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LARGE DEVIATIONS FROM A KINETIC LIMIT?

BY FRAYDOUN REZAKHANLOU

University of California, Berkeley

We study a one-dimensional particle system in which particles travel
deterministically in between stochastic collisions. As the total humber of
particles tends to infinity, the empirical density converges to a solution of
a discrete Boltzmann equation. We establish the large deviation principle
for the convergence with a rate function that is given by a variational
formula. Some of the properties of the rate function are discussed and a
nonvariational expression for the rate function is given.

0. Introduction It is often the case in probability theory that the con-
vergence in a law of large numbers is exponentially fast. The exponential rate
at which the convergence occurs is of great interest, especially for problems
coming from statistical mechanics. For these problems, the exponential rate
function is usually a familiar physical quantity (such as entropy, action func-
tional, thermodynamic potential, etc.) that retains a great amount of valuable
information about the model under study.

In a previous article, Rezakhanlou and Tarver [13] estalished a law of large
numbers for some one-dimensional particle systems associated with the dis-
crete Boltzmann equation. Such a law of large numbers is known as a kinetic
or Boltzmann-Grad limit in the context of statistical mechanics. In this arti-
cle, our goal is to establish a large deviation principle for a kinetic limit and
study the corresponding rate function.

The derivation of the full Boltzmann equation for models with deterministic
collision rules was carried out by Lanford [8] and King [7]. Lanford established
the kinetic limit for short times for a model of interacting spheres with elas-
tic collisions. King in his thesis utilizes Lanford’s method to treat particle
systems with collision rules based on Newton’s second law. Later Iliner and
Pulvirenti [5, 6] showed that Lanford’s restriction on time can be replaced by
an assumption on the smallness of the collision rates.

The tradition of discretizing the velocity goes back to Maxwell. However,
the first realistic step was taken by Broadwell, who proposed a simple model
of gases with six velocities. Since Broadwell’s work, discrete Boltzmann equa-
tions have been successfully used to model dilute gases and study shock waves
in fluid mechanics (see, e.g., [9] and [4]).

Recently Caprino and Pulvirenti [2] have derived a discrete Boltzmann
equation for particle systems on a line with four velocites. Their derivation
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is valid globally in time with no smallness condition on the initial densities.
Their approach, as in [5, 6], is based on a detailed anlysis of the hierarchy
equations for the correlation functions. A new approach for the derivation of
Boltzmann type PDE’'s was proposed in [11] and [13]. This new viewpoint
utilizes some probabilistic techniques which explore the Markov property of
the microscopic system, the entropy bound and some microscopic bounds on
the total number of collisions. The key idea behind the latter is that some
well-established PDE techniques of Tartar [15] and Bony [1] have indeed mi-
croscopic counterparts that can be exploited for our purposes. Using the same
general ideas, one can go beyond the macroscopic description given by the
Boltzmann equation. In [12], the author derives an Ornstein—-Uhlenbeck equa-
tion for the fluctuations of the system about its equilibrium states. In [11], it
is shown that the dynamics of a tagged particle in the system is governed by
an inhomogeneous Markov process with an infinitesimal generator that can
be expressed in terms of the macroscopic densities.

The models studied in this article are continuous time Markovian parti-
cle systems with the following rules. Each particle has a label « in the set
{1,...,n}. A particle with label « travels deterministically with velocity v,
on the circle. Two particles within a distance of order & collide stochastically
through a smooth potential with probability £ and go ahead with no collision
with probability 1 — &, where ¢! is of the same order as the total number of
particles N. If two particles of labels « and B collide, they gain new labels y
and é with a rate K(«f, y8). If f, denotes the macroscopic density of particles
with label «, then in [13] it was shown that f, solves the discrete Boltzmann
equation

J Jd
fayy o _
ot ox

(0.1) > K(v8,aB)fyf5s — K(aB, vd)f of -

Bvys

Roughly speaking, we have that as N — oo and N/L converges to a nonzero
constant,

1N
(0.2) Llim PL(E Y 8. p(dx) 1 (a;(t) = a) is close to f,(x, t) dx) =1,
e i=1

where x;(¢) and «;(t) denote the location and the label of the ith particle at
time ¢. In other words, the empirical measure of most configurations converge
weakly to a measure that is absolutely continuous with respect to the Lebesgue
measure dx, with a density f,(x, t) that is a solution to (0.1).

The main result of this article establishes the large deviation principle for
the convergence in (0.2). Roughly speaking, we show

03) PL(%i:ZXVini(t)(dx)]l(ai(t) = a) is close to g,(x,t)dx for ¢ € [0, T])

~exp(—LJ(g) + o(L)),
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where J(-) is a suitable nonnegative functional that vanishes if and only if g
is a solution of (0.1). The rate function J = Jy + J, is the sum of the static
rate function J, (coming from the deviation from the initial data), and the
dynamical rate function that for a smooth g is given by

T
Ju@ =sup [ [[SpuDug.~} ¥ K(epord)eass
(0.4) ‘ e

x (exp(py + Ps — Po — Pp) — 1)} dxdt,

where the supremum is over smooth functions p = (p4,..., p,), and D, g, =

(0g,/dt)+v,(dg,/dx). For anonsmooth g, J;(g) is defined after an integration

by parts. See Section 1 for the definition J and the precise statement of (0.3).
It turns out that the function H: R" x R" — R, defined by

(0.5) H(g,p)=13% Y K(aB,v8)8.85(exp(p, + s — P — Pg) — 1)
afyd

is convex in the p-variable, and the rate function J; can be expressed in terms
of G, the convex conjugate of H in the p-variable. Indeed, G: R" x R* —
[0, +0o0], and

Tu&)= [ [ (a0, Da(x. 1) dxat,

where g =(gy,...,8,) and Dg = (D, g4,..., D, g,).
In previous works [10, 11, 12] and [13], some microscopic analog of Tartar’s

argument [15] and the duality formula played an essential role [see for exam-
ple [10], formula (3.5), or [13], formula (3.12)]. We have not been able to use
the same general ideas for the large deviation bounds. In fact, in this article
we will initiate some new ideas which in spirit are close to those of Bony [1].

The organization of the paper is as follows. In the next section we describe
our results. In Section 2 we discuss our strategy. Section 3 is devoted to an
entropy bound. In Section 4 we establish some exponential bounds for the
total number of collisions. Section 5 is devoted to an exponential form of
Stosszahlansatz (Boltzmann's molecular chaos principle). In Sections 6 and
7 we improve the bounds of Section 4 by establishing the uniform integrabil-
ity of the collision term. The large deviation upper bounds will be established
in Section 8 and the lower bounds will be given in Section 9. Sections 10 and
11 are devoted to the properties of the rate function.

1. Notation and main results. This section is devoted to the statement
of our main results. We first describe the model for which the large deviation
principle will be established.

We define T to be the interval [—3, 1] with the endpoints identified. Let
I={1,2,...,n}; Idenotes the set of labels of the n different types of particles.
Each « e I corresponds to a velocity v, € R. The state space E = (T x I)V
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consists of N-tuples q = (q4, - .., gn) With q; = (x;, o;) where x; and «; denote
the location and the label of the ith particle, respectively.

The dynamics of q(¢) are Markovian and are characterized by the infinites-
imal generator .o»/(l) = o, + 7. Here .24, corresponds to the free motion, .27,
describes the interaction among particles and the relation between N and L
is N = ZL where Z is a nonzero constant. More precisely,

N o 9F
(1.1) oAF(Q)=) Va; 5
i=1 X

(1.2) AF@Q)=3 Iy V(L(x; — X )Y K(a;aj, 'yS)(F(Sl Jq) F(q)),

i#J v, 0

where Sy ;0 is the configuration obtained from g by changing the labels of
the ith and Jth particles from a;, a; to vy, , respectively, and V: R — [0, c0)
is an even, continuously dlfferentlable function of compact support with

(1.3) [ V(z)dz = 1.
In the sequel (—rg, ry) denotes an interval that contains the support of V.

CONVENTION 1.1. In (1.2), x; — x; is defined to be the signed distance be-
tween x; and x ;. Hence the argument of V belongs to R. In (1.1) and several
places below, the function F' is regarded as a periodic function of period one
in each x; variable. In the sequel, for every z € R, the sum x; + z is defined
periodically so that x; + z is regarded as a point in T.

Our assumptions on K are:

(1.4) () K(aB,v5)=0;

(1.4) (ii) K(aB, v8) = K(Ba, y5) = K(aB, 6y);

(1.4) (iii) K(aB,y6) =0if v, =vg;

(1.4) (iv) K(aB,vd) =0if {v,, vg} ={v,, vs};

(1.4) (v) K(aB,y8)=0if v, + vy # v, + 5

(1.4) (vi) There exists A = (A4,...,A,), A, > 0, such that for all , 8,7, 6 € I,
K(aB, y8)AAg = K(v8, af)A,As.

