1. This evidently implies (7.8). ✷

On several occasions in this section and the next section we will use the
exponential martingale

Mt = exp
(
F�t�q�t�� − F′�q�0�� −

∫ t

0
e−F

(
∂

∂s
+ �

)
eF�s�q�s��ds

)

with

F�t�q� = ∑
α

N∑
i=1

pα�xi� t���αi = α��

F′�q� = ∑
α

N∑
i=1

Gα�xi���αi = α��

where p is a smooth function. A straightforward calculation yields

Mt = exp
{∑

α

N∑
i=1

pα�xi�T��T���αi�T� = α�

− G�xi�0����αi�0� = α�

−
∫ T

0

∑
α

N∑
i=1

Dαp�xi�t�� t���αi�t� = α�dt

−
∫ T

0

1
2

∑
i�=j

V
(
L�xi�t� − xj�t��

)
(7.9)
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× ∑
αβγδ

K�αβ� γδ�[exp
(
pγ�xi�t�� t� + pδ�xj�t�� t�

− pα�xi�t�� t� − pβ�xj�t�� t�
) − 1

]
× �

(
αi�t� = α� αj�t� = β

)
dt

}
�

If F�t�q� = ∑N
i=1 H�xi� t���αi = α� and G = 0, where α is given and H is a

smooth function with support in T × �0�T�, then Mt simplifies to

�7�10�

Mt = exp
[ N∑
i=1

H�xi�t�� t���αi�t� = α�

−
∫ t

0

N∑
i=1

DαH�xi�t�� t���αi�t� = α�dt

−
∫ t

0

∑
i�=j

V
(
L�xi�t� − xj�t��

)

× ∑
βγδ

[
K�αβ� γδ��exp�−H�xi�t�� t�� − 1�

× ��αi�t� = α� αj�t� = β�
+ K�γδ� αβ��exp�H�xi�t�� t�� − 1�

× ��αi�t� = γ� αj�t� = δ�
]
dt

]
�

Recall the definition of α-differentiability as in (1.12). As a step toward Theo-
rem 7.1, we state and prove a lemma.

Lemma 7.4. Suppose that there exists a positive number ρ for which (7.2)
holds for every open neighborhood of m̄. Then m̄�t� dx� = ḡ�x� t�dx for some
ḡ, and ḡα is α-differentiable for each α. Moreover, there exists a constant C8�T�
such that

�7�11� sup
0≤t≤T

∫
φ

(
1
2

∑
α

ḡα�x� t�
)
dx ≤ C0�T� + ρ

θ0
�

where θ0 and C0�T� are defined in Lemma 3.1, and

�7�12�
∫ T

0

∫
�Dαgα�dxdt ≤ C8�T� + ρ

log 2
�

Proof.
Step 1. Since for every x ∈ T,

mα

(
t�

(
x� x + 1

L

))
≤ mα

(
t�

(
− 1

2
+ i

L
�−1

2
+ i + 1

L

))

+ mα

(
t�

(
−1

2
+ i + 1

L
�−1

2
+ i + 2

L

))
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for some integer i, and since φ is convex, Lemma 3.1 implies

�7�13�
sup

0≤t≤T

∫
exp

[
Lθ0

∫
φ

(
L

2

∑
α

mα

(
t�

(
x� x + 1

L

)))
dx

]
�L�dm�

≤ exp�C0�T�L��
Recall that ζ is a smooth function with

∫
ζ dx = 1, ζε�z� = ε−1ζ�ε−1z� and

mε = m∗ζε [see (5.1)]. Set m�L��x� t� = Lm�t� �x� x+1/L��. A straightforward
calculation yields

�7�14�
∣∣∣∣∑

α

mα�ε�x� t� − m�L�
α ∗ ζε�x� t�

∣∣∣∣ ≤ c1

Lε

for some constant c1. Integrate both sides of (7.13) with respect to ζε and apply
the Jensen inequality. As a result,

sup
0≤t≤T

∫
exp

[
Lθ0

∫
φ

(
1
2

∑
α

m�L�
α ∗ ζε�x� t�

)
dx

]
�L�dm� ≤ exp�C0�T�L��

From this and (7.14) we learn that for every t ∈ �0�T�,

�7�15� lim sup
L→∞

1
L

log
∫

exp
[
Lθ0

∫
φ

(∑
α

mα�ε�x� t�
)
dx

]
�L�dm� ≤ C0�T��

Let � be an open neighborhood of m̄. By the Chebyshev inequality,

1
L

log �L�� � ≤ 1
L

log
∫

exp
[
Lθ0

∫
φ

(
1
2

∑
α

mα�ε�x� t�
)
dx

]
�L�dm�

− inf
m∈�

θ0

∫
φ

(
1
2

∑
α

mα�ε�x� t�
)
dx�

Hence, by (7.2) and (7.15),

�7�16� sup
ε>0

sup
�

inf
m∈�

∫
φ

(
1
2

∑
α

mα�ε�x� t�
)
dx ≤ C0�T� + ρ

θ0
�

where the second supremum is over all open neighborhood of m̄�x� t�. Choose
a sequence of open sets �i = �m� d�m�m̄� ≤ 1/i� where d is a metric for the
weak convergence. Since φ is convex, the functional

m �→
∫
φ

(
1
2

∑
α

mα�ε

)
dx

is lower semicontinuous. Because of this,

lim
i→∞

inf
m∈�i

∫
φ

(
1
2

∑
α

mα�ε�x� t�
)
dx ≥

∫
φ

(
1
2

∑
α

m̄α� ε�x� t�
)
dx�

From this and (7.14) we learn that for every positive ε and every t ∈ �0�T�,

�7�17� sup
ε>0

∫
φ

(
1
2

∑
α

mα�ε�x� t�
)
dx ≤ C0�T� + ρ

θ0
�
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Since φ grows faster than the linear function at infinity, a bound of the form
(7.1) implies that m̄�t� dx� = ḡ�x� t�dx for some ḡ for which (7.11) holds.

Step 2. Consider the martingale Mt given by (7.10). From ELMTL
= 1 and

the inequality ELB
1/2 ≤ �ELAB�1/2�ELA

−1�1/2 we learn

EL exp
[

1
2

N∑
i=1

H�xi�TL��TL���αi�TL� = α�

− 1
2

∫ TL

0

N∑
i=1

DαH�xi�t�� t���αi�t� = α�dt
]

≤ EL exp
[
c1 exp��H�∞�

∫ TL

0
AL�q�t��dt

]
�

for some constant c1. If we replace TL with T on the left-hand side, an error
will appear that is bounded above by exp�const.�T − TL�L�. Hence,

EL exp
[
− 1

2

∫ T

0

N∑
i=1

DαH�xi�t�� t���αi�t� = α�dt
]

≤ EL exp�T�DαH�∞N���TL �= T�

+ EL exp
[
c1 exp��H�∞�

∫ TL

0
AL�q�t��dt

]
�

From this, (4.4) and (4.5), we deduce

�7�18�
lim sup
L→∞

1
L

log
∫

exp
[
−1

2

∫ T

0

∫
DαH�x� t�mα�t� dx�

]
�L�dm��

≤ C2c1 exp��H�∞��
Let � be an open neighborhood of m̄. By Chebyshev’s inequality,

1
L

log �L�� � ≤ 1
L

log
∫

exp
[
−1

2

∫ T

0

∫
DαHmα�t� dx�

]
�L�dm�

− inf
m∈G

[
−1

2

∫ T

0

∫
DαHmα�t� dx�

]
�

By (7.2) and (7.18),

�7�19� sup
�

sup
m∈�

[
−C2c1 exp��H�∞� − 1

2

∫ T

0

∫
DαHmα�t� dx�

]
≤ ρ�

where the first supremum is over open neighborhoods of m̄. Fix a positive ε
and choose

� =
{
m� 1

2

∣∣∣∣
∫ T

0

∫
DαHmα�t� dx� −

∫ T

0

∫
DαHm̄α�t� dx�

∣∣∣∣ < ε

}
�
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Then (7.19) implies

[
−C2c1 exp��H�∞� − 1

2

∫ T

0

∫
DαHm̄α�t� dx�

]
≤ ρ + ε�

This inequality is also true if we replace H with −H. We let ε go to zero.
Recall that m̄α�t� dx� = gα�x� t�dx. Hence

�7�20�
∣∣∣∣ 1

2

∫ T

0

∫
gαDαHdxdt

∣∣∣∣ − C2c1 exp��H�∞� ≤ ρ

for every smooth H with support in T × �0�T�. We write H = λr where λ is a
positive scalar and r is a smooth function with �r�∞ ≤ 1. Since

ψ�a� b� �= sup
λ≥0

�aλ − beλ� =
{−b� if a ≤ b,
a log

a

b
− a� if a > b,

we learn from (7.20) that

ψ

(∣∣∣∣ 1
2

∫ T

0

∫
gαDαrdxdt

∣∣∣∣�C3�T�c1

)
≤ ρ�

for every smooth r with �r�∞ ≤ 1. Note that if a ≥ 2eb then ψ�a� b� ≥ a log 2.
Hence ∣∣∣∣12

∫ T

0

∫
gαDαrdxdt

∣∣∣∣ ≤ max
(

2eC3�T�c1�
ρ

log 2

)
�

From this we can conclude that gα is α-differentiable, and that (7.12) holds. ✷

In the previous lemma we established the α-differentiability of gα. We will
derive (7.3) by establishing a bound for the Dαgα, using the results of the
previous section. The measure �̃L will allow us to relate Dαgα to µα�dx�dt� =
να�x�dt�dx for which an estimate of the form (7.7) is available. The next
lemma ensures that a condition of the form (7.2) for �L would imply a similar
condition for �̃L. Recall the definition of 	k given by (7.7).