Since we are thinking of K as a collision rate, K is necessarily positive;
(ii) states that the collision rates depend upon the labels only and are inde-
pendent of the particle numbers; (iii) implies that only particles of different
velocities can collide; (iv) ensures that a collision always results in a change
in velocities; (v) means that a microscopic conservation of momentum holds;
(vi) states that A is a Maxwellian [i.e., A is an equilibrium solution of our dis-
crete equation (0.1)]. A consequence of our assumptions on K is the following:

(1.5) if K(aB,yd)# 0 then v, #v,,vs and vg # v, Vs.

We use the last assumption on K to help determine an invariant measure
for our process q(¢). Given A = (Aq, Ay, ..., A,) With A, > 0, we define a
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measure v, on E by

[ Faaw,(da)
(1.6) n n
:// Yo > F(xg,aq, ., xy,an)Ay, oAy, dxy L dxy,
ay;=1

ay=1

where dx denotes the Lebesgue measure on T. It is not hard to see that v, is
invariant with respect to 4. Moreover, if A satisfies the Maxwell conditions
(1.4)(vi), then v, is also invariant with respect to .«7,.

Initially, particles are located on T independently and with probability den-
sity (1/Z)f°%(x) where Z is a normalizing constant.

NoTATION 1.2. Let u; be a sequence of probability measures on E, and
let f© = (f%,...,f%: T — [0,00)" be a nonnegative bounded measurable
function. We then write u; ~ f° if for every continuous function F,

an [ F@u(da) = %//ZN Fxy,ay,.... %y, ay)

X fgl(xl)...ng(xN)dxl...de

where Z = [, f%(x) dx. The relationship between L and N is

(1.8) L=7.

Given f° as in Notation 1.2, we define f = (f1,...,f,): T x [0, +00) —
[0, c0)™ to be the unique solution to the initial value problem

&fa ﬁfa_
(19) Jt T Va ox - Qa(fa f)a a e I,

fa(x,O)ng(x), acel,

where

Qa(f’ f) = Z K(787 aﬁ)fyfé - K(CYB, 76)faf/3'

Byo

Where there is no danger of confusion we write @ ,(x, ¢) for Q,(f, f)(x, t).
A solution to (1.9) is understood in the following sense:

1. f, € C([0, T], LX(T));
2. fgf, € LY([0, T] x T) for every positive T and whenever v # v.;
3. For every t and « € I, and almost all x,

(1.10) Fulz, t) = fO(x — v,t) + /Ot Q.(x — (t — s)v,, 5)ds.
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Let q(z) = (x1(2), a1(2), ..., xn(2), an(2)) denote the process generated by
o1 with q(0) distributed according to u;(dq). Let P, and E; denote the
probability and expectation with respect to the process q(-). For each trajectory
q(-), we define the empirical density

N
(111) Mt dx) = 73 8, 0(dx) L (e(0) = a),
i=1

which is a random measure on T, for every ¢t € [0, T]. We take a version
of q(¢) that is right continuous and has left limits. As a result, m,(¢, dx)
is weakly right continuous with left limits. If M, (T) denotes the space of
vector measures m = (mq,...,m,) with >"_, m,(T) = Z, we can regard
m(¢, dx) = (mq(t,dx),...,m,(t,dx)) as an element of the Skorohod space
9 := D([0,T), M,(T)) where M,(T) is endowed with the topology of weak
convergence. The transformation q — m with m defined by (1.11) and q dis-
tributed according to Pj, induces a probability measure &, on . The main
result of [13] in our setting asserts the theorem.

THEOREM 1.3. For every continuous function r: [0, T]x T — R, every a € I,
and each positive §,
> 8) =0.

To prepare for the statement of the main result, we start with the definition
of the large deviation rate function J: 2 — [0, +o0].

lim @LO/OT/r(x, tym,(t, dx) dt — /OT/r(x, £)f (%, t) dx dt

L—oo

DEFINITION 1.4. We say that a measurable function g, is a-differentiable
if there exists an L!-function D, g, such that for any smooth function r(x, ¢)
with support in T x (0, T'),

(1.12) /OngaDardx dt = —/OT/rDaga dx dt.

We set J(m) = +oo unless m,(t,dx) = g,(x,t)dx, g, is a-differentiable
for every a, Y, g.(x,0)dx = Z and for any pair («, 8) with v, # Ugs

/Ongagdedt< 0.

Note that g,: [0, T] — L(T) is weakly right continuous in ¢ with left limits
because m € 2. We then define

8a(x,0)

(133)  To(m) = [ 2. 0)tog )

g (x.0)+ fﬁi(x)) dx.,
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Jq(m) = sup Ja(m; p),
T
J (m; p) =/0 /p(x, t)yDg(x,t)dxdt

T
(1.14) [ [3 T KB v9)gu(x. gs(x. 1)

aByd
x (eXp(py(x, t)+ ps(x, t)
— Po(%,t) — pg(x, t)) — 1) dx dt,

where the supremum is over bounded measurable functions p = (p4, ..., p,):
T x [0, T] — R",
(115) Dg:(Dlgl7'--’Dngn)’

and a - b denotes the inner product of a, b € R". Finally, we define J(m) =
Jo(m) + J4(m), and when there is no danger of confusion we write J(g),
Jo(g) and J4(g) for J(m), Jy(m) and J 4 (m), respectively.

If there exists a bounded measurable function p so that g satisfies

D,go =} K(v8,aB)exp(P,+ Pg— Dy — P5)8y8s
(1.16) o
- K(CYB, 78) exp(ﬁy + ﬁ& - ﬁaf - ﬁﬁ)gagﬁ)

in the distributional sense, then the rate function is equal to (see Proposi-
tion 11.7)

T
(117)  Jm)= [ [§ Y K(aB.v9)g.8p0(by + bs — Pa — Bp) dx .
aByd
where §(z) = e*(z — 1) + 1. Let & (resp. ¢) denote the set of measures
m(¢,dx) = g(x, t)dx for which (1.16) holds for a bounded measurable (resp.
smooth) p.
The main result of this paper is Theorem 1.5.

THEOREM 1.5. For every open set & C 2 and compact set .7 C Z we have

1
(1.18) limsup — log Z, (%) < — Iinf J(m),
L—00 L meg
R | .
(1.19) Ilgllorgf I log# (£) > _mégl;w J(m).

The proof of (1.18) will be given in Section 8. In Section 9 we establish (1.19)
but with % replaced with ¢. In the final section we will establish various
properties of J that would eventually lead to the statement
(1.20) inf J(m)= mler;fM J(m)

megNA

for every open subset 4 C 2.
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The large deviation bound (1.18) for noncompact closed sets . remains

open. We also conjecture that
inf = inf .
ity 7 (M) = 10T J(m)

REMARK 1.6. The condition (1.4)(v) can be replaced by a weaker condition.
With some slight changes in the proofs, one can establish the results of this
paper for a larger class of systems. Basically we need to replace (1.4)(v) with
a condition that would provide us with a Lyapunov functional similar to (2.1)

of the next section. For example, we may assume that there exists a vector
(b4, ..., b,) such that

(1.4) (v) K(aB,y8) =0 ifb,+by#b, +bs,

(1.4) (iv)" (Vg — Vp)(By —bg) =0 and b, # by if v, # vg.

We end this section with an example of a model for which the new condition
is satisfied.

EXAMPLE 1.7. (The left-right model). There exists a decomposition I =
I,UI, such that v, > 0 for « € I, and v, < 0 for « € I,, and if K(aB, y6) # 0,
then

(a, B), (v,8) € (I x Ip) U(I, x I).

One can readily verify (1.4)(iv)’ and (1.4)(iv)" by choosing b, = 1 if @ € I,
and b, = 0 otherwise.

2. Sketch of proofs. Two well-known methods for the existence of so-
lutions to the Boltzmann equation (1.9) are due to [1] and [15]. In [10], a
combination of these methods was employed to establish the kinetic limit for
some particle systems on one-dimensional lattices. The arguments of [13],
however, were largely modeled upon Tartar's method [15]. As will be apparent
below, we have adopted a new approach that is essentially different from [13]
and in spirit is close to one of the arguments used in Section 5 of [10]. The
reason behind our change of strategy is that although the arguments of [13]
and most of [10] were successful for the kinetic limit, we have not been able
to utilize them for purposes of the present article. However, it is worth men-
tioning that our approach in this article seems to be strictly one-dimensional,
whereas it might be possible to carry out some of the arguments of [13] for
multidimensional models.

Let f be a solution to (1.9). We define

@1) X0 = [ Y(va—vp)fulx Of sy, )E(x — y) dxdy,
a B

where £(z) is a periodic function of period one that is defined to be z — % for
z € [0, 1). By conservation of mass and momentum, the integrand is invariant
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with respect to the collision term. From this and after some integration by
parts, we obtain

Sx(=- (0= v Ll OF ol D
+/T/T£(va — 02 fu(x, E)f gy, £) dx dy.
This in turn implies
00 2
(2.2) /0 /TZ(va — vg)?Ful, )f g, ) dx dt < const.(/zfg(x)dx> .
a, B @

A microscopic version of the above argument would lead to an exponential
bound on the collision term of the form

1 Ty
(2.3) sup—log E, exp[c/ > (Vayt) = Vo V(t))zv(L(x,-(t) —x,(¢))) dt} < 00,
L cL 0 it !
where T'; is a suitable sequence of stopping times and c is any constant. As
we will see in Section 4, the sequence T';, will be chosen so that the probability
of T'; # T is super exponentially small.

REMARK 2.1. Note that if instead of the conservation of momentum, we
have the conditions (1.4)(v)" and (1.4)(v)", then the factor v, — v in (2.1) is
replaced with b, — b;.

The functional X (¢) is known as Bony's Lyapunov functional and it was
employed in [10] to obtain a uniform (nonexponential) bound on the collision
term. In the microscopic model studied in [10], particles travel as independent
random walks, and whenever two particles occupy the same site, they collide
stochastically. The derivative of the microscopic analog of X(¢) in [10] was a
sum of a nonpositive term and an error term where the error term comes from
the randomness of the free motion part of the dynamics. In the model studied
in this paper the error term comes from the fact that the particles can collide
without being at the same location. To treat the error term, we will appeal to
some entropy bounds that will be discussed in Section 3. The entropy bound
(3.3) of Section 3 should be regarded as the microscopic (exponential) analog
of the entropy bound

(2.4) sup /Zfa log™ £, (x, t) dx < oc.

0<t<T

In Section 4 we use (3.3) and Bony's Lyapunov functional to establish (2.3).
It turns out that we can do better than (2.3). As we will see in Theorem 4.1,
we can afford to substitute for c in (2.3) a sequence that diverges like log log L.

We next sketch another argument for the solutions to (1.9) that will be
carried out microscopically in Section 5.
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Let / be a solution to (1.9). Set V. (z) = e V(s *2z)and f, ., = f,* V,. To
show that for every smooth function r(x),

T
W [ [ (Faofp.o = Faf g)rdxdi =0,

e—0

it suffices to prove

T
(2.5) lim EJSE/O /Tfa(x, O(fp(x + 2, £) — F p(x, £))r(x) dx dt = O.

Fix a pair (a, B) with v, # vg, and define

(2.6) Y(zt) = [ [ Fule,OF o5+ 2 DE(x = y)r(x) dx dy.

Then after a differentiation and an integration by parts,
‘fi—f - (v, — vﬂ)/fa(x, 1)f s(x + 2z, )r(x) dx
+ (o= ) [ [ Falr, OF oy + 2, t)r(x) dx dy
[ [vaf ol )F oy + 2, )€(x = y)r'(x) dic dy
+ [ [ Qulx Of p(y + 2 )E(x = y)r(x) de dy
+ [ [ Fulxr D@y + 2 )E(x = y)r(x) dv dy

(2.7)

5
j=1
To prove (2.5), it suffices to show

(2.8) lim sup

8_)0|Z|§3

/OT(QJ.(Z, £)—Q,(0,¢))dt| =0

for j=2,3,4,5 and
(2.9) limsup sup |Y(z,t)—Y(0,¢)|=0.

=0 |z|<e 0<t<T

As an example, we sketch the proof of (2.8) for j = 5. Suppose 0 < z < &.
Then it is not hard to see that

I‘/OT(Q?)(z, t) — Q5(0, t)) dt'
(2.10)

T x+z
<[ f1Qu or@| [ Fo(r tydyda
The entropy bound (2.4) implies (see Lemma 10.8)

x+z
(2.11) f fs(y,t)dy < const.|log z| .
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This and (2.2) imply that the right-hand side of (2.10) is bounded by a multiple
constant of |log |71, proving (2.8) in the case of j = 5. Similar arguments
would treat (2.9) and (2.8) in the remaining cases. See Section 5 for more
details.

We now turn to the uniform integrability of the collision term. Let (a, B, v)
be three labels for which v,, vg, v, are distinct. We have

(2.12) [rl (/OT fof (x+ 0,1, ) dt) dx < oo,

where I';(z) = z(log™ z)® for some 0 < b < 1. Let U(x) denote the argument
of the function I'; in (2.12). It turns out that (2.12) is followed by

/U(x)]l(U(x) > I)dx < const.(log 1)~

Let A = {x: U(x) > [}. By the collision bound (2.2), we have that |A|, the
Lebesgue measure of A, is bounded above by a constant multiple of /~1. Hence
it suffices to show

(2.13) sup [ U(x)1 4(x) < const.|log 8|7 .
|[A]<é

For this we define

2(6) = [ [ fule, )F oy, (= 3)
(2.14)

Vg — U, U, — Vg4
x H x+ y—uv,t)dxdy
Vg — Uq Vg — Uq

with H(z) = 1 4(2). The integrand of Z is chosen in such a way that dZ/dt
is a sum of four terms with one term of the form (2.13) (without supremum),
and the other terms of order |log §|7. As was demonstrated in Section 8 of
[10], (2.12) can be used to yield the uniform integrability of the collision

T
(2.15) /T/O Ty(fufp)dadt < oo.

We omit the details and refer the reader to Sections 6 and 7 for microscopic
calculations similar to the above argument.

Morally speaking, the large deviation rate function J(g) tells us at what
price the profile g can be reached. We know that J(g) = 0 if and only if g
is a solution to the Boltzmann equation (1.9). If J(g) > 0, we may regard g
as an atypical profile for the microscopic model. The reader may wonder how
our macroscopic arguments for f, a solution to (1.9), are relevant when we
are interested in atypical profiles! The point is that for the large deviation
principle we are only interested in atypical profiles with J(g) < oo, and it
turns out that such g will solve a perturbed Boltzmann equation (1.16) for a
suitable p. This new PDE may be regarded as a Boltzmann equation with a
new jump rate

(2.16)  R(aB, y5;x, t) = K(aB, y8) := K(aB, v8)exp(p, + Ps — Pa — Dp).
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When p is bounded, with a minor modification, all the above macroscopic
arguments can be repeated, in spite of temporal and spatial dependence of K.
For example, (1.4) holds for K, which in particular implies the conservation
of momentum. Hence (2.2) holds for such g. In general, p is not bounded.
Nonetheless a condition of the form J(g) < oo implies (2.2) and (2.12) (see
Section 10). As we will see in Theorem 10.6, (2.15) is also true but with I';(z) =
z(log™ log™ z)? instead of I';.

It turns out that there is a price of two logarithms to pay as we go from
the macroscopic bounds of Section 10 to the microscopic bounds of Sections 6
and 7. For the microscopic analogs of (2.12) and (2.15), we are forced to replace
I'; with
(2.17)  T4(z)=2z(log" log" log" 2)® and T,(z)=z(log" log™ log™ log™ 2)?,
respectively. The additional logarithms are apparently related to the fact that
a collision between two particles x; and x ; can occur when |x; —x ;| is of order
O(L™1) (as opposed to x; = x ;). Because of this we can only afford to choose
c in (2.2) that grows like log log L and not faster!

3. Entropy bound. In this section we recall an entropy bound from [13]
and discuss some of its consequences.
For each set R C T, set

(3.1) A (R,q) =#{i: x; € R}.

If R = (a, b], we simply write .#(a, b, q) for # (R, q). Set ¢(z) = zlog z—z+1.
Define

1 Lt 1 i 1 i+1
(32) o@=7 L o(# (5415 +5a))
=0

Recall that f° is bounded. Fix 6, € (0, 1). In Section 2 of [13] we showed
one following lemma.

LEMMA 3.1. There exists a constant Cy(7T") such that for every L,

(3.3) E; exp[LHo sup CI)(q(t))] < exp(Co(T)L).

0<t<T
An easy consequence of (3.3) and Holder inequality is
(3.4) EL exp| L6 sup &(a(t))] = exp(Co(T)OL),
0<t<T
for every 60 € [0, 1].

Let A(8) = |1+ log 8|7t if 6 < 1; h(8) = 1 otherwise. Let {: R — R be a
nonnegative function of compact support. For each measurable p, define

p(x) = [ LE(L(x - 2))p(2) dz.

The proof of the following lemma can be found in the Section 5 of [13].
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LEMMA 3.2. There exists a constant C’O(g“) such that for every nonnegative p,
1Y A
(3-5) 2 Pr(xi) = Co(Dllpll~Allpl L)L + ®(q)).
i=1

If we choose a ¢ that is identically 1 in the interval [0,1], Lemma 3.2 yields
Lemma 3.3.

LEMMA 3.3. There exists a constant C'O such that for every nonnegative mea-
surable function p,

1 A
@8) [ (2z+ 7)oz < Collplu Mol (3 + D).
In particular, for every interval (a, b],

(3.7) %J/(a,b,Q) < Coh(b — a)(1 + ®()).

Note that (3.7) follows from (3.6) by choosing p(x) to be the indicator func-
tion of the interval (a, b].