Lemma 7.5. There exists a constant C9�ρ�T� such that if (7.2) holds for
every open neighborhood � of m̄, then there exists a measure µ̄ in 	C9�ρ� for
which

�7�21� lim sup
L→∞

1
L

log �̃L�G̃� ≥ −2ρ

for every open neighborhood �̃ of �m̄� µ̃�.
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Proof. For each k,

�7�22�

1
L

log �̃L�� � ≤ 1
L

log
[
�̃L�� × 	k� + �̃L�� × 	 c

k�]
≤ 1

L
log 2

+ max
[

1
L

log �̃L�G × 	k��
1
L

log �̃L�� × 	 c
k�
]
�

using the elementary inequality log�a + b� ≤ log 2 + max�log a� log b�. By
Lemma 7.2, there exists k = C9�ρ� so that

1
L

log �̃L�� × 	 c
k� ≤ −2ρ �

This and (7.22) imply

�7�23� lim sup
L→∞

1
L

log �̃L�� × 	k� ≥ −ρ

for every open neighborhood � of m̄. We would like to establish (7.21) by
contradiction. Suppose to the contrary, for every µ ∈ 	k, there exists an open
neighborhood A�µ� × B�µ� ⊆ � × 	 such that

�7�24� lim sup
L→∞

1
L

log �̃L�A�µ� × B�µ�� ≤ −2ρ�

where m̄ ∈ A�µ�, µ ∈ B�µ�. Since by Lemma 7.2 the set 	k is compact, there
exists a finite collection �µ1� � � � � µr� such that

	k ⊆ B�µ1� ∪ · · · ∪ B�µr� �

We set � = A�µ1� ∩ · · · ∩A�µr�. Then using the inequality log�a1 + · · ·+ar� ≤
log r + max1≤i≤r log αi and (7.24),

lim sup
L→∞

1
L

log �̃L�� × 	k� ≤ lim sup
L→∞

1
L

log �̃L

( r⋃
i=1

A�µi� × B�µi�
)

≤ max
1≤i≤r

lim sup
L→∞

1
L

log �̃L

(
A�µi� × B�µi�

) ≤ −2ρ�

which contradicts (7.23). ✷

Proof of Theorem 7.1.
Step 1. Recall that ELMTL

= 1 where Mt is given by (7.10). Assume H ≥ 0.
For such H, e−H − 1 ≤ 0. Moreover, by (1.5), if K�γδ� αβ� �= 0 then vγ �= vα,
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vδ �= vα. Hence, for some constant c1,

�7�25�

EL exp
{
−
∫ TL

0

N∑
i=1

DαH�xi�t�� t���αi�t� = α�dt

−
∫ TL

0
c1

∑
i�=j

V
(
L�xi�t� − xj�t��

)
× ∑

vδ� vγ �=vα

�exp�H�xi�t�� t�� − 1�

× ��αi�t� = γ� αj�t� = δ�dt
}

≤ 1�

Let c2�H� denote the Lipschitz constant of eH:∣∣eH�x� t� − eH�y� t�∣∣ ≤ c2�H��x − y�
for all x�y and t ∈ �0�T�. Then, from (7.4),∑

i�=j

V
(
L�xi − xj�

)�exp�H�xi� t�� − 1���αi = γ� αj = δ�

=
∫
LYt�x� γ� δ��exp�H�x� t�� − 1�dx + RL�q� t��

where

�RL�q� t�� ≤ c3c2�H�L−1AL�q�
for some constant c3. From this and (7.25) we learn

EL exp
{
−L

∫ TL

0

∫
DαH�x� t�mα�t� dx�dt

− L
∫ T

0

∫ ∑
vγ� vδ �=vα

c1�exp�H�x� t�� − 1�Yt�x� γ� δ�dxdt

− c4c2�H�L−1
∫ TL

0
AL�q�t��dt

}
≤ 1

for some constant c4. If we replace TL with T in the first integral, the er-
ror will be small. In fact, we may use (7.6) and the inequality ELB

1/2 ≤
�ELAB�1/2�ELA

−1�1/2 to deduce∫
exp

{
−L

2

∫ TL

0

∫
DαH�x� t�mα�t� dx�dt

× c1L

2

∫ TL

0

∫
�exp�H�x + vαt� t�� − 1�µα�dx�dt�

}
�̃L�dm�dµ�

≤ EL exp�T�DαH�∞N���TL �= T�

+
{
EL exp

(
c4c2�H�L−1

∫ TL

0
AL�q�t�dt

)}1/2

�
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We now use (4.4) and (4.5) of Theorem 4.1 to conclude

�7�26�

lim sup
L→∞

1
L

log
∫

exp
{
−L

2

∫ T

0

∫
DαHmα�t� dx�dt

− c1L

2

∫ T

0

∫
�exp�H�x − vαt� t�� − 1�dµα

}

× �L�dm�dµ� ≤ 0�

Step 2. Choose µ̄ as in Lemma 7.4 and let �̃ be a neighborhood of �m̄� µ̄�.
By Chebyshev’s inequality

�̃L�G̃� ≤ exp
{
L sup

�m�µ�∈�̃

[
1
2

∫ T

0

∫
DαHmα�t� dx�dt

+ c1

2

∫ T

0

∫
�exp�H�x + vαt� t�� − 1�dµα

]}

×
∫

exp
{
−L

2

∫ T

0

∫
DαHmα�t� dx�dt

− c1L

2

∫ T

0

∫ (
exp�H�x − vαt� t�� − 1

)
dµα

}
�̃L�dxdt��

From this and (7.26) we obtain

�7�27�
lim sup
L→∞

1
L
�̃L�G̃� ≤ sup

�m�µ�∈�̃

[
1
2

∫ T

0

∫
DαHmα�t� dx�dt

+ c1

2

∫ T

0

∫
�exp�H�x + vαt� t�� − 1�dµα

]
�

We choose

G̃ =
{
�m�µ��

∣∣∣∣12
∫ T

0

∫
DαHmα�t� dx�dt − 1

2

∫ T

0

∫
DαHm̄α�t� dx�dt

∣∣∣∣ < ε�

∣∣∣∣c1

2

∫ T

0

∫
�exp�H�x − vαt� t�� − 1�dµα

− 1
2

∫ T

0

∫
�exp�H�x − vαt� t�� − 1�dµ̄α

∣∣∣∣ < ε

}
�

we use (7.21) and then we let ε → 0 in (7.27). As a result we get

�7�28�
sup
H

[
−1

2

∫ T

0

∫
DαHm̄α�t� dx�dt

− c1

2

∫ T

0

∫
�exp�H�x + vαt� t�� − 1�dµ̄α

]
≤ 2ρ�
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Step 3. By Lemmas 7.3–7.5 we know

�7�29�

m̄α�t� dx� = ḡα�x� t�dx� µ̄α�dx�dt� = ν̄α�x�dt�dx�

sup
t

∫
φ

(
1
2

∑
α

ḡα�x� t�
)
dx ≤ C0�T� + ρ

θ
�

sup
α

∫
<3

(
ν̄α�x� �0�T��)dx ≤ C9�ρ�T��

After an integration by parts, (7.28) implies

�7�30�
1
2

∫ T

0

∫
HDαḡα dxdt

− c1

2

∫ T

0

∫
�exp�H�x + vαt� t�� − 1�ν̄α�x�dt�dx ≤ 2ρ

for nonnegative smooth H with support in T × �0�T�. Let H be a nonnega-
tive bounded measurable function on T × �0�T�. Choose a sequence of smooth
functions Hn with support in �0�T� such that

Hn ≥ 0� sup
n

�Hn�∞ < ∞ and Hn → H a.e.

Since (7.30) holds for Hn, we can use the dominated convergence to deduce
(7.30) holds for H, which is an arbitrary nonnegative bounded measurable
function. Set ĝα�x� t� = ḡα�x + vαt� t�. Since∫ T

0

∫
HDαḡα dxdt =

∫ T

0

∫
H�x + vαt� t�

∂ĝα

∂t
�x� t�dxdt�

(7.30) implies

�7�31� 1
2

∫ T

0

∫
H

∂ĝα

∂t
dxdt − c1

2

∫ T

0

∫
�exp�H�x� t�� − 1�µ̄α�dx�dt� ≤ 2ρ

for every nonnegative H ∈ L∞. Set τ�dx�dt� = �∂ĝα/∂t�dxdt, τ+�dx�dt� =
�∂ĝα/∂t�+dxdt. We claim that τ+ " µ̄α. To see this, take a set A with µ̄α�A� =
0, and then choose H = c�A∩B where B = ��x� t�� �∂ĝα/∂t��x� t� > 0�, and c
is a positive number. We deduce τ+�A� = 0 from (7.31) after letting c → +∞.
Next, we choose

H�x� t� =
{

log h�x� t�� if h�x� t� ≥ 1�

0� if h�x� t� < 1�

where h = dτ+/dµ̄α is the Radon–Nykodym derivative of τ+ with respect
to µ̄α. Of course, H may not be a bounded function but it can be approximated
by a sequence of bounded functions Hn that increases to H. By the monotone
convergence theorem we still have (7.31) for such H. As a result

1
2

∫ T

0

∫ [
h log h − c1�h − 1�]��h ≥ 1�dµ̄α ≤ 2ρ�
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Note that ∫ T

0
h d̄µα =

∫ T

0

∫ (∂ĝα

∂t

)+
dxdt ≤

∫ T

0
�Dαḡα�dxdt�

From this and (7.12) we learn

�7�32�
∫ T

0

∫
h log+ hdµ̄α ≤ c1

2

(
C8�T� + ρ

log 2

)
+ 2ρ�

Step 4. By the entropy inequality,

�7�33�
∫ T

0

∫
h log hdµ̄α = Z1 log

Z1

Z2
+ sup

F≥0

[∫
Fdτ+ − Z1 log

∫ eF

Z2
dµ̄α

]
�

Z1 = τ+(
T × �0�T�)� Z2 = µ̄α

(
T × �0�T�)�

If we restrict the supremum to functions F that depend on x only, we get

Z1 log
Z1

Z2
+ sup

F≥0

[∫
F�x�σα�dx� − Z1 log

∫ eF�x�

Z2
ν̂α�x�dx

]

≤
∫ T

0

∫
h log hdµ̄α ≤

∫ T

0

∫
h log+ hdµ̄α�

where σα�dx� = σ̂α�x�dx and

�7�34� σ̂α�x� �=
∫ T

0

(
∂ĝα

∂t

)+
�x� t�dt�

ν̂α�x� �= ν̄α
(
x� �0�T�)�

From this and (7.32) we learn that∫
σ̂α�x� log

σ̂α�x�
ν̂α�x� dx ≤ c2 + c3ρ

for some constants c2 and c3. Hence

�7�35�
∫
σ̂α log

Z2σ̂α

Z1ν̂α
dx ≤ c2 + c3ρ + Z1 log

Z2

Z1
�

By (7.12) and Lemma 7.5, there exists a function C10�ρ� such that

Z1 log
Z2

Z1
≤ Z1 log Z2 + 1 ≤ C10�ρ��

because Z2 = C9�ρ�. Hence (7.35) implies

�7�36�
∫
σ̂α log

Z2σ̂α

Z1ν̂α
dx ≤ c2 + c3ρ + C10�ρ��

By Lemma 7.6 below, (7.36) implies

�7�37�
∫
<4�σ̂α�dx ≤ C11�ρ�T�

for some constant C11�ρ�T�.
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Final step. Recall the definition of σ̂α given by (7.34). We certainly have

�7�38�
ḡα�x + vαt� t� = ĝα�x� t�

= ĝα�x�0� +
∫ t

0

∂ĝα

∂s
�x� s�ds ≤ ḡα�x�0� + σ̂α�x��

Put τα�x� = ḡα�x�0� + σ̂α�x�. Then (7.38) says

�7�39� ḡα�x� t� ≤ τα�x − vαt��
On the other hand, we can use (7.37) and the second equation of (7.29) to
claim

�7�40�
∫
<4�τα�x��dx ≤ C12�ρ�T�

for some constant C12, because <4 is bounded above by a multiple of φ. Let
x�y be two positive numbers. Using the elementary inequality log�A + B� ≤
log 2 + log A + log B, it is not hard to show that

w4�xy� ≤ c4 + w4�x� + w4�y� ≤ 3 max
(
c4�w4�x��w4�y�)

for some constant c4. Therefore,

�7�41� <4�xy� = xy�w4�xy��b ≤ xy3b
[
cb4 + �w4�x��b + �w4�y��b]�

Using this we have that whenever vα �= vβ,∫ T

0

∫
<4�ḡα�x + z� t�ḡβ�x� t��dxdt

≤ 3bcb4

∫ T

0

∫
ḡα�x + z� t�ḡβ�x� t��dxdt

+
∫ T

0

∫
3bḡα�x + z� t�<4�ḡβ�x� t��dxdt

+
∫ T

0

∫
3bḡβ�x� t�<4�ḡα�x + z� t��dxdt�

We can bound each term on the right-hand side. For example,

�7�42�

∫ T

0

∫
ḡα�x + z� t�<4�ḡβ�x� t��dxdt

≤
∫ T

0

∫
τα�x − vαt + z�<4�τβ�x − vβt��dxdt

= 1
�vα − vβ�

∫ ∫
τα�z1�<4�z2�dz1 dz2

= 1
�vα − vβ�

∫
τα�z1�dz1

∫
<4�z2�dz2�

where for the first inequality we used (7.39) and for the second equality we
made a change of variables �x − vαt + z� x − vβt� �→ �z1� z2�. By (7.40), the
left-hand side of (7.42) is bounded by a constant that depends on T and ρ.
This evidently completes the proof. ✷



LARGE DEVIATIONS FROM A KINETIC LIMIT 1309

Lemma 7.6. There exists a constant C�ρ1� ρ2�Z1�Z2� such that if for two
nonnegative measurable functions f and g�

�7�43�

∫
f log

fZ2

gZ1
dx ≤ ρ1�

∫
<3�g�dx ≤ ρ2�∫

fdx = Z1�
∫
gdy = Z2�

then
∫
<4�f� ≤ C�ρ1� ρ2�Z1�Z2�.