4. Exponential bounds on the collision term. Recall that the support
of V is contained in the interval (—rg, ry). We take W: R — R to be an odd
function with W' =V, W(z) = —1 if z < —rp, and W(z) = % if z > ry. We then
take a twice continuously differentiable periodic odd function W;: R — R of
period one such that |[W(2)| < % Wi(z) = W(Lz) for z € [-ry/L, rq/L], and
Wy (2)| <2, |W}(2)| <3for ze[rq/L,1—ry/L]. Such W, exists if we choose
L sufficiently large. As a result, we can write

(4.1) 1(2)=LV(Lz)+ Ry(2)

for z € [-ry/L,1 —ry/L], where Ry is a continuously differentiable periodic
function with |R;| <2, |[R}| < 3.

In the sequel P9 and E9 denote the probability and the expectation of the
process q(¢) with q(0) = q. Define

AL(@,2) = X V(L = +2)) (v, = v, )
(4.2) A(q)=A.(q,0),

0 = max|v
o

al-

The main result of this section is the following exponential bound on the
total number of collisions.

THEOREM 4.1. There exist a sequence of stopping times T; € [0, T'] and
four positive constants n, = 1,(T), 11 = 11(T), C, = C,(T) and C, = C,(T)
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such that
.1
(4.3) Lllm 7 log Pr(T; #T) = —o0,

and

(a) for every positive c,

T
(4.4)  Cy(c,T):=supsup % log E, exp/ "eAL(q(t), 2)dt < o0
L 0

zeT

(b) if ¢ < mqloglog L, then
T
(4.5) E, exp / " cAL(q(t)) dt < exp(C,eL);
0
(c) if ¢ < 7, loglog log L then

T N N _
(46)  supE,exp / " cAL(a(t), 2) dt < exp(CyL + Cpcel®ZeL).
zeT 0

Proor.
Step 1. Clearly, part (c) implies (4.4). So we only establish parts (b) and (c).
Recall the function W, defined right before (4.1), and define

4c
A D Wilx; —x;+ Z)(Uaj — Vy,)s

i, J

F(q) =
1
G(y) = EZWL(xk —y+2)+Wi(x,—y—2).
k
Since W is odd,
4c
F(q) = I 2 (Weolx; —xj+2)+ Wi(x; — x; — 2))v,, =8¢ ) G(x;)v,,
i J J
It is well known that the process

M, = exp(F(a(0) - F@) - [ e "orPlef (@(s)) ds )

is a martingale for ¢ € [0, T']. Hence

(4.7) EM. =1,
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for every stopping time 7. On the other hand,
01(q) := e T o4e"(q) = A4 F(q)
= —4eY V(L(x; — 2+ 2))(0,, — vozj)2
i, J
4
- fc Y Rp(x; —x;+2)(v,, — Uaj)z
i, J

(48) = Qll(q) + 912(q)’

0,(q) := e Fozef(q)
= 13> K(a;a;, y8)V(L(x; — x;))

i,jv,6
x [exp[8e(G(x;) — G(x ;) (v, — vai)] —-1],
where for (); we have used (4.1) and for (), we have used the conservation of
momentum (1.4)(v):
4.9) F(S]'q) — F(q) = 8¢G(x;)(v, — v,,) + 8¢G(x)(vs — v,,)
=8¢(G(x;) — G(x;))(v, — v,).

We rewrite (4.7) as
(4.10) EY exp[F(q(T)) — F(q(0)) - fo ", (q(s)) ds — /o " 0,(a(s)) ds} —1.

Step 2. Applying the Schwarz inequality in the form E{ BY2 < (E] AB)Y/2.
(E] A=Y 10 (4.10) yields

Ef oo (4 [ 011(a(s) + 02(a(e) ds
(4.11)

; 12
< (B exp(P(@©) - F(a(e) + [ Qua(a(sn ds)

Since |[W;| < % |R;| < 2, for some constant C, the right-hand side of (4.11)
is bounded above by
N2

(4.12) exp<(2c15 + 16cT62)T) < exp(CycL)
so long as 7 € [0, T']. We would like to choose 7 sufficiently small so that Q,
can only cancel at most one-half of €),,. For this we need to obtain a suitable
upper bound on €),.

Step 3. To bound Q,, first observe that |G|, < N/2L = Z/2, and as a
result,

(4.13) 8¢(G(x;) — G(x)) (v, — v, )| < 160cZ.
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Further, the inequality |A| < B implies |e4 — 1| < eB|A|. Therefore, (4.13)
implies

|lexp[8c(G(x;) — G(x,)) (v, — v, )] — 1] < 160ce™®*?|G(x;) — G(x;)|.
This in turn implies

(4.14)  [Q(q)] = 1067 3TV (L(x; — x,))[G(x;) — G(x)|(ve, — va,)°

L J

for some constant c,. Notice that V(L(x;—x;)) #Oonly if x; € (xj—ro/L, x;+
ro/L). Since W/, is bounded by two on the interval [rq/L,1 — ry/L], we have
[Wi(x, —a)— Wi(x, —b)| <2(ro/L) whenever b € (a —ry/L,a +ry/L) and
%, & (a — 2ro/L, a + 2ry/L). Therefore,

|G(x;) = G(x)| <

% Y [W(L(xy — x; +2)) — W(L(xj, — x; + z))]l
3
+ I% Y [W(L(xp — x; — 2)) — W(L(x), — x; — z))]l

1 2 2
< PIWloot (w14 2= 22w+ 24 22.0)

L
1 27‘0 27"0 roN
- 20 co 2077
Wt (- 2= 25— 2+ 20, ) 42727
- 1 SUD A 2rg + 2rg . 2roZ
=7 ap a T,a T’q 7

whenever V(L(x; — x;)) # 0. Using this for (4.14) yields

|Q(a)| < eyce®®? 3V (L(x; — x;))
i J
1 2rg 2rg
X [zsgpd/<a— T’G+T’q)

+ zrzz](vai - Uozj)z’

47'0
L

1Qy(a)] < c,cet%¢Z [éoh<

)(1 +O(q)) + Zroz}

L

x Z V(L(x; = 2,))(Ve, = U, )%
i, J
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where for the last inequality we applied (3.7). This, (4.11) and (4.12) imply

E} exp{Zc /O Y V(L(x; = %+ 2)) (v, — vg,)* ds

i J

- (o) 7

2 2 Z
— sup sup W(a—ﬂ,ajt e q(t)>+r0—}
L « 0<t<T L

(4.15) L L’

< | Avasds]
0
< exp(Cycl),
where C,(c) is a constant multiple of e*67Z, In the case of z = 0 we may write
4r T
ES exp{ [2(: - ch(C)h<TO)(1 + sup @(q(s)))} / AL(q(s))ds}
(4.16) 0<s<T 0
< exp(CycL).
Step 4. We choose 7, so that for ¢(L) = n; log log L,

47‘0

(4.17) LIan]o Cz(c(L))h<T> =0.

We then define T';, by

(4.18) T, = inf{t e [0, TT: cz(c(L))h<4Lﬂ>(1 + sup <D(q(t))) > 1}.

O<s<t
For such T';, the inequality (4.16) implies (4.5). On the other hand, by the
Chebyshev inequality,

P (T, #T)

= P (Catetyh( 2 ) (1+ sup B(ae)) = 1)

0<s<T
(4.19)

<EY exp(@oL(l + oi‘j?f’(q“”)) eXp(— Cz(c(L;);if(Mo/L))

0L
< exp(""L Co(TL - cz<c<L>fh(4ro/L>>’

where for the last inequality we used (3.3). Evidently, (4.19) and (4.17) im-
ply (4.5).

Final Step. From (4.15) and the Schwarz inequality E; BY? < (E;,AB)Y? .
(ELA~1H)Y2, we obtain

E, exp<c /0 " AL (q(s), 2) ds)

(4.20) . N 12
< exp(ECZCL> <EL exp<ccz(c)<f + OT) /0 AL(q(s))ds)) .
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Now we apply (4.4) to conclude that if
Z
ch(c)<Z + rOT) < loglog L,

then the right-hand side of (4.20) is bounded above by the right-hand side of
(4.6). This completes the proof of part (¢c). O

5. Molecular chaos. The main result of this section asserts that if £, is
an approximation to identity, the empirical density m (¢, dx) can be replaced
with m, % £, with an error that has a superexponentially small probability
distribution.

For the sake of definiteness, we pick a nonnegative smooth function ¢ of
compact support with [ {(z)dz = 1, and we set {,(z) = e *{(¢12). Define

N
(51)  ma(x D)= m (x50 = 7 3 4(x— x(0) La(t) = a).
i=1

THEOREM 5.1. For every pair (a, 8) with v, # vg, and any smooth func-
tion H,

limsup limsup

e—0 L—oo

<| T roa e [ 5 Va0~ 5,0)
x L(a;(t) = a, aj(t) = B)H(x;(t), t) dt

- L /OT/ my (%, t)mg (x,t)H(x,¢t)dx dt:”g 0.

(5.2)

The main ingredient for the proof of (5.2) is the following lemma.

LEMMA 5.2. Let (a, B) and H be as in Theorem 5.1. Then there are con-
stants C, and Cs (depending only on T" and H) such that for every L and e,

sup By exp| [ X VL0~ 1,0+ 21— 2) Hxi(0)+ 21,0)

|z1], |22 <e

(5:3) — V(L(x;(t) — x () H(x,(2), t)d'f}

< C,exp[CsL(A(L™! + &))'/?].
We first demonstrate how (5.3) implies (5.2).