Proof. First observe that

ρ1 =
∫ [

f log
fZ2

gZ1
− f + gZ1

Z2

]
dx =

∫
ψ

(
fZ2

gZ1

)
gZ1

Z2
dx�

where ψ�z� = z log z − z + 1. Note that ψ�z� ≥ 0 for z ≥ 0. Hence for any k
and l�

�7�44�

∫
f��f ≥ l�dx =

∫ fZ2

gZ1
�

(
f ≥ l�

fZ2

gZ1
≥ k

)
gZ1

Z2
dx

+
∫ fZ2

gZ1
�

(
f ≥ l�

fZ2

gZ1
≤ k

)
gZ1

Z2
dx

≤ 1
log k − 1

∫
ψ

(
fZ2

gZ1

)
gZ1

Z2
dx

+
∫ fZ2

gZ1
�

(
gZ1

Z2
≥ l

k
�
fZ2

gZ1
≤ k

)
gZ1

Z2
dx

≤ ρ1

log k − 1
+ k

∫ gZ1

Z2
�

(
gZ1

Z2
≥ l

k

)
dx

≤ ρ1

log k − 1
+ k

�w3� l
k
��b

∫
<3

(
gZ1

Z2

)
dx

provided l/k ≥ ee. It is not hard to see that for some constant c1,

<3

(
gZ1

Z2

)
≤ c1

[
gZ1

Z2
+ Z1

Z2
<3�g� + g<3

(
Z1

Z2

)]
�

[See, e.g., (7.41).] Hence∫
<3

(
gZ1

Z2

)
dx ≤ c1

[
Z1 + Z1

Z2
ρ2 + Z2<3

(
Z1

Z2

)]
=� C′�Z1�Z2� ρ2��

From this and (7.44) we deduce∫
f��f ≥ l�dx ≤ ρ1

log k − 1
+ k

�w3� l
k
��bC

′�Z1�Z2� ρ2��

We choose k = �w3�l��a for some a ∈ �0� b�. Then∫
f��f > l� ≤ C′′�Z1�Z2� ρ2� ρ1�

w4�l�
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for some constant C′′. Set ŵ4�l� = �w4�l��b. Then∫
<4�f�dx =

∫ ∫ ∞

eee
ŵ′

4�l�f��f > l�dldx

≤
∫ ∞

eee
ŵ′

4�l�
C′′

w4�l�
dl

=
∫ ∞

eee
C′′bw4�l�b−2w3�l�−1w2�l�−1�log l�−1l−1 dl

= c2C
′′�Z1�Z2� ρ1� ρ2�

for some constant c2 and this completes the proof. ✷

8. The upper bound This section is devoted to the proof of (1.18). Take
smooth functions p� T × �0�T� → R

n and G� T → R
n. Define

B�p�G� ε�m�

=
∫ ∑

α

pα�x�T�mα�T�dx� −
∫ ∑

α

Gα�x�mα�0� dx�

−
∫ T

0

∫ ∑
α

Dαpα�x� t�mα�t� dx�dt(8.1)

−
∫ T

0

∫
1
2

∑
αβγδ

K�αβ� γδ�mα�ε�x� t�mβ�ε�x� t�

× [
exp�pγ�x� t�+pδ�x� t�−pα�x� t�−pβ�x� t��−1

]
dxdt

where m ∈ � and, as in (5.1),

mα�ε�x� t� =
∫
ζε�x − y�mα�t� dy� �

Lemma 8.1. For every r ∈ �0�1�, define

�8�2� B̂�p�G� ε� r� = lim sup
L→∞

1
L

∫
exp

[
LrB�p�G� ε�m�]�L�dm��

Then

�8�3� lim sup
ε→0

B̂�p�G� ε� r� ≤ Z

r
log

∑
α

∫
exp�pα�x�0� − Gα�x��f0

α�x�dx�

Proof. Recall the exponential martingale Mt given by (7.9). We certainly
have

ELMT = ELM0 = EL exp
[∑

i

�pαi
�xi�0� − Gαi

�xi�
]

=
[∑

α

∫
exp�pα�x�0� − Gα�x��f0

α�x�dx
]N



LARGE DEVIATIONS FROM A KINETIC LIMIT 1311

As a result, for (8.3), it suffices to show

�8�4� lim sup
ε→0

B̂�p�G� ε� ≤ 1
r

lim sup
ε→0

lim sup
L→∞

1
L

log ELMT�

By the definition of �L, the expectation
∫

exp�LrB�p�G� ε�m���L�dm� equals


 = EL exp
[
r
∑
i

pαi�T�
(
xi�T��T) − Gαi�0��xi�0��

− r
∫ T

0

∑
i

Dαi�t�pαi�t��xi�t�� t�dt

− r
∫ T

0

∫
1
2

∑
αβγδ

K�αβ� γδ�mα�ε�x� t�mβ�ε�x� t�

× (
exp�pγ�x� t� + pδ�x� t�

− pα�x� t� − pβ�x� t�� − 1
)
dxdt

]
�

(8.5)

where mα�ε is defined by (5.1). We replace T in (8.4) with TL. The resulting
expression will be denoted by � . Since mα�ε is bounded by Z/ε, we have

�8�6� 
 ≤ � + exp
(
cL

ε2

)
PL�TL �= T��

for constant c. Set

XL = Lr
∫ T

0

∫
1
2

∑
αβγδ

K�αβ� γδ�mα�ε�x� t�mβ�ε�x� t�

× [
exp�pγ�x� t� +pδ�x� t� −pα�x� t� −pβ�x� t�� − 1

]
dxdt

− r
∫ T

0

1
2

∑
i�j

V�L�xi − xj��
∑
γδ

K�αi�t�αj�t�� γδ�

× [
exp�pγ�xi�t�� t� + pδ�xj�t�� t� − pαi�t��xi�t�� t�

− pαj�t��xj�t�� t�� − 1
]
dt

and choose q such that r + 1/q = 1. From (8.5), (8.6), (4.4), (7.10) and the
Hölder inequality, we deduce that for (8.4) it suffices to show

�8�7� lim sup
ε→0

lim sup
L→∞

1
L

log EL exp�qXL� ≤ 0�
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In XL, first we replace p�xj�t�� t� with p�xi�t�� t�. Since p is smooth and
V�L�xi�t� − xj�t��� �= 0, the error would be bounded above by

1
L

log EL exp
(

c

L

∫ TL

0
AL�q�t��dt

)

for some constant c. Hence the error goes to zero as L goes to infinity. Finally,
we apply (5.2) to establish (8.7). ✷

Proof of (1.18).
Step 1. Let � be a compact subset of � . Let �0 denote the set of m that

has a neighborhood �m with lim supL→∞�1/L log��L��m� = −∞. Clearly �0
is open and the set � ∩ �0 can be covered by finitely many such �m. As a
result, � − �0 is compact and

lim sup
L→∞

1
L

log �L�� ∩ �0� = −∞�

This implies that for (1.18) without loss of generality we can take a compact
set � with � ∩ �0 = ∅. In view of Theorem 7.1, we have that for such � , if
m ∈ � then m�t� dx� = g�x� t�dx, the function gα is α-differentiable and for
any pair �α�β� with vα �= vβ�

�8�8� sup
z∈T

∫ T

0

∫
<4�gα�x + z� t�gβ�x� t��dxdt < ∞�

Step 2. Pick a point m ∈ � and let � be a neighborhood of m. From (8.3)
and Chebyshev’s inequality, it is not hard to show

lim sup
L→∞

1
L

log �L��� ≤ B̂�p�G� ε� r� − inf
m∈�

B�p�G� ε�m��

Since this holds for all permissible p�G� ε and r, we have

lim sup
L→∞

1
L

log �L��� ≤ inf
p�G� ε� r

sup
m∈�

(
B̂�p�G� ε� r� − B�p�G� ε�m�)�

Note that the functional B�p�G� ε�m� is continuous in m. This allows us to
use the usual large deviation arguments [see, for example, Section 4 of [17])
to show that for any compact set � ,

lim sup
L→∞

1
L

log �L�� � ≤ sup
m∈�

inf
p�G� ε� r

�B̂ − B��

To complete the proof, it suffices to show that for any m for which (8.8) holds,

�8�9� inf
p�G� ε� r

�B̂ − B� ≤ −J�m��
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Final step. Clearly mα�ε converges to gα almost everywhere. Since (8.8)
holds, we deduce

lim
ε→0

∫ T

0

∫
rmα�εmβ�ε dxdt =

∫ T

0

∫
rgαgβ dxdt�

By letting ε → 0 and r → 1,

inf
ε� r

�B̂ − B� ≤ Z log
∑
α

∫
exp

(
pα�x�0� − Gα�x�)f0

α�x�dx

+
∫ ∑

α

(
pα�x�T�gα�x�T� − Gα�x�gα�x�0�)dx

−
∫ T

0

∫ ∑
α

gαDαpα dxdt

−
∫ T

0

∫
1
2

∑
αβγδ

K�αβ� γδ�gαgβ

× [
exp�pγ + pδ − pα − pβ� − 1

]
dxdt�

We then let Gα�x� = pα�x�0� − Kα�x� and take the infimum over p and K
separately. As a result we get that the left-hand side of (8.9) is less than
−J0�m�−Jd�m�p� for any smooth p. By the dominated convergence theorem
we can show that

lim
k→∞

Jd�m�pk� = Jd�m�p�

if the sequence pk is uniformly bounded and pk converges pointwise to p. This
clearly completes the proof of (8.9). ✷

9. The lower bound. First we construct a class of processes for which
the corresponding macroscopic densities satisfy a perturbed equation of the
form (1.16).

Let p̂� T × �0�T� → R
n be a smooth function, and define the new jump rate

�9�1�
K�αβ� γδ�x�y� t�

= K�αβ� γδ� exp
(
p̂γ�x� t� + p̂δ�y� t� − p̂α�x� t� − p̂β�y� t�)�

A new process is characterized as an inhomogeneous Markov process with the
infinitesimal generator ˆ� �L� = �0 + ˆ�c where

�9�2�
ˆ�cF�q� = 1

2

∑
i� j

V�L�xi − xj��

× ∑
γ� δ

K�αiαj� γδ�xi� xj� t��F�Sγ�δ
i�jq� − F�q���

The relationship between � �L� and ˆ� �L� is

ˆ� �L�F = � �L��Fu�
u

− � �L�u
u

F�
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where u = ew and

w�q� t� = ∑
i

p̂αi
�xi� t��

The new process q�t� induces a probability measure QL on the space
D��0�T��E�. The initial distribution for the new process is µ̂L given as in
(1.7) with gα�x�0� instead of f0�x�. By Girsanov’s theorem, QL is absolutely
continuous with respect to PL and

�9�3�

dQL

dPL

= X0MT�

Mt = exp
(
w�t�q�t��−w�0�q�0��−

∫ t

0
e−w�∂t +� �L��ew�s�q�s��ds

)
�

X0 = exp
(∑

i

log
gαi�0��xi�0��0�
f0
αi�0��xi�0��

)
�

Using Theorem 4.1, it is not hard to see that

�9�4� ELM
2
TL

≤ exp�c1L�

for some constant c1. We use this and Lemma 3.1 to deduce

�9�5�

∫
exp

[
L
θ0

2
sup

0≤t≤TL

C�q�t��
]
QL�dq�

≤ �ELM
2
TL

�1/2
{
EL exp

[
Lθ0 sup

0≤t≤T

C�q�t��
]}1/2

≤ exp
(

1
2
C0�T�L + 1

2
c1L

)
�

By standard arguments, one can show that (1.16) has a unique solution
with the initial density g�·�0� (the uniqueness proof of [4] for the case p = 0
can be readily applied for the case bounded p). Once (9.5), (4.4) are available
for our new process, we can apply the arguments of [13] to establish the kinetic
limit. Let 
L denote the distribution of m with respect to QL.

Theorem 9.1. The sequence 
L converges to 
 that is concentrated at a
single g, the unique solution to (1.16).

Proof of (1.19). Let � be an open set. Suppose g ∈ � and that g sat-
isfies (1.16) for a continuously differentiable p̂. Construct the corresponding
process 
L. Since g ∈ � ,

�9�6� lim
L→∞


L�� � = 1�
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On the other hand, it is well known that

�9�7�

(
1 − 
L�� �) log

1 − 
L�� �
1 − �L�� � + 
L�� � log


L�� �
�L�� �

≤ H�
L��L� =
∫

log
d
L

d�L

d
L ≤ H�QL�PL��

We then let L → ∞. From (9.6) and (9.7) we deduce

lim inf
L→∞

1
L

log �L�� � ≥ − lim inf
L→∞

1
L
H�QL�PL��

Now, using (9.3), we have

H�QL�PL� = J0�g� +
∫ [

w�t�q�T�� − w�0�q�0��

−
∫ T

0
e−w�∂t + � �L��ew�s�q�s��ds

]
dQL

= J0�g� +
∫ [

w�t�q�T�� − u�0�q�0��

−
∫ T

0

(
∂t + ˆ� �L�)w�s�q�s��ds

]
QL�dq�

+
∫ ∫ T

0
� ˆ� �L�w − e−w� �L�ew��s�q�s��ds QL�dq�

= J0�g� +
∫ ∫

� ˆ�cw − e−w�ce
w��s�q�s��ds QL�dq�

= J0�g� + 1
2

∫ ∫ ∑
i� j

V
(
L�xi�s� − xj�s��

)

×∑
γδ

(
K�αi�s�αj�s�� γδ�ψ(p̂�xi�s�� γ�

+ p̂�xj�s�� δ�)
− p̂�xi�s�� αi�s�� − p̂�xj�s�� αj�s��

)
dsQL�dq��

where for the second equality we used the fact that the expression in the
brackets is a Q-martingale and ψ�z� = �z− 1�ez + 1. Once more we can apply
Theorems 4.1 and 1.1 of [13] to our new process to conclude that

lim
L→∞

1
L
H�QL�PL�

= J0�g� +
∫ T

0

∫ 1
2

∑
αβγδ

K�αβ� γδ�gαgβ

(
exp�p̂γ + p̂δ − p̂α − p̂β� − 1

)
dxdt

= J�m��
In Section 11 we will establish (1.20) and this will complete the proof of (1.19).
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10. The rate function, part I. In this section we establish some of the
properties of the rate functions. A bound of the form J�g� ≤ k will yield
several useful bounds on g. These bounds are the macroscopic counterparts
of the estimates we obtained in Sections 3–7. We first state the main results
of this section.

Theorem 10.1. For every positive number k, the set �g� J�g� ≤ k� is com-
pact.

Theorem 10.2. (i) Let e = �e1� � � � � en� ∈ �n such that

eα + eβ = eγ + eδ if K�αβ� γδ� �= 0�

Then, whenever Jd�g� < ∞, we have

�10�1� ∂

∂t

(∑
α

eαgα

)
+ ∂

∂x

(∑
α

vαeαgα

)
= 0�

in distribution. In particular,

�10�2�
∫ ∑

α

eαgα�x� t�dx =
∫ ∑

α

eαgα�x�0�dx�

(ii) Suppose Jd�g� < ∞ and
∫ ∑

α gα dx < ∞. Then

�10�3�

∫ T

0

∫ ∑
α�β

�vα − vβ�2gαgβ dxdt

≤
∫ T

0

∫ ∫ ∑
α�β

�vα − vβ�2gα�x� t�gβ�y� t�dxdydt

+ Jd�g� +
∫ ∫ ∑

α�β

�vα − vβ�(gα�x�0�gβ�y�0�

− gα�x�T�gβ�y�T�)ξ�x − y�dxdy�

Theorem 10.3. Let ( = �λ1� � � � � λn� be as in (1.4)(vi). Then

�10�4�
sup

0≤t≤T

∫ ∑
α

gα�x� t� log
gα�x� t�

λα

dx

≤ Jd�g� +
∫ ∑

α

gα�x�0� log
gα�x�0�

λα

dx�
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Theorem 10.4. There exists a constant B1�k�T� such that for every pair
�α�β� with vα �= vβ,

�10�5�

sup
�z�≤ε

∣∣∣∣
∫ T

0

∫
H�x� t�gα�x� t��gβ�x + z� t� − gβ�x� t��dxdt

∣∣∣∣
≤ Jd�g� + B1�k�T�� log ε�−1

× sup
0≤t≤T

(
1 +

∫ ∑
α

gα�x� t� log+ gα�x� t�dx
)

for every smooth H with �H�∞ + �∂H/∂t�∞ + �∂H/∂x�∞ ≤ k.

Theorem 10.5. There exists a constant B2�k1� k2�T� such that if

�10�6� Jd�g� ≤ k1�
∫ ∑

α

gα�x�0� log+ gα�x�0�dx ≤ k2�

then for every triplet �vα� vβ� vγ� with vα �= vβ �= vγ,

�10�7�
∫
<1

(∫ T

0
gαgβ�x + vγt� t�dt

)
dx ≤ B2�k1� k2�T��

Theorem 10.6. There exists a constant B3�k1� k2�T� such that if (10.6)
holds, then

�10�8� sup
z

∫ T

0

∫ ∑
α̌�=β̌

<2�gα�x + z� t�gβ�x� t��dxdt ≤ B3�k1� k2�T��

Proof of Theorem 10.2. (i) Let r� T × �0�T� → � be a smooth function
and choose pα�x� t� = cr�x� t�eα where c is a constant. Since pα+pβ = pγ +pδ

whenever K�αβ� γδ� �= 0, we have

Jd�g� ≥ c
∫ T

0

∫
r
∑
α

eαDαgα dxdt�

We let c → ±∞. Since Jd�g� < ∞, we obtain∫ T

0

∫
r
∑
α

eαDαgα dxdt = 0�

This is precisely (10.1). The statement (10.2) is an immediate consequence
of (10.1).

(ii) Define m�x� t� = ∑
α gα�x� t�, u�x� t� = ∑

α vαgα�x� t� and

pα�x� t� = vα

∫
m�y� t�ξ�x − y�dy −

∫
u�y� t�ξ�x − y�dy�

where ξ is defined right after (2.1). Clearly, for some constant c1,

�10�9� pα�x� t� ≤ c1

∫
m�y� t�dy = c1

∫
m�y�0�dy�
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where for the last equality we have used (10.2). By our assumption∫
m�y�0�dy < ∞, hence pα is bounded. Moreover, by conservation of momen-

tum,

pα + pβ = pγ + pδ�

whenever K�αβ� γδ� �= 0. We set pα�x� t� = pα�x�0� for t < 0 and pα�x� t� =
pα�x�T� for t > T. In this way p is defined for all t. We pick a smooth mollifier
φ�k��x� t� and define p

�k�
α = pα ∗ φ�k�. As a result p

�k�
α is smooth and we still

have p
�k�
α + p

�k�
β = p

�k�
γ + p

�k�
δ whenever K�αβ� γδ� �= 0. Using this and the

definition of Jd,

�10�10�
−
∫ T

0

∫ ∑
α

gαDαp
�k�
α dxdt

≤ Jd�g� +
∫ ∑

α

�p�k�
α �x�0�gα�x�0� − p�k�

α �x�T�gα�x�T��dx�

We let k go to infinity. The right-hand side of (10.10) converges to the last
line of (10.3) by the dominated convergence theorem. We now concentrate on
the left-hand side of (10.10). The conservation of mass and momentum can be
used for (10.1) to deduce

�10�11� ∂m

∂t
+ ∂u

∂x
= 0�

∂u

∂t
+ ∂E

∂x
= 0�

where E�x� t� = ∑
α v

2
αgα�x� t�. We would like to use (10.11) in order to calcu-

late Dαpα. From the definition of ξ, it is not hard to see that

�10�12� ∂pα

∂x
= −vαm + u + vα

∫
m�y� t�dy −

∫
u�y� t�dy

in the distributional sense. Moreover, by (10.11),

�10�13�

∂pα

∂t
= vα

∫ ∂m

∂t
�y� t�ξ�x − y�dy −

∫ ∂u

∂t
�y� t�ξ�x − y�dy

= −vα

∫ ∂u

∂y
�y� t�ξ�x − y�dy +

∫ ∂E

∂y
�y� t�ξ�x − y�dy

= vαu − E − vα

∫
u�y� t�dy +

∫
E�y� t�dy

in the distributional sense. The formal calculation (10.13) can be readily made
rigorous by first multiplying both sides by a smooth function and integrating
by parts. From (10.12) and (10.13) we learn that

�10�14�
−Dαpα = v2

αm − 2vαu + E − v2
α

∫
m�y� t�dy

+ 2vα

∫
u�y� t� −

∫
E�y� t�dy�
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We convolve both sides of (10.14) with φ�k� to obtain an expression for Dαp
�k�
α .