PrROOF OF THEOREM 5.1. Without loss of generality we assume that the
support of ¢ is contained in [—1, 1]. As a result, the support of £, is contained
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in [—e, ¢]. We integrate the term with expectation in (5.3) against {,(z,){.(22).
If X(z4, 2z,) denotes the exponent in (5.3), we have

Ey [ [ exp(X (21, 2))0u(21)6,(20) dz1 Az,

(5.4)
< C,exp[CsL(h(L™' + £))?].
Write
(5.5) Y(t,q)=Y V(L(x; —x,;))H(x;, ) l(e; = &, a; = P).

i#]
Then by Jensen’s inequality the right-hand side of (5.4) dominates

Eroo( [ [ X 2t etz dzdz,)
- E, exp{/OTL //ZJ V(L (xi(t) = x(8) + 21 — 25)) H(2;(¢) + 21, 7)
| L(a;(t) = @, a;(t) = B){(21)s(22) 2y dz, di
_/OTL Y(t,q(t))dt}
_E, exp{/oTL le/fV(L(zl — 2,))H(z1, 1)

L(a;(t) = @, a;(t) = B)
x Lo(21 — 2;(8)) L. (22 — x ;(8)) dzy dzp dit

—/ Y (t, q(t)) dt}

(5.6)

=E, exp{L/OTL //LV(L(Zl — 2,))
x H(zy, t)m, (z1)mg (2;)dz,dz,dt
_ /OTL Y(t, qt)dt}.

Since (5.6) is bounded by the right-hand side of (5.4), we obtain

limsup limsup

e—0 L—oo

x {% log E;, exp{L /OTL /fLV(L(zl — 2,))H(21, )

X ma, a(zla t)mﬁ 8(22, t) dzl de dt

—/ (¢, a(t)) dt}}

(5.7)
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Since the function H(zy, t)m, .(z1,t)mg .(2,,t) is continuous and uniformly
bounded in a z;-variable, we have

] VL= 2D H e 0m e O, (o ) s
(5.8)

— [ H(z, tyme, (2)mp o(2) dz| < a (),

where a; (¢) is a nonrandom constant with lim;_,  ar(e) = 0. This and (5.7)
imply (5.2) because L — oo before ¢ — 0. O

We end this section with the proof of (5.3). A review of (2.5)—(2.11) should
motivate some of the steps of the following proof.

PRrROOF OF LEMMA 5.3.

Step 1. Recall the function W; that was defined in the beginning of the
previous section. Fix a pair (a, 8) with v, # v and a pair (zq, z;) with
|z1], |22] < €. Set z3 = z, — z; and define F(¢, q) to be

(5.9) % Z[WL(xi —xj+2z3)H(x; + 21, t) — Wr(x; —x;)H(x;, t)]

x I(a; = a,a; = B).

J
Using exponential martingales, we obtain

E, exp(F(TL, A(T) - F(0.a(0) - [ " %(t, q(t)) dt
(5.10)

T,
— [T e arer (¢, q(t)) dt) =1
0

In the succeeding steps we will study various terms that appeared in the
exponent. In the sequel, ¢, ¢, ¢, . . . denote constants whose values may change
from line to line.

Step 2. We start with O, = F(T;,q(T)) = Q41 + Qq5, where

1
Oy, = 2 Y Wi(x; —x;+ 23)(H(x; 4+ 21, Tr) — H(x;, Tp))
i, J

(5.11) 1 e =R
O, = I Y (Wr(x; —x;+23)— Wp(x; —x;)H(x;, Tp)

i, J
x (e =a,a; = B).
By smoothness of H, we clearly have

N2
(512) |Qll| < C1T|21| < ClLZZS.
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Recall that the support of V is contained in [—rg, o] and that T is the inter-
val [-3, 2] with the endpoints identified. Recall that W/, is bounded by two,
outside the interval [—ry/L, ry/L]. We then write

(5.13) Oy = Qo1 + Qop + Qy23,

where (1,, is obtained from ,, by restricting the summation to i, j with
either L(x; —x;) € [=rg, o]l OF L(x; — x; + 23) € [—rg, o], Q45 is Obtained by
restricting the summation to the case of either L(x; —x;), L(x;—x j+23) < —rg
or L(x; —x;), L(x; —x; + z3) > rg and (),5 is obtained by restricting the
summation to the remaining cases.

Step 3. If either L(x; — x;) or L(x; — x; + 23) belongs to [—rg, o], then
either x; € [x; —ro/L,x; +ro/L]or x; € [x; — 23 —ro/L,x; — 23+ rg/L]. As
a result,

r r
G14) 0wl = ZIWLllHlosupos (a= 2ot PoaTy))

We now turn to ();,. If both L(x; —x ;) and L(x; —x j+z3) are outside [—rg, o]
and on the same side, then W (x; — x; + 2z3) — W (x; — x;)| < 2|z3|. Hence

NZ
(5.15) Q20| = 2 H oo~ = 4sZ%||H| L.

FOI’ 9123, assume fOI’ example L(xl —_ x]) < —ro but L(xL — xJ + 23) > 7‘0. ThIS
implies z3 > 2ry/L and

o To
X; € x]+f—z3,x1—f

Hence
2r
(616) [0l = 2IWe || Hlsup s (a0 20~ 2, a(Ty) ).

Combining (5.13)—(5.16) yields

2
Q] < csupJV<a, a+2e+ % q(TL)>

for some constant c¢. From this and (5.12) we conclude

2
Q] < cLe+ csup,/l/(a, a+ % + 2e, Q(TL))

for some constant c¢. The term F(0, q(0)) can be treated likewise. Thus

2
<cLe+ csup sup ./f/(a, a+ % + 2e¢, q(t)).

a 0<t<T

(5.17)
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Step 4. Next we study another term in the exponent of (5.10):

oF 1 JH
E(t, q) = 2 %[WL(%’ —X;+ Zs)ﬁ(xi + 25, t)
(5.18) oH
- Wi(x; - xj)(;_t(xi’ t)]
x (a; = a,a; = B).

This term can be treated in the same way we established (5.17). The only
difference is that H is replaced with ¢H/Jt. As a result

T,
[ o wama

(5.19)

2
< cLeg+ csup sup ./V(a, a+ 0y 2¢, Q(t))
a 0<t<T L

for some constant c.
Step 5. For the last integral in (5.10), we write

(5.20) e TorWel = pF + e Fofell = Q, + Q.
A straightforward calculation yields that (), = o4 F is equal to
(Ve = vp) D[ V(L(x; — xj + 23)) H(x; + 21, 1)
i J

= V(L(x; — x;))H(x;, )] L(e; = o, a; = B)
Vo — Ug

L

Y[RL(x; — xj+ 23)H(x; + 21, t)

i J

(5.21) — Rp(x; —x;)H(x;, )] 1(a; = e, a;=p)

v, JH
tT Z[WL(xi — % +23)— (% + 21, 1)

iJ
oH
— WL(xi — xj)ﬁ(xl, t)] ]]'(ai = a, O(j = B)

=: Opy + Oy + 3,

where R; is defined by (4.1). Note that (),, is a constant multiple of the
integrand in (5.3). The term ,; is nothing other than (5.18) with ¢H /dx
instead of 9 H /dt. Hence we can bound it as in (5.19):

Ty
(5.22) I /O Qs dt

2
<cLe+ sup sup /l/(a, a+ % + 2e, q(t)).

a 0<t<T

On the other hand, since |R}| < 3 and H is smooth, it is not hard to show
that

<cLes.

T,
(5.23) ‘ /0 Q,, dt
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Step 6. We now turn to e ¥.oze”":

Q3 = e_F"Q/ceF(t’ Q)
(5.24) =133 K(aa;, ) V(L(x; — )

i,J Yo

x [exp(F(t, S}Ya) — F(t,q)) — 1],

where
F(t,S])q) - F(t,q)
= %[WL(xi —xj+2z3)H(x; + 21, t) — Wr(x; —x;)H(x;, t)]
x (L(y=a,8=B) = L(a; = a,a; = B))
+ % k;j[WL(xi —xp + 23)H(x; + 24, 1)
(5.25) — Wi(x; — xp)H(x;, t)]

x (L(y = @, = B) — L(e; = @, = B))
1

+z Z [WL(xk—xj+23)H(xk+zl,t)
ki, j
— Wi(x), — x;)H(xy, )]
x (L(ap =a,6 =B) — L(ay, =, a; = B))
=R1+R2+R3.

First observe that the right-hand side of (5.25) is bounded:
v N
|[F(t, 8Fa) - F(t,9)| < 3% | Hll.. = 3Z| H | .

Since the inequality |A| < B implies |e4 — 1| < eB|A|, we have

Q3] <333 K(jarj, y8)V(L(x; — x;)) exp(3Z | H||,,)

i#j v8
5.26
(5.26) x |F(t, S;/J-'Sq) - F(t,q)|
< Qg1 + Qg + Qgg,

where ()5, is obtained by replacing the term with absolute values with |R;]|.
Since |Ry| < (| H|l /L), we have

c
(5.27) Oy < EAL(Q)a
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where A;(q) is defined by (4.2). We now turn to Q;,:

Qg = 7 X V(L(x = x,)) LV, # va,)

i J

|
X i : -[WL(xi —xk+23)H(xi+Zl,t)

k#i, J

— Wi(x; — x)H(x;,1)]

(5.28) < Y V(L(x; — x;)) L(v,, # Uaj)|WL(xi — 2 + 23)|
i, ),k

X |H(x; + 25, t) — H(x;, t)|
+ 7 ¥ V(L —x) Lvg, # v,

i, J,k

SNl o

X IWL(xi —xp+23) — Wi(x; — xk)I IH(xia t)l
=: Qg1 + Q3.

By smoothness of H,

Qg1 = 22 3 V(L = 2,) L(v,, # V)
i, 7,k
(5.29) = ClzN > V(L(x; — %)) L(vy, # va,)
i, J
< ceAL(Q),

for some constants ¢; and c,.
Step 7. To treat (3,5, we argue as in Steps 2 and 3. We first write

(5.30) Q390 = Q3291 + Q390 + o3,

where (,,, is obtained from restricting the summation to i, j, £ with L(x; —
x3) € [—rg, ro] or L(x; — x + 23) € [—rg, o], (2320, IS Obtained by restricting
to the case of either L(x; — x;), L(x; — x; + 23) < —rg or L(x; — x3), L(x; —
X, + 23) > ry, and sy is obtained by restricting to the case L(x; — x;),
L(x; — x5, + 23) € [—rg, rg] but one is less than —ry and the other greater
than ry. As in (5.15) we can show

N
(5.31) [Q3205] < CEIAL(Q)-
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By taking the summation over % first, we can estimate (35,, as
2c
Q391 < f”W”ooZ V(L(x; — x;)) L(v,, # Va,)
L J

(5.32) xaf/(xj—%—s,xj+%+s,q>
<A (q)sup s (a,at 2042
= l; L q ap s I: 87q
for some constant c¢,. We can repeat the derivation of (5.16) for ()5,,5 to obtain

2
(5.33) 03223 5 %AL(q)Supe/l/<a,a+ % +28, q).
Combining (5.30), (5.31), (5.32) and (5.33) yields
Cq Zro
Qgpp < ZAL(Q)SUPJ’/ a,a+—=+ 2e,q | +c1eAL(q)
for some constant c¢,. This, (5.29) and (5.28) imply
C 27‘0
(5.34) Qg < ZAL(q)sup./l/ a,a+ A +2e,q ) +ceAL(Q).
The term (55 is treated likewise. This, (5.34), (5.26) and (5.27) yield
1 2rg 1
(5.35) Q3] < cAL(Q) supz/l/ a’a+T+28’q +e+L

for some constant c. This and (5.24) imply

v g F
[ et eset (nayde

(5.36) < ( /0 " AL(q)dt>

1 2
X ( sup sup E./V(a, a+ % + 2e, q(t)) +e+ L‘1>.

0<t<T «a

Final step. From (5.10), (5.17), (5.19), (5.21), (5.22), (5.23) and (5.36), we
conclude EzeX*Y =1 with X equal to vz — v, times

T,
san [ XV @ =+ ) H i + 20, 0) = V(LAx; — %)) H(xi. )]

x I(e;(t) = a, a;(t) = B)dt,
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Ty
Y| <R == cl<L +/O AL(q)dt>

1 2
(5.38) x | sup sup —.# a,a+ﬂ+28,q(t) +e+ L1
0<t<T a L L

+ ClgL

for some constant c;. We use the Schwarz inequality in the form E eX/? <
(EpeX+Y)Y2(Ee~Y)1/2 to deduce

(5.39) E;eX? < (Ee®)Y2.
We then replace H with —H to deduce
E e X2 < (ELef)Y2.
From this, (5.39) and the elementary inequality el*l < e* 4+ e=* we deduce
(5.40) E X2l < 2(Ee®)V2.
Recall that by (3.7) and (3.4),

2
E; exp(cl sup sup W(a, a-+ % + 2e, q(t)))

a 0<t<T

<E, exp[&Lh(% + 28> (1 + sup ‘P(Q(t))}

0<t<T

< exp((f&@h(% + 28)) exp(%Lh(% + 23>CO(T)>.
0

Because of this, (5.40), (5.38) and (5.37), the (5.5) follows if we can show

2
E; exp[cl sup, SUPg~¢<7 %./I/(a, a+ % + 2¢, q(t))

(5.41) x fo . AL(q(t)) dt]

< exp[cL(R(L™* + ¢))"/?],

for some constant c¢. For every A, the left-hand side of (5.41) is bounded
above by

Brexp(ean [ Av(ao)d)
(5.42) Vv E, exp(cl% /O " AL ) dt)

X ]l(%sup sup /l/(a,a+%+28,q(t)) > A)

a 0<t<T
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because ./ is always bounded by N. The first term in (5.42) is bounded above
by exp(C(c1A, T)L) by Theorem 4.1. By Lemma 3.3, the second term in (5.42)
is bounded by

E, exp <ch /0 " AL () dt)

x ﬂ(%h(% +28)(1+ sup fb(q(t))) > /\)

0<t<T

< (EL exp<2(31Z /0 & AL(q(t))dt))l/z

x PL<%h<% + 2,9)(1 + sup CD(q(t))) > /\)1/2

0<t<T
<exp(3C1(2¢,Z, T)L)

x exp(~AML)E exp[Méoh(% + 2a> (1 + sup @(q(t)))]
0<t<T
for every positive constant M, where for the first inequality we used the
Schwartz inequality, and for the second inequality we applied (4.4) and then
the Chebyshev inequality. We now choose A = (h(2ry/L + 2¢))Y2 and M =
1C1(2¢,Z, T)(h(2ro/L + 2¢))~42 and apply (3.4). As a result we have (5.40)
and this completes the proof of the theorem. O

6. Uniform integrability, part 1. In this section we establish an expo-
nential bound for the collision term that is slightly stronger than (4.4).
We start with some definitions. Fix a number b € (0, 1):

x(loglog log x)°, x> e°,

(6.1) Iy(x) == x(ws(x)) = {

0, x < e,

X(x):= [ T V(Lxi(s) - x1(5)
(6.2) 0 %)

x L(a(s) = @, a;(s) = BYV(L(xi(s) — x — vs)) ds,

(6.3)  7(x)=1(x):=inf{t: X,(x) =1}, o(x) = oy(x) :=7(x) ATy,

where v € R, and [ > 0 are given. Throughout this section we assume v, v, vg
are distinct.
The following is the main result of this section.

THEOREM 6.1. There exists a positive constant 1, = 7,(b) such that for
every positive T,

(6.4) Co(T) := sup % log E,, exp|:n2LfF3(XTL(x)) dx] < 0.
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The following lemma is the main ingredient for the proof of (6.4).

LEMMA 6.2. There exist positive constants n; and Cg(T') such that for every
positive I and L with [ < exp((log L)?),

l /
(65) T log Epexp[2nsLuws(l) [(Xr, (x) = X (x)) dx] < Co(T).
We first demonstrate how (6.5) implies (6.4).
PROOF OF THEOREM 6.1. First observe that (6.5) means
1 /
(6:6) 7 log Epexp|2n;Lws(l) [(Xr, (x) = DL(ry(x) < Tp) dx] < Co(T).
In particular,
1 !
= log By exp|2nsLws(D) [(X 7, (x) = DL(X7, (x) = 2 dx | < Cy(T),
which in turn implies
1 /
67)  LlogE; exp[2n3Llw3(Z) [ 1(X ez, (x) = 20) dx] < Ci(T).
Moreover,
1
Zlog Ey exp[nng3(l) / Xp, (0)11(Xp, (x) = Z)dx]
1
=7 log Ef, exp[n3Lw3(l) /(XTL(X) - D1(Xp, (x)=1)dx
68) +n3Llws(l) [ 1(X g, (x) = 1) dx|
6.8
1 1
<7 Iog{EEL exp|2n3Lws(1) [(X g, (x) = DL(X 7, (x) = ) dx |
1
= Co(T),
where for the first inequality we used e*™® < 1¢2® 4 12>, and for the second
inequality we used (6.7) and (6.6).
Put w; = wg First observe that since X is bounded above by a constant
multiple of L?, there exists L, such that X, < exp((log L)?) for L > L. For
X > e°,

[3(X) = (d5(X) — ths(e) X = [ @b(OXL(X = Dy,
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From this we deduce that if L > L,

1100 By exp| nal [ To(Xr, (x)dx]

1

exp((log L)?)
(6.9) i3 log E;, exp[nzL /e /w3(l)XTL(x)

% 1(Xp, (x) = Dy(l) dx cu],

where y(1) = bw,(1)?2(log log I)~*(log )~*I~1. Choose 1, = m3/cq Where ¢, =
f;o (1) dl. From Jensen’s inequality and (6.8) we conclude that the right-hand
side of (6.9) is bounded above by

1 exp((log L)?)
= log By, [ exp|mze Lws(0) [ X, () 1(Xp, (x) = ) dx |

(6.10) ¢ z
« 2D g < Cy(T),
1

where ¢; = f;’(p(('og 28 y(1)dl. This evidently completes the proof of (6.4). O
In the sequel, %, denotes the o-field generated by (q(s): 0 < s < A). Define
(6.11)  g(x,t,q) =3 V(L(x; —x;)) L(e; = &, & = B)V(L(x; — x — vt)).
i, J
Note that we can write

Ty
(6.12) /(XTL(x) — X oy (x)) dx = //g(x) g(x,t,q(t))dt dx.