Note that

v2
αm − 2vαu + E = ∑

β

�vα − vβ�2gβ�

Since this is nonnegative, we can use Fatou’s lemma to pass to the limit as
k → ∞ on the left-hand side of (10.10) to yield the first term of (10.3). For
the second term we use the dominated convergence theorem. This clearly im-
plies (10.3). ✷

The following elementary lemma will be used for the proof of Theorem 10.3.

Lemma 10.7. Let a1, a2, a3, a4 be four positive numbers and let a′
i =

min�ai� k�. Then

�10�15� a1a2
a′

3a
′
4

a′
1a

′
2

+ a3a4
a′

1a
′
2

a′
3a

′
4

− a3a4 − a1a2 ≤ �a1 + a2��a3 + a4��

Proof. Let x denote the left-hand side of (10.15). If all ai’s are less than
k, then x = 0 and (10.15) holds. If a1� a2� a3 ≤ k ≤ a4, then

x = a3�k − a4� +
(
a4

k
− 1

)
a1a2 ≤ a1a4�

If a1� a3� a4 ≥ k ≥ a2, then

x = a1k + a3a4
a2

k
− a3a4 − a1a2 ≤ a1a3�

If either a1, a2 ≤ k ≤ a3, a4 or a3, a4 ≤ k ≤ a1, a2, then x ≤ 0. If a1,
a3 ≤ k ≤ a2, a4, then

x = a2a3 + a1a4 − a3a4 − a1a2 ≤ a2a3 + a1a4�

The remaining cases can be treated likewise. ✷

Proof of Theorem 10.3. We first explain the idea of the proof. If we can
allow pα = log�gα/λα�, then∑

αβ

K�αβ� γδ�gαgβ

(
exp�pγ + pδ − pα − pβ� − 1

)

= ∑
αβ

K�αβ� γδ�λαλβ

(
gγ

λγ

gδ

λδ

− gα

λα

gβ

λβ

)
= 0

because K�αβ� γδ�λαλβ = K�γδ� αβ�λγλδ. If gα is differentiable,∫ T

0

∫
pαDαgα dxdt =

∫ [
gα�x�T� log

gα�x�T�
λα

− gα�x�T�

− gα�x�0� log
gα�x�0�

λα

+ gα�x�0�
]
dx�
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To make the above computation rigorous, we introduce some cutoff functions:

φ�ε� k�g� =



log g� if ε < g < k,
log ε� if 0 ≤ g ≤ ε,
log k� if g ≥ k,

ψ�k�g� =
{

log g� if 0 ≤ g < k,
log k� if g ≥ k.

We then choose pα = φ�ε� k� ĝα� where ĝα = �gα/λα�. Since pα is bounded,

�10�16�

Jd�g� ≥
∫ T

0

∫ ∑
α

φ�ε� k� ĝα�Dαgα dxdt

−
∫ T

0

∫
1
2

∑
αβγδ

K�αβ� γδ�gαgβ

× [
exp�φ�ε� k� ĝγ� + φ�ε� k� ĝδ�
− φ�ε� k� ĝα� − φ�ε� k� ĝβ�� − 1

]
dxdt

=� ;1�ε� k� − ;2�ε� k��
Note that if vα �= vβ,

max
ε≤ε1

gαgβ exp
(
φ�ε� k� ĝγ� + φ�ε� k� ĝδ� − φ�ε� k� ĝα� − φ�ε� k� ĝβ�)

≤ gαgβ exp
(
φ�ε1� k� ĝγ� + φ�ε1� k� ĝδ� − ψ�k� ĝα� − ψ�k� ĝβ�)

is integrable. Hence we can apply the dominated convergence theorem:

�10�17�
lim
ε→0

;2�ε� k� = ;2�k�

�=
∫ T

0

∫
1
2

∑
αβγδ

K�αβ� γδ�gαgβ�Q�γδ� αβ� − 1�dxdt�

where Q�γδ� αβ� = exp�ψ�k� ĝγ�+ψ�k� ĝδ�−ψ�k� ĝα�−ψ�k� ĝβ��. Furthermore,
by (1.4)(vi),

;2�k� =
∫ T

0

∫ 1
4

∑
αβγδ

K�αβ� γδ�λαλβ

(10.18)

×
[
ĝαĝβ�Q�γδ� αβ� − 1� + ĝγĝδ

(
1

Q�γδ� αβ� − 1
)]

dxdt�

By Lemma 10.7, we know that

�10�19�
ĝαĝβ�Q�γδ� αβ� − 1� + ĝγĝδ

(
1

Q�γδ� αβ� − 1
)

≤ �ĝα + ĝβ��ĝγ + ĝδ��
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Since K�αβ� γδ� �= 0, by (1.5) we know that vα �= vγ� vδ and vβ �= vγ� vδ.
Therefore the right-hand side of (10.19) is integrable. As a result, we can
apply Fatou’s lemma to deduce

lim sup
k→∞

;2�k� ≤ 0

because the left-hand side of (10.19) converges pointwise to zero. From this,
(10.17) and (10.16), we deduce

�10�20� lim sup
k→∞

lim sup
ε→0

∫ T

0

∫ ∑
α

φ�ε� k� ĝα�Dαgα dxdt ≤ Jd�g��

Define

Cα�ε� k� z� =




z log
z

λα

− z + λα� if ε ≤ z

λα

≤ k�

z log
k

λα

− k + λα� if
z

λα

≥ k�

z log
ε

λα

− ε + λα� if 0 ≤ z

λα

≤ ε�

Note that φα is nonnegative and �dCα/dz��ε� k� z� = φ�ε� k� z/λα�. It is not
hard to show that in fact Cα�ε� k�gα� is α-differentiable with

DαCα�ε� k�gα� = φ

(
ε� k� gα

λα

)
Dαgα�

From this and (10.20) we learn that

lim sup
k→∞

lim sup
ε→0

∫ ∑
α

Cα�ε� k�gα�x�T�� − Cα�ε� k�gα�x�0��dx ≤ Jd�g��

Since Cα is increasing in ε and k, we use the monotone convergence theorem
to deduce∫ ∑

α

[
gα�x�T� log

gα�x�T�
λα

− gα�x�T� + λα

]
dx

−
∫ ∑

α

[
gα�x�0� log

gα�x�0�
λα

− gα�x�0� + λα

]
dx ≤ Jd�g��

Finally, we use the conservation of mass∫ ∑
α

gα�x�T�dx =
∫ ∑

α

gα�x�0�dx

to conclude (10.4). ✷

To prepare for Theorem 10.4, we state and prove a lemma.
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Lemma 10.8. Let f be a positive measurable funciton. Then for any mea-
surable set B, ∫

B
fdx ≤ 3h��B��

[
1 +

∫
f log+ fdx

]
�

Moreover, there exists a constant c0 such that for every measurable function g
with �g�∞ ≤ 1, ∫

fgdx ≤ c0h��g�∞�
[
1 +

∫
f log+ fdx

]
�

Proof. For any l ≥ 1,∫
B
fdx ≤ l�B� +

∫
f��f ≥ l�dx ≤ l�B� + 1

log l

∫
f log+ fdx�

The lemma follows if we choose

l = 1
�B� log �B�

[
1 +

∫
f log+ fdx

]
�

The second inequality can be established in the same way. ✷

Proof of Theorem 10.4.
Step 1. Suppose �z� ≤ ε. Define

pα�x� t� = H�x� t�
∫

�gβ�y + z� t� − gβ�y� t��ξ�x − y�dy�

pβ�x� t� = −
∫
H�y� t��gα�y − z� t� − gα�y� t��ξ�x − y�dy�

We set pα′ ≡ 0 for α′ �= α�β. Since H is bounded and by the conservation of
mass,

�10�21� �pα�∞ ≤ 2�H�∞m̄� �pβ�∞ ≤ 2�H�∞m̄�

where m̄ = ∫ ∑
α′ gα′ �x�0�dx. From the definition of Jd,

�10�22�

Jd�g� ≥
∫ (

pα�x�T�gα�x�T� + pβ�x�T�gβ�x�T�

− pα�x�0�gα�x�0� − pβ�x�0�gβ�x�0�)dx
−

∫ T

0

∫
�gαDαpα + gβDβpβ�dxdt

−
∫ T

0

∫
1
2

∑
α′β′γ′δ′

K�α′β′� γ′δ′�gα′gβ′

× �exp�pγ′ + pδ′ − pα′ − pβ′ � − 1�dxdt

=� ;1 − ;2 − ;3�

Clearly we can write

pα�x� t� = H�x� t�
∫
gβ�y� t�(ξ�x − y + z� − ξ�x − y�)dy�
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Moreover, it is not hard to see that if a is not in �−ε� ε� then ξ�a+z�−ξ�a� = z.
Hence

�10�23�
�pα�x� t�� ≤ �H�∞

[
ε
∫
gβ�y� t�dy +

∫
gβ�y� t���x − y ∈ �−ε� ε��dy

]

≤ �H�∞

[
εm̄ + 3h�2ε�

(
1 +

∫
gβ�y� t� log+ gβ�y� t�dy

)]
�

where for the second inequality we used the conservation of mass and
Lemma 10.8. From (10.23) we deduce

�10�24�
�;1� ≤ 4m̄�H�∞

×
[
εm̄ + 3h�2ε�

(
1 + sup

0≤t≤T

∫ ∑
γ

gγ�y� t� log+ gγ�y� t�dy
)]

Step 2. A straightforward calculation yields

�10�25�

Dαpα�x� t� = DαH�x� t�
∫
gβ�y� t�(ξ�x − y + z� − ξ�x − y�)dy

+ H�x� t� ∂

∂t

∫
gβ�y� t�(ξ�x − y + z� − ξ�x − y�)dy

+ H�x� t�vα

(
gβ�x� t� − gβ�x + z� t�)�

Some explanation is needed for the meaning of the second term on the right-
hand side of (10.25). Since gα is α-differentiable, the distributional derivative
Dαgα is meaningful as an integrable function. From this, it is not hard to show
that any spatial average of gα is weakly differentiable in t-variable. Similarly,

�10�26� Dβpβ�x� t� = − ∂

∂t

∫
H�y� t�gα�y� t�

(
ξ�x − y − z� − ξ�x − y�)dy

− vβ

(
H�x� t�gα�x� t� − H�x − z� t�gα�x − z� t�)�

Using this and (10.25) we have

;2 = ;21 + ;22 + ;23 + ;24 + ;25

=�
∫ T

0
gα�x� t�DαH�x� t�

×
∫
gβ�y� t�(ξ�x − y + z� − ξ�x − y�)dydxdt

+
∫ T

0
gα�x� t�H�x� t�

× ∂

∂t

∫
gβ�y� t�(ξ�x − y + z� − ξ�x − y�)dydxdt

−
∫ T

0

∫
gβ�x� t�(10.27)
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× ∂

∂t

∫
H�y� t�gα�y� t�

(
ξ�x − y − z� − ξ�x − y�)dydxdt

+
∫ T

0

∫
vαgα�x� t�H�x� t�(gβ�x� t� − gβ�x + z� t�)dxdt

−
∫ T

0

∫
vβgβ�x� t�(H�x� t�gα�x� t�

− H�x − z� t�gα�x − z� t�)dxdt�

We can show

�10�28�
�;21� ≤ 8m̄�DαH�∞

×
[
εm̄ + 3h�2ε�

(
1 + sup

0≤t≤T

∫ ∑
γ

gγ�y� t� log+ gγ�y� t�dy
)]

�

in just the same way that we established (10.24). Furthermore, since ξ is odd,

;22 + ;23 =
∫ T

0

∫
gα�x� t�H�x� t�

× ∂

∂t

∫
gβ�y� t�(ξ�x − y + z� − ξ�x − y�)dydxdt

−
∫ T

0

∫
gβ�y� t�

× ∂

∂t

∫
H�x� t�gα�x� t�

(
ξ�y − x − z� − ξ�y − x�)dxdydt

=
∫ T

0

[
d

dt

∫ ∫
gα�x� t�H�x� t�gβ�y� t�

× �ξ�x − y + z� − ξ�x − y��dydx

]
dt

=
∫ ∫ (

gα�x�T�H�x�T�gβ�y�T�−gα�x�0�H�x�0�gβ�y�0�)
× (

ξ�x − y + z� − ξ�x − y�)dxdy�

Once more we can apply the argument of the first step to derive

�10�29�

�;22 + ;23�
≤ c1m̄�H�∞

×
[
εm̄ + h�2ε�

(
1 + sup

0≤t≤T

∫ ∑
γ

gγ�y� t� log+ gγ�y� t�dy
)]

for some constant c1. Moreover,

;24 + ;25 =
∫ T

0

∫
�vα − vβ�H�x� t�gα�x� t��gβ�x� t� − gβ�x + z� t��dxdt�
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From this, (10.29), (10.28), (10.27) and (10.22) we learn that∫ T

0

∫
�vβ − vα�H�x� t�gα�x� t�

(
gβ�x� t� − gβ�x + z� t�)dxdt

≤ Jd�g� + ;3

+ c2m̄k

[
εm̄ + h�2ε�

(
1 + sup

0≤t≤T

∫ ∑
γ

gγ�y� t� log+ gγ�y� t�dy
)](10.30)

Final step. Recall that an inequality of the form �A� ≤ B implies �eA − 1� ≤
eB�A�. This and (10.21) yields

�;3� ≤ c3

∫ T

0

∫ ∑
vγ �=vδ

gγgδ exp�4m̄�H�∞�(�pγ� + �pδ�
)
dxdt

for some constant c3. We then use (10.23) to deduce

�;3� ≤ c3 exp�4m̄�H�∞��H�∞

×
[
εm̄ + h�2ε�

(
1 + sup

0≤t≤T

∫ ∑
γ

gγ�x� t� log+ gγ�x� t�dx
)]

×
∫ T

0

∫ ∑
vγ �=vβ

gγgδ dxdt�

This and (10.30) evidently imply (10.5). ✷

Proof of Theorem 10.5.
Step 1. Without loss of generality we may assume vα − vβ ≥ 0. Let H be a

smooth function and define

�10�31�

pα�x� t� =
∫
gβ�y� t�ξ�x − y�

× H

(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y − vγt

)
dy�

pβ�x� t� =
∫
gα�y� t�ξ�y − x�

× H

(
vβ − vγ

vβ − vα

y + vγ − vα

vβ − vα

x − vγt

)
dy�

Assume first that gα and gβ are differentiable functions. Then

d

dt

∫ ∫
gα�x� t�gβ�y� t�ξ�x − y�

× H

(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y − vγt

)
dydx

=
∫ ∫ ∂gα

∂t
�x� t�gβ�y� t�ξ�x − y�
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× H

(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y − vγt

)
dydx

+
∫ ∫

gα�x� t�
∂gβ

∂t
�y� t�ξ�x − y�

× H

(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y − vγt

)
dydx

−
∫ ∫

gα�x� t�gβ�y� t�ξ�x − y�

× vγH
′
(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y − vγt

)
dydx

=
∫
pαDαgαdx +

∫
pβDβgβ dx(10.32)

−
∫ ∫

vα

∂gα

∂x
�x� t�gβ�y� t�ξ�x − y�

× H

(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y − vγt

)
dydx

−
∫ ∫

gα�x� t�vβ

∂gβ

∂y
�y� t�ξ�x − y�

× H

(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y − vγt

)
dydx

−
∫ ∫

gα�x� t�gβ�y� t�ξ�x − y�

× vγH
′
(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y − vγt

)
dydx�

After an integration by parts, (10.32) equals∫
pαDαgα dx +

∫
pβDβgβ dx

+ �vβ − vα�
∫
gα�x� t�gβ�x� t�H�x − vγt�dx

+ �vα − vβ�
∫ ∫

gα�x� t�gβ�y� t�

× H

(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y − vγt

)
dydx�

(10.33)

In the case of an arbitrary g with J�g� < ∞, we still have that the left-hand
side of (10.32) equals (10.33) in the weak sense. To show this, we multiply
both sides by a smooth function of t, integrate with respect to t, replace ξ by
a smooth approximation and rearrange terms so that only Dαgα and Dβgβ

appear (avoiding ∂gα/∂t and ∂gα/∂x). Then by a standard argument we pass
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to the limit and derive (10.33). In summary,

�10�34�

∫ T

0

∫
�pαDαgα + pβDβgβ�dxdt

= �vα − vβ�
∫ T

0

∫
gα�x� t�gβ�x� t�H�x − vγt�dx

+ �vβ − vα�
∫ T

0

∫ ∫
gα�x� t�gβ�y� t�

× H

(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y − vγt

)
dydxdt

+
∫ ∫

gβ�x�T�gβ�y�T�ξ�x − y�

× H

(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y − vγT

)
dydx

−
∫ ∫

gβ�x�0�gβ�y�0�ξ�x − y�

× H

(
vβ − vγ

vβ − vα

x + vγ − vα

vβ − vα

y

)
dydx

= �vα − vβ�
∫ T

0

∫
gα�x� t�gβ�x� t�H�x − vγt�dxdt

+ ;1�T� + ;2�T� − ;2�0��

for any smooth function H. Since Dαgα, Dβgβ and gαgβ are integrable func-
tions, it is not hard to establish (10.34) for an H that is bounded and measur-
able.

Step 2. We set pα′ = 0 if α′ �= α�β. We have

�10�35�

Jd�g� ≥
∫ T

0

∫ ∑
α′

pα′Dα′gα′ dxdt

−
∫ T

0

∫
1
2

∑
α′β′γ′δ′

K�α′β′� γ′δ′�gα′gβ′

× [
exp�pγ′ + pδ′ − pα′ − pβ′ � − 1

]
dxdt�

We choose H�z� = λ�B�z� where λ is a constant and B is a measurable subset
of T. From Lemma 10.8 we have that pα and pβ are bounded above by λ times

�10�36� c1h�c1�B��
[
1 + ∑

α′

∫
gα′ log+ gα′ �x� t�dx

]
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for some constant c1. Since x log+ x ≤ x log x − x + 1, we can use (10.4) to
deduce that (10.36) is bounded above by λ times

�10�37� c1h�c1�B��
[
1 + ∑

α′

∫
gα′ �x�0� log+ gα′ �x�0�dx + Jd�g�

]
�

We now choose λ to be the reciprocal of (10.36). For such a choice of λ, pα and
pβ are bounded by 1. Hence

Jd�g� ≥
∫ T

0

∫
�pαDαgα + pβDβgβ�dxdt − c2

∫ T

0

∫ ∑
vα′ �=vβ′

gα′gβ′ dxdt

for some constant c2. From this, (10.34) and (10.3), we learn that for some
constants c3 and c4,

�10�38�

�vα − vβ�
∫ T

0

∫
gα�x� t�gβ�x� t�H�x − vγt�dxdt

≤ Jd�g� − ;1�T� − ;2�T� + ;2�0�

+ c3Jd�g� + c3

(∫ ∑
α

gα�x�0�dx
)2

≤ c4Jd�g�+�;1�T��+�;2�T��+�;2�0��+c3

(∫ ∑
α

gα�x�0�dx
)2

�

Once more we apply Lemma 10.8 to yield that for every t,

�;1�T�� ≤ c1λ
∫ T

0

∫
gα�x� t�dxdt · h�c1�B��

×
[
1 + sup

0≤t≤T

∫ ∑
α′

gα′ log+ gα′ �x� t�dx
]

= T
∑
α′

∫
gα′ �x�0�dx�

�;2�t�� ≤ ∑
α′

∫
gα′ �x�0�dx�

where for the equality we used the conservation of mass and the fact that λ
is the reciprocal of (10.36). From this and (10.37) we conclude

�10�39�

∫ T

0

∫
gα�x� t�gβ�x� t��B�x − vγt�dxdt

≤ λ−1
[
c5Jd�g� + c5

(
1 +

∫ ∑
α′

gα′ �x�0�dx
)2]

�

where λ−1 is given by (10.36).



LARGE DEVIATIONS FROM A KINETIC LIMIT 1329

Final step. Let G�x� = ∫
gαgβ�x + vγt� t�dt. Set Bl = �x� G�x� ≥ l�. Then,

by (10.39),

�10�40�

∫
<1�G�x��dx =

∫ ∫ ∞

1
b
�log l�b−1

l
��G�x� ≥ l�dldx

≤
[
c5Jd�g� + c5

(
1 +

∫ ∑
α′

gα′ �x�0�dx
)2]

×c1

[
1 +

∫ (∑
α′

gα′ �x�0� log gα′ �x�0�

− gα�x�0� + 1
)
dx + Jd�g�

]

×
∫ ∞

1
bh�c1�Bl��

�log l�b−1

l
dl�

On the other hand,

�Bl� ≤ 1
l

∫
G�x�dx�

Hence

∫ ∞

1
h�c1�Bl��

�log l�b−1

l
dl

≤
∫ a

1
h�c1�

dl

l
+

∫ ∞

a
h

(
c1

l

∫
Gdx

)�log l�b−1

l
�

If we choose a = max�1� �c1
∫
G dx�2�, we deduce

∫ ∞

1
h�c1�Bl��

�log l�b−1

l
dl ≤ c6

(
log+

∫
Gdx + 1

)
for some constant c6 because l > a implies

�10�41� h

(
c1

l

∫
Gdx

)
≤ 2�log l�−1�

On the other hand, by (10.3), the integral
∫
Gdx is bounded by a constant

that depends on k1 and k2. This, (10.40) and (10.41) imply (10.6). ✷

We now turn to the macroscopic counterpart of our results in Section 8. Set

Y�g�x� =
∫ T

0

∑
vα �=vβ �=vγ

gαgβ�x + vγt� t�dt� ĝα�x� t� = gα�x + vαt� t��

where the summation is over distinct triplets of velocities �vα� vβ� vγ�.
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Lemma 10.9. Let σα�x� = ∫ T
0 �∂ĝα/∂t�+�x� t�dx. Then