PROOF OF LEMMA 6.2.
Step 1. The expression (2.14) suggests looking at the exponential martin-
gale corresponding to the process
UB — U U—VD

ZWL(xt_x])H< X; + axj—vt>]l(ai=a, O(J»ZB),
i, J

Vg — Vg Vg — Uy

where H is the indicator function of the set {r; > T'; }. The randomness of the
set and the nonsmoothness of the indicator function will not allow us to choose
such H. Because of this, we introduce several approximation procedures. Let
£ be a positive constant such that k, = ¢! is an integer and put A, = 0. We
divide the interval [0, T') into smaller subintervals [A, A, ), each of which
is of length £T'. Put

H(x> k7 ‘9) = ]l(Tl(x) € [)\k’ )\k+l))’
(6.13)
H(x, k&)= /gL(x —2)H(z, k, ¢)dz,
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where z;(z) = L{(Lz) and { =: R — [0, c0) is a smooth function of compact
support and will be chosen later. We fix ¢ and for each integer % € [0, ky) we
define F,(q, t) = F(q, ¢, ) to be

c N
- - xH
L(UB _ va) g WL(xl x]) L

Ug— U UV—U
x( B x; + axj—vt,k,g)]l(aiza, a; = B),

Vg — U, Vg — Vg

where W, = W, —1if vy —v, >0, W, =W, +1ifvg—v, <Oandéisa
positive constant. We also define

ko—2
(6.14) G(a,t) =G(a,t,e) = ) Fp(Q,t) L(t = Appq).
k=0
Note that our choice of W, implies
(6.15) % __ % 4, <0 and Fu(q,t) <0
' lv, —vgl ~ vg— U, L= W48 =0
Consider the process
ko2
M(©) = exp| G0, )~ 3 Fi(@00k,) Anin) L= Ape)
k=0

ko—2 ¢ (4F,
- L= /\k+1)/ (&_ + %Fk>(Q(S), s)ds
=0 Aky1 4
t
—/ e %o2e%(q(s), s) dsi|.
0
We claim
(6.16) E;M(T;)=1.
To see this, we first define the following process for ¢ € [A,, 4, T]:
My (6) = exp| G(a(0). ) ~ BNy M)

[ (5 +o6)@w.sds- [

A \ It B+l

e %.o7.e5%(q(s), s) ds:|.
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Since Hy(x, k, &) is measurable with respect to the o-field %, , the process
M, (t) is an exponential martingale. As a result,

E M(Ty) = ELE[M(T)|%, ]

k-3
= exp<G(q(/\k°1’ ’\kofl)) -2 Fk(Q(/\k+1), Ak+1)
k=0
k0—3 )Lk(rl (9Fk
e Tr ,5)d
i }E)/;‘kﬂ ( Jat + 0 k)(Q(S) 8) S

/A’“f1 -G oy G
- e " o/.e”(q(s), s)ds
0
x (T, > Ako—l)EL[Mk0—2(T)|9;\ko,l]
+E M(Tp) (T, < Apy1)
=E M(Tp A Apy-1)s

where the last equality follows from the fact that we replace E[M; _,(TL)|
.%kofl] with 1 because M, is an exponential martingale with M,(A,,,) = 1.
Inductively we can show

ELM(TL) = ELM(TL AN )\k)

From this we can deduce (6.16) because M (0) = 1.
Step 2. Put

ko2
Q(e) = GA(TL) Tr) = 3 Fr(@(Ai1)s Aeya) L(TL = Ay,
0

(6.17) JF,

0y(q, t, k, &) = (7 + %Fk)(q, t),

Q3(a, ¢, 6) = e 9 o/e(q, 1).
Using the decomposition (4.1), we have
‘QZ(q7 t, k, 8) = ‘QZl(q7 ¢, k, 8) + 922(q7 ¢, k, 8)’
Qoi(a,t, k, &) :=—¢) V(L(x; — x;))
i, J

Ug—VU v—V
XHL( B xi+ axj'—Ut,k,E)
UB—Ua UB_Ua

(6.18) x I(a; = a,a; = B),

J
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Dop(0,t, k, &) = _ZZRL(xi ~x})
i,J
Ug— VU —
XHL< B xi—i— v l)axJ-—Ut,k,g>
UB_ULY UB_ «

x (e =a,a; = B).

Note that the argument of H; is chosen in such a way that when we apply
d/dt + o4 on the H; term, we obtain zero. Use (6.16)—(6.18) and apply the
Schwarz inequality in the form E;BY? < (E,AB)Y?(E,A™1)Y/2 with A =
exp Q4(e). As a result,

ko—2

Ty
Erow(~4 3 1T = M) [ Qulao). ko) dt)
k=0 k+1

ko—1
(6.19) < [EL exp<—Ql(s) + > (T = i)
k=0

x /Af Quo(q(0), t, b, &) dit + /OTL Qs(q(), t)dt)]l/z.

Step 3. We start with bounding ;. We clearly have

p—1
Kp(x):= ) Hp(x,k,e)I(Tr = Apy1)
(6.20) k=0

< /L{(L(x —2))1(z € B)) dz,

where B; = {z: 7(2) < Tp}. Put o = (v —1,)/(vg —v,). We use (6.15) and
(6.20) to obtain

ko—1

~M(e) <= X Fir(a(Ty), T) I(TL = Aya)
(6.21) =0
<c,csup . K (0x;(T)+2)
2

for some constant ¢;. The term Q,, can be treated likewise; using |R;| < 2 we
obtain

k-1 7,
> [ 0p(a(t), bk, e) dt
=0 * Mrt1

< c,¢T sup sup) Kp(wx;(t)+ 2)
0<t<T =z j

(6.22)

for some constant c,.
Step 4. We now turn to ().

(g, ) =323 K(aja;, y0)V(L(x; — x;))
(6.23) ET
N [exp(G(Squ, t) — G(q,t)) — 1]
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8
Moreover G(S;/q, t) — G(q, t) equals
ko—1 _

Y e Wi(x — x)

iz L(vg —va)

Ug— U v—V
XHL< B x; + = xj—vt,k,é‘)
Ug — Uy Ug — Uy

X (]l('y: a,d = :8)_ 11(Oli =a, ;= B))]l(t = /\k+1)

ko—1 :
+ S
IE)L(UB—UQ)
7 Up—V v—v
W - H £ < ] tsk,
(6.24) Xmgj L(xy — X)) L<UB_Uaxm+UB_vaxj v g>

x (e, =, 6 =B)— L(a, =a, aj = B)L(t = Apia)
ko—1 :

+ 2

im0 L(vg —v,)

A Up — U UV—UD
x > Wp(x;— xm)HL< £ x; + *x,, — vt, k, 3)
met, j Vg — U, Vg — U,

X (]1(7 =, 0y, = B) - ]l(ai =0, 0y = B))]l(t = /\k+l)

Recall that an inequality |A| < B implies [e4 — 1| < eB|A|. On the other hand,
since
kp—1

> HL(x’k,g)Sazfgdx,
0

we have
6¢caN
vo _ _ Y A
|G(SU qat) G(qat)| =< |Ua_UB|L C3C.
Hence
|Q3(a, ¢, &)] < % > > K(aja;;v8)V(L(x; — xj))ec35
i#] 7,0
(6.25)

% |G(S]a,t, €) — G(a, t, ¢)|
< Q5(9,t, &) + Q32(q, ¢, &) + Q33(q, ¢, &),

where Q3;(0q, ¢, &, €) is obtained by replacing the term with absolute values on
the first line with |R;|. Set

Ty
Qg(e) = /0 05:(q(t), ¢, &) dt.
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Note that
ko—1
Lm Z H(TZ € [/\ka )‘k+l)> TL e )‘kJrl’ te [/\k+17 TL])
k=0
=1(r, < Ty, te(r,TL]),
62 T MmsTnteGuT)
o
Y (€A Apga)s Tr = Apys t € [Apya, T )
k=0

< ]l(Tl < T, te (Tl7 TL])
Using this and the fact that L|R,| is uniformly bounded, we deduce