�10�42�
∫ T

0

∫
�Dαgα�dxdt ≤ n2K̄

∑
vα �=vβ

∫ T

0

∫
gαgβ dxdt + J0�g�

log 2
�

�10�43�
∫
σα log

σα

Y�g� dx ≤ n2K̄
∫ T

0

∫
�Dαg�dxdt + 2J0�g��

Proof. For every bounded measurable function pα�x� t�,∫ T

0

∫
pαDαgα dxdt ≤ J0�g� + n2K̄

∑
vα �=vβ

∫ T

0

∫
gαgβ dxdt�

A repetition of the final step of Lemma 7.4 would lead to (10.42).
One can derive (10.41) in just the same way we derived (7.35) from (7.28). ✷

Proof of Theorem 10.5. We first note that in fact if in Lemma 7.5 we as-
sume

∫
<1�g�dx ≤ ρ2 instead, then we can replace <4 with <2 in the conclusion

of that lemma. Now (10.8) follows from Lemma 10.9 and Lemma 7.5. ✷

Proof of Theorem 10.1. It follows from Theorem 11.2 of the next section
that for functions g with J�g� ≤ k, the family �∫ gα�x� t�pα�x�dx� is equicon-
tinuous as a function of t. This clearly implies that the set �g� J�g� ≤ k� is
precompact. Hence it remains to show the closedness. Let g�l� be a sequence
with J�g�l�� ≤ k such that g�l� → g. We would like to conclude J�g� ≤ k. For
this, it suffices to verify

�10�44� J0�g� + J�g�p� ≤ k

for any smooth function p. Let ξε be an approximation to identity and set
g

�l�
α� ε = g

�l�
α ∗ ξε. Since J�g�l�� ≤ k, we can apply Theorem 10.4 to deduce

J0�g�l�� +
∫ T

0

∫ ∑
α

pαDαg
�l�
α dxdt

− 1
2

∫ T

0

∫ ∑
αβγδ

K�αβ� γδ�g�l�
α� εg

�l�
β� ε(10.45)

× [
exp�pγ + pδ − pα − pβ� − 1

]
dxdt ≤ c1h�ε� + k�

where c1 is a constant that depends on T, H and k only. Since the functional
gα �→ gα�ε is continuous, we can pass to the limit in (10.45) to conclude

�10�46�

J0�g�l�� +
∫ T

0

∫ ∑
α

pαDαgα dxdt

− 1
2

∫ T

0

∫ ∑
αβγδ

K�αβ� γδ�gα�εgβ� ε

× [
exp�pγ + pδ − pα − pβ� − 1

] ≤ c1h�ε� + k�
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We then let ε → 0. Using Theorem 10.6, we know that the sequence �gα�εgβ� ε�
is uniformly integrable. Since gα�εgβ� ε → gαgβ almost everywhere, (10.46)
implies (10.44). ✷

11. The rate function, part II. Recall that � (resp. � ) denotes the set
of profiles g for which there exists a bounded (resp. smooth) p̂ such that (1.16)
holds. To complete the proof of lower bound, we need the following theorem.

Theorem 11.1. If J�g� < ∞ and g ∈ �, then there exists a sequence gk ∈ �
such that gk converges to g and J�gk� converges to J�g� as k goes to infinity.

We also establish a temporal regularity of profiles with finite rate function.
Recall the function w3 defined by (6.1).

Theorem 11.2. There exists a constant B4�k�T� such that if J�g� ≤ k,
then for any smooth pα�x�,

�11�1�

∣∣∣∣
∫

�gα�x� t1� − gα�x� t2��pα�x�dx
∣∣∣∣

≤ �vα�
∥∥∥∥∂pα

∂x

∥∥∥∥
∞

(∫ ∑
α

gα�x�0�dx
)

�t1 − t2�

+ �pα�∞B2�k�T�
(
w3

(
1

t1 − t2

))−1

�

As a step toward the above theorems, we derive a nonvariational formula
for the rate function. Recall the function H�g�p� defined by (0.5). It is not
hard to show that H is convex in the p variable (see also Lemma 11.5 below).
Let G denote its convex conjugate:

�11�2� G�g�d� = sup
p

(
p · d − H�g�p�)�

Proposition 11.3.

�11�3� Jd�g� =
∫ T

0

∫
G�g�Dg�dxdt�

The proof of this is based on some properties of G that are formulated in the
next lemma. We first state some definitions. Recall the definition of conserved
vectors as in the previous section. In this section we need a g-dependent
definition of conserved vectors.

Definition 11.4. Let g ∈ R
n. We write Ag for the set of vectors e ∈ R

n such
that

eα + eβ = eγ + eδ
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whenever K�αβ� γδ�gαgβ �= 0. We also define

A⊥
g = {

d ∈ R
n� d · e = 0 for every e ∈ Ag

}
�

Finally we set Dg = �d� G�g�d� < ∞�.

Lemma 11.5. (i) If J�g� < ∞, then for almost all �x� t�,
�11�4� �g�x� t��Dg�x� t�� ∈ {�g�d�� d ∈ A⊥

g

}
�

(ii) Dg ⊆ A⊥
g . Moreover, if gα �= 0 for all α, then Dg = A⊥

g .

(iii) H�g�p� is strictly convex on the set A⊥
g .

Proof. (i) From the definition, H�g� e� = 0 if e ∈ Ag. Now take a bounded
measurable function p� T × �0�T� → R

n such that for every �x� t�, p�x� t� ∈
Ag�x� t�. For such p we clearly have

∫ T

0

∫
λp · Dgdxdt ≤ Jd�g�

for every scalar-valued measurable function λ�x� t�. If Jd�g� < ∞, we deduce
that for such p, p · Dg = 0 for almost all �x� t�. From this, it is not hard to
conclude (11.4).

(ii) A version of the previous proof (i) shows that if G�p�d� < ∞ then
�p�d� ∈ A⊥

g .
Suppose gα �= 0 for all α. To show G�g�d� < ∞ for all d ∈ A⊥

g , it suffices to
verify

�11�5� lim
p→∞
p∈A⊥

g

H�g�p�
�p� = +∞�

because (11.5) would allow us to restrict the supremum in (11.2) to a suffi-
ciently large bounded set of p. Let S = �p ∈ A⊥

g � �p� = 1�. If p̄ ∈ S, then
for some �α�β� γ� δ� we have p̄α + p̄β − p̄γ − p̄δ �= 0. Since S is compact, we
can find a positive ε such that whenever p̄ ∈ S then for some �α�β� γ� δ�,
�p̄α + p̄β − p̄γ − p̄δ� > ε. From (1.4)(vi), we know that if K�αβ� γδ� �= 0 then
K�γδ� αβ� �= 0. Hence, for t > 0,

K�αβ� γδ�gαgβ exp
(
t�p̄α + p̄β − p̄γ − p̄δ�

)
+ K�γδ� αβ�gγgδ exp

(
t�p̄γ + p̄δ − p̄α − p̄β�) ≥ cetε

for some constant c. If p ∈ A⊥
g , we can choose p̄ = p/�p� and t = �p� to conclude

H�g�p� ≥ ceε�p� − c1 �

for some constant c1 that is independent of p. This clearly implies (11.5).
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(iii) A straightforward calculation yields∑
α

∂H

∂pα

�g�p�bα

= ∑
αβγδ

K�γδ� αβ�gγgδ exp�pα + pβ − pγ − pδ�bα

− ∑
αβγδ

K�αβ� γδ�gαgβ exp�pγ + pδ − pα − pβ�bα

= 1
2

∑
αβγδ

K�αβ� γδ�gαgβ exp�pγ + pδ − pα − pβ��bγ + bδ − bα − bβ��

∑
αβ

∂2H

∂pβ∂pα

�g�p�bαbβ

= 1
2

∑
αβγδ

K�αβ� γδ�gαgβ exp�pγ + pδ − pα − pβ��bγ + bδ − bα − bβ�2�

This clearly implies the strict convexity of H�g� ·� on A⊥
g . ✷

Proof of Proposition 11.3. Evidently we have

�11�6� Jd�g� ≤
∫ T

0

∫
G�g�Dg�dxdt�

Hence, for (11.3), we only need to show that if Jd�g� < ∞ then

�11�7� Jd�g� ≥
∫ T

0

∫
G�g�Dg�dxdt�

By (11.4), we may assume Dg ∈ A⊥
g almost everywhere. Suppose d ∈ A⊥

g and
p = p1 + p2 with p1 ∈ Ag and p2 ∈ A⊥

g . We clearly have

d · p − H�g�p� = d · p2 − H�g�p2��
Therefore

G�g�d� = sup
p∈A⊥

g

�d · p − H�g�p���

For every d ∈ A⊥
g , define

�11�8� Gk�g�d� = max
p� �p�≤k

p∈A⊥
g

�d · p − H�g�p���

Recall that H�g� ·� is strictly convex on A⊥
g . Hence the maximizer in (11.8) is

unique. We denote the maximizer by P�k��g�d�. Clearly P�k� is a continuous
function. We then define p�k��x� t� = P�k��g�x� t��Dg�x� t��. Then

Jd�g� ≥ Jd�g�p�k�� =
∫ T

0

∫
Gk�g�Dg�dxdt�

Since Gk ↑ G, by the monotone convergence theorem (11.7) holds. ✷
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We continue with an example to illustrate G.

Example 11.6. Consider the left–right model of Example 1.7 with I1 =
�1�2� and I2 = �3�4�. We also assume the conservation of momentum. Assume
K�αβ� γ� δ� = 1 whenever K is nonzero. We then have Ag = �e� e1 + e2 =
e3 + e4� if g1g2 +g3g4 �= 0 and Ag = R

4 otherwise. Hence if g1g2 +g3g4 �= 0,

A⊥
g = {

d� d = �r� r�−r�−r� for some r ∈ R
}
�

Moreover

Dg = A⊥
g if g1g2g3g4 �= 0�

Dg = {�r� r�−r�−r�� r ≥ 0
}

if g1g2 = 0� g3g4 �= 0�

Dg = {�r� r�−r�−r�� r ≤ 0
}

if g1g2 �= 0� g3g4 = 0�

In the same order, the corresponding G�g�d�’s are

G�g�d� = g1g2ψ�Q� + g3g4ψ�−Q�� Q = log
−r +

√
r2 + 4g1g2g3g4

2g1g2
�

G�g�d� = �r� log
�r�

g3g4
− �r� + g3g4�

G�g�d� = �r� log
�r�

g1g2
− �r� + g1g2�

The next issue we would like to address is the existence of p̂ in (1.16). As
the previous example illustrated, it is possible to have Dg �= A⊥

g . This in fact
corresponds to examples for which p̂ becomes infinite. Hence some care is
needed for the meaning of (1.16).