(627) 0 (o) = SCOPEO 1y (e ae

for some constant c,. Next we concentrate on ()3,. For some constant cs,

1 =
|932(8)| = ECSCeXp(C3C) Y Ty = Agia)
k=0

Ty
x /A > V(L) = 2,(£))) LV ) # Va0
kL ok jtm
x |W 1 (x,(8) = %, ()|

Ug— U vV—U
x HL<U’3_U x,(8) + —— 2, () = vt K, a> dt
B a B a

(6.28) < %2c56exp(03c‘) /TL Yo V(L(x;(2) — x(t)))
O izj#m
X 1 (Vay(1) # Va(1))

Ko=)+ 2=, (8) — vt ) dt
X x; x —v
L vg— U, vg— U,

< 2c5EeXp(035)Z< /0 " AL () dt)

x sup sup iZKL< - xm(t)—i—z),
1%

z 0<t<T m UB_ a

where for the first inequality we have used (6.26). The term Q33(¢) is treated
likewise. This, (6.28), (6.27), (6.26) and (6.25) imply

Ty Ty
[ Qalt a(0). o) dt < eccexp(ca) [ “Ap(a(e)ds
(6.29) [ . 1
x | L™+ sup sup EZKL(ka(t)"‘Z)}
k

z  0<t<T

for some constant cg.
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Step 5. From (6.29), (6.22), (6.21) and (6.19) we learn

ko—1
wap(—% > 1Tz ) / 0(@(0). 1, 1, 2) di

IA

{EL exp[c7c"exp(c36)L‘l / AL (q(t))dt

(6.30) + c7¢exp(cs) sup sup — Z K (0x,(t)+ 2)

z 0<t<T m

T, 1 1/2
X/O AL(q(t))dt+c7C'Sl;|pZ%:KL(wxm(T)sz)“

{Epexp[ X, + X, + X;]) 7

< (Eg exp(3Xl))l/6(EL exp(3X2)) (EL exp(3X3))
We let ¢ go to zero. By (6.26) the exponent on the left-hand side of (6.30)
converges to

_ T,
o = % B, /1'1(2) § V=5 0)

(6.31) Vg — U vV — v,
X §L<v:— o x;(t) + Vg = vaxj(t) — vt — z)
L(a;(t) =, a;(t)=B)dtdz

16

As a result,
(6.32) EpexpQy < (Epexp(3X1))"°(E, exp(3X,))"° (Ey exp(3X5))"".

We now choose ¢ = nws;(l) where wj is defined by (6.1) and n € [0, 1] will be
chosen later. Then for I € (exp(e), exp((log L)?)),

(6.33) cexp(cs¢) = nloglog log I(log log 1)%™.

If I < exp((log L)?), then we can use (6.33) to show that for some constant cg,
cexp(cs€) < cgL. Using Theorem 4.1,

Ty
By ep(3Xy) < Eyow(a [ A(a(e)dt)
< exp[LCy(cg, T)]-
Step 6. We now turn to X,. Recall

(6.34)

T,
(6.35) E,exp(3X,) = E; [307c'exp(c3c')YL / AL(q(t) dt},
0
where

Y; =sup sup N Z Ki(ox,(t)+ 2).
z 0<t<T
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By Lemma 3.2,
(6.36) Y.(q) = ca(1+ sup (a()A(|By)).
0<¢<T

Moreover Y ; is bounded by aZ, where a = [ {(z)dz. From this, (6.36) and
(6.35), we deduce that E; exp(3X3) is bounded above by

T,
E, exp|:3c76exp(cgc'))\ /O AL(q(t))dt}
T,
+E, exp[3c7c- exp(csé)aZ /0 AL(q(t)) dt]

x 1(eo(1+ sup @(a(0))R(B) > )
(6.37) r
<E, exp[3c7c'exp(c35))\ /0 AL(q(?)) dt]

+ (EL exp[6076exp(c35)aZ /O " AL (@) dtDl/z

« (Pu(es(1+ sup a(a)) (B > 2))"

where for the second inequality we applied the Schwarz inequality. First we
choose A = ¢~texp(—cs¢) so that by Theorem 4.1 the first term in (6.37) is
bounded above by exp(C,(3c;, T)L). For the second term we would like to
apply (4.5) and for this we need

(6.38) 6c,cexp(cs€)aZ < mqloglog L.

First we assume 7 is small enough so that c;n < % For such a choice we have
(6.39) cexp(cs€) < cgmloglog!

for some constant cq. This in turn implies that (6.38) is satisfied if

(6.40) 6cscqaZmloglogl < mq loglog L.

Itis not hard to see that if 7 is sufficiently small then (6.40) is satisfied for all /
with [ < exp((log L)?). Using (6.37), (4.4), (4.5) and the Chebyshev inequality,

E; exp(3X,) < exp[C;(3¢;, T)L]
+ exp[gCZ(T)chaZLn log log l}

(6.41) X (EL exp[%@oL(l—i- sup cI>(q(rf)))

0<t<T

oA L DW
2¢cgh(|By|) '
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On the other hand, by the Chebyshev inequality and the elementary inequality
logx < x,

_ 1
—(h(IB,)) " =1+10g|B;| <1+log 7 [ Xy, (x)dx
l
T
<1- Iogl+|og%/ " A (q(t)) dt
0
< —logl+ [T* LA, (q(t))dt + 1+ exp

for some constant c,q. This, (6.41) and the Schwartz inequality imply

E; exp(3X,) <exp[Cy(3¢c;, T)L]

+ expECz(T)chaZnL log log l]

(mofotor 0]

< (o] 22 [ AL(q(t))dtD”“

. exp(_ 9,1(log 1;21 - cm)L)
8

Recall A = exp(—c3c)/¢. If n is sufficiently small, we can guarantee

Xlog ! = (loglog 2)~*(log 1)*=%" > ¢, (log 1)/2.
From this, Theorem 4.1 and Lemma 3.1, we conclude that (6.42) implies
(6.43) E; exp(3X,) < exp(cpL)

for some constant c;,. The term X is treated likewise. From this, (6.43), (6.34)
and (6.32), we conclude

(6.44) E; expQ,, <exp(cyzL)

for some c;3.
Final step. Recall the definition of (),; given by (6.31). Suppose that { > 1
on the interval [-r,, r;]. Then

0= 5 [, [ PRV - x0)

Up— U U —
(6.45) x 11( B~ x;(¢)+
Ug — U, Ug — U,

ry i
vt ze|: L,L:|>dtdz.

Uy

x;(¢)
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If V(L(x; —x;)) #0, then x; € [x; — ro/L, x; + ro/L]. As a result,

Ug— VU UV—V0 U—UV V—UV r
B o o @ 0
Vg — Uy Ug — Uy Ug — Uy Vg — Uq
We choose r; large enough so that
1 _|P7 % 7o 7o
L vg—v,| L T L

For such ry, (6.45) implies

v
Onz[[ 5L E VLD ~ =) Le® = & a(6) = 6)

x 1 <xi(t) —vt—z¢€ [—%, %}) dtdz.

This, (6.44), (6.12) and (6.11) imply (6.5). O

7. Uniform integrability, part Il. In the previous section, we estab-
lished the uniform integrability of X,(x), which is the time average of the
collision term. What we really need in the succeeding sections is the uniform
integrability of the collision term without a time average. To achieve this,
we are forced to replace I'; with a slightly slower function I',. Fix a number
be(0,1):

(7.1) Fy(x) = x(w (x))b _ x(loglogloglog x)°, x> e,
. 4(x) = 4 —

The main result of this section is the following theorem.

x < e,

THEOREM 7.1. For every p and T, there exists a constant C;(p, T') such
that if

1
(7.2) limsup —log % (£) > —p
L—oo L

for every open neighborhood & of m, then m(¢, dx) = g(«, ¢t) dx and for any
pair (a, B) with v, # vg,

T
(7.3) s,up/0 /F4(§a(x +2,)85(x, 1)) dx dt < C1(p, T).

zeT

To prepare for the proof of Theorem 7.1, we start with some definitions. For
any pair (a, B) with v, # vg, define

Yi(x, @, B) =3 V(L(x;(2) - x(t)))

i#]
(7.4) x L(a;(t) = a, aj(t) = B)V(L(x;(t) — x)),

Tt
Xi(x,a,B,v)= /0 Y (x+v,s,s)ds.
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Clearly Y and X are random functions that depend on the trajectory (q(¢): 0 <
t < T). We define the vector valued random measure

w(da, dt) = (ua(da, db), ..., wy(dx, dt)),
(7.5) po(da,dt)y= 3 Y,(x+ vt y,0)dxdt.

Uy VsF Vg

Recall m, defined by (1.11). Put M, (dx,dt) = m,(¢,dx)dt and M =
(M., ..., M,). The transformation q — (M, n), with q distributed according
to &, induces a probability measure &, on 9 x .# where .# denotes the
space of measures on T x [0, T']. The space .# with weak convergence is not a
good topological space. We therefore consider the spaces .#* of measures on
T x [0, T'] of total mass at most k:

M =|pue .t w(Tx[0,T]) < k}.

Each .#* is a compact metric space with respect to weak convergence. In this
connection we have the following:
1

im limsup = log %,(Z x .# — 