Proposition 11.7. Suppose J�g� < ∞. Then there exist measurable func-
tions Q�αβ� γδ�� T × �0�T� → �−∞�+∞� such that for all α,

�11�19�
Dαgα = ∑

β� γ� δ

K�γδ� αβ�gγgδ exp�Q�αβ� γδ��

− ∑
β� γ� δ

K�αβ� γδ�gαgβ exp�Q�γδ� αβ���

�11�20� J�g� =
∫ T

0

∫ ∑
αβγδ

K�αβ� γδ�gαgβψ�Q�γδ� αβ��dxdt�

As Proposition 11.7 indicates, it is more convenient to deal with the dif-
ferences pγ + pδ − pα − pβ than pα. Note that by (11.20) we know that
ψ�Q�γδ� αβ�� < +∞ almost everywhere. Hence Q�γδ� αβ� < +∞ when-
ever K�αβ� γδ�gαgβ �= 0. Because of this, the expression K�αβ� γδ�gαgβ

exp�Q�γδ� αβ�� is well defined.
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Proof of Proposition 11.7. Fix g and consider the convex functions
H�g� ·� and G�g� ·�. Let Bg denote the affine hull of Dg, that is, the inter-
section of all affine sets which contain Dg. It is known that the topological
interior of Dg as a subset of Bg is contained in the range of the gradient
∂H/∂p (see, for example, page 224 of [3]). Hence if G�g�d� < ∞, then there
exists a sequence p�k� such that

�11�21� d�k� �= ∂H

∂p
�g�p�k�� → d�

It is not hard to show that in fact d�k� = d�k��g�d� ∈ Dg can be choosen in
a measurable manner. Since H is strictly convex on A⊥

g , the function p�k� =
p�k��g�d� is uniquely defined and measurable. Since G�g� ·� is lower semicon-
tinuous,

�11�22� lim inf
k

G�g�d�k�� ≥ G�g�d��

Clearly, d�k� ∈ Df. As a result,

G�g�d�k�� = d�k� · p�k� − H�g�p�k�� ≤ G�g�d��
This and (11.22) imply limk G�g�d�k�� = G�g�d�. On the other hand,

�11�23�

G�g�d�k�� = ∑
αβγδ

K�αβ� γδ�gαgβψ
(
Q�k��αβ� γδ�)�

d
�k�
α = ∑

βγδ

K�γδ� αβ�gγgδ exp
(
Q�k��αβ� γδ�)

− ∑
βγδ

K�γδ� αβ�gαgβ exp
(
Q�k��γδ� αβ�)�

where

Q�k��αβ� γδ� = Q�k��αβ� γδ�g�d� = p�k�
α + p

�k�
β − p�k�

γ − p
�k�
δ �

From (11.22) and (11.23) we learn that the sequence exp�Q�k��αβ� γδ�� is uni-
formly bounded. We then use a subsequence so that exp�Q�k��αβ� γδ�� con-
verges. The limit will be denoted by exp�Q�αβ� γδ�g�d��. We clearly have

dα = ∑
βγδ

K�γδ� αβ�gγgδ exp
(
Q�αβ� γδ�)

− ∑
βγδ

K�αβ� γδ�gαgβ exp
(
Q�γδ� αβ�)�

G�g�d� = ∑
αβγδ

K�αβ� γδ�gαgβψ
(
Q�αβ� γδ�)�

From the measurability of p�k�, we conclude that Q is a measurable func-
tion in �g�d� variable. Finally we choose Q�αβ� γδ��x� t� = Q�αβ� γδ�g�x� t��
Dg�x� t��. ✷
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Proof of Theorem 11.2. We certainly have

�11�24�

∣∣∣∣
∫

�gα�x� t2� − gα�x� t1��pα�x�
∣∣∣∣

≤
∣∣∣∣
∫ t2

t1

∫
pαDαgα dxdt

∣∣∣∣ +
∣∣∣∣
∫ t2

t1

∫
vα

∂pα

∂x
gα dxdt

∣∣∣∣
≤

∣∣∣∣
∫ t2

t1

∫
pαDαgα dxdt

∣∣∣∣ + �vα�
∥∥∥∥∂pα

∂x

∥∥∥∥
∞

�t2 − t1�
∫ ∑

α

gα�x�0�dx�

where, for the second inequality, we used the conservation of mass. From
(11.19) we learn that

�11�25�

∣∣∣∣
∫ t2

t1

∫
pαDαgα dxdt

∣∣∣∣
≤

∫ t2

t1

∫
�pα�

∑
βγδ

K�γδ� αβ�gγgδ exp�Q�αβ� γδ��dxdt

+
∫ t2

t1

∫
�pα�

∑
βγδ

K�αβ� γδ�gαgβ exp�Q�γδ� αβ��dxdt

=� ;1 + ;2�

Furthermore, for every l greater than 2,

�11�26�

;1 =
∫ t2

t1

∫
�pα�

∑
βγδ

K�γδ� αβ�gγgδ exp�Q�αβ� γδ��

× ��Q�αβ� γδ� ≤ l�dxdt

+
∫ t2

t1

∫
�pα�

∑
βγδ

K�γδ� αβ�gγgδ exp�Q�αβ� γδ��

× ��Q�αβ� γδ� ≥ l�dxdt

≤ c1�pα�∞el
∫ t2

t1

∫ ∑
vβ �=vδ

gγgδ dxdt

+1
l
�pα�∞

∫ t2

t1

∫ ∑
βγδ

K�γδ� αβ�gγgδ exp�Q�αβ� γδ��Q�αβ� γδ�

× ��Q�αβ� γδ� ≥ 2�dxdt�

≤ c1�pα�∞el
∫ t2

t1

∫ ∑
vβ �=vγ

gβgγ dxdt + 2
l
�pα�∞Jd�g�

=� c1�pα�∞el;11�t1� t2� + 2
l
�pα�∞Jd�g��

where for the last inequality we used (11.20) and the elementary inequality
2ψ�Q� ≥ QeQ for Q ≥ 2. On the other hand, we can use Theorem 10.5 to assert
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that for any r greater than ee,

�11�27�

;11�t1� t2� =
∫ t2

t1

∫ ∑
vβ �=vγ

gβgγ��gβgγ ≤ r�dxdt

+
∫ t2

t1

∫ ∑
vβ �=vγ

gβgγ��gβgγ > r�dxdt

≤ �t2 − t1�r + 1
�w2�r��b

∫ t2

t1

∫ ∑
vβ �=vγ

<�gβgγ�dxdt

≤ �t2 − t1�r + 1
�w2�r��b c1�k�

for a constant c1�k� that depends on k only. If we choose

r = �t2 − t1�−1
(
w2

(
1

t2 − t1

))−b

in (11.27), we obtain

;11�t1� t2� ≤ c2�k�
(
w2

(
1

t2 − t1

))−b

for a suitable constant c2�k�. Substituting this in (11.26) yields

;1 ≤ �pα�∞

[
c2�k�c1

(
w2

(
1

t2 − t1

))−b

el + 2k
l

]
�

We now choose

l = log
(

log log
1
δ

)b/2

with δ = t2 − t1 to conclude

�11�28� ;1 ≤ �pα�∞c3�k�
(
w3

(
1

t2 − t1

))−1

for some constant c3�k�. The term ;2 can be treated likewise. This, (11.28),
(11.25) and (11.24) imply (11.1). ✷

For Theorem 11.1 we need the following lemma that would guarantee the
boundedness of g when g ∈ �.

Lemma 11.8. There exists a constant B5�k�T� such that if (11.19) holds for
a family of measurable functions Q�αβ� γδ� with∑

α�β� γ� δ

�Q�αβ� γδ��∞ ≤ k�

∑
α

∫
gα�x�0�dx ≤ k�
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then

�11�29� ∣∣gα�x� t�
∣∣ ≤ B5�k�T�∥∥gα�·�0�∥∥∞

for almost all �x� t� ∈ T × �0�T�.

The proof of this lemma is omitted because it follows the proof of Theorem 1
in [1].

The proof of the following lemma can be found in [16] in the case of Q = 0.
Toscani’s proof can be readily generalized to treat the general case.

Lemma 11.9. Let g�k� be a sequence of solutions to (11.19) with

�11�30� sup
t

sup
k

∫ ∑
α

g�k�
α �x� t� log+ g�k�

α �x� t�dx < ∞�

Suppose that the function Q is bounded and

�11�31� lim
k→∞

∫ ∣∣g�k��x�0� − g�x�0�∣∣dx = 0�

where g is another solution to (11.19) of finite entropy. Then,

�11�32� lim
k→∞

∫ T

0

∫ ∣∣g�k��x� t� − g�x� t�∣∣dxdt = 0�

Proof of Theorem 11.1.

Step 1. Assume J�g� < ∞ and g ∈ �. First we want to replace the ini-
tial data by a smooth function. More precisely, let g�k��x�0� be a sequence of
smooth functions such that (11.31) holds. Let g�k��x� t� [resp. g�x� t�] be the
unique solution of (11.19) with the initial data g�k��x�0� [resp. g�x�0�]. We
would like to conclude that for a subsequence of g�k�, we have

�11�33� lim
k→∞

J�g�k�� = J�g��

By Lemma 11.8 we have that g�k� converges to g in the L1-norm. As a result,
for a subsequence g�k� converges to g almost everywhere. Using the conser-
vation of momentum, as in the proof of (10.3) we deduce that

�11�34� sup
k

∑
vβ �=vγ

∫ T

0

∫
g�k�

α g
�k�
β dxdt < ∞�

Since the corresponding Q is bounded and independent of k, (11.20) implies

�11�35� sup
k

J�g�k�� < ∞�

This and Theorem 10.3 imply (11.30). By Lemma 11.8 we have that g�k� con-
verges to g in the L1-norm. As a result, for a subsequence g�k� converges to
g almost everywhere. Moreover, by Theorem 10.6 we have

�11�36� sup
k

∫ T

0

∫ ∑
vβ �=vγ

<2
(
g�k�

α g
�k�
β

)
dxdt < ∞�
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This implies the uniform integrability of the sequence g
�k�
α g

�k�
β . Since Q is

bounded and g�k� converges to g almost everywhere for a subsequence, we
have (11.33) for a subsequence.

Step 2. From the previous step we learn that we may assume g�·�0� is
smooth. By Lemma 11.8 we deduce that g�x� t� is bounded for �x� t� ∈ T ×
�0�T�. We then approximate p by a sequence of smooth functions p�k�:

�11�37�
sup
k

�p�k��∞ < ∞�

lim
k→∞

�p − p�k��L1 = 0�

Let g�k� denote the corresponding solution to (1.16) where p is replaced with
p�k� and the initial density is g�·�0�. From Lemma 11.7, we have

sup
k

�g�k��L∞�T×�0�T�� < ∞�

Moreover, by standard arguments we can show that g�k� is smooth (see,
e.g., [4]). Using the analog of (1.10) for our equation (1.16), it is not hard to
show that for almost all t,

�11�38�

∫ ∑
α

∣∣g�k�
α �x� t� − gα�x� t�

∣∣dx
≤ c1

∫ t

0

∫ ∑
vα �=vβ

∣∣exp
(
p�k�

γ + p
�k�
δ − p�k�

α − p
�k�
β

)
g�k�

α g
�k�
β

− exp�pγ + pδ − pα − pβ�gαgβ

∣∣dxdt

for some constant c1. Since �p�k��, �g�k��, �g� are all bounded by a constant, the
right-hand side of (11.38) is bounded above by a constant multiple of∫ t

0

∫ ∑
α

�p�k�
α − pα� + ∑

α

�g�k�
α − gα�dxdt�

From this, (11.37) and Gronwall’s inequality we deduce

lim
k→∞

∫ T

0

∫ ∑
α

∣∣g�k�
α �x� t� − gα�x� t�

∣∣dxdt = 0�

As a result, a subsequence of g
�k�
α converges to gα almost everywhere. From

this, (11.20), and the bounded convergence theorem, we conclude

lim
k→∞

J�g�k�� = J�g�� ✷
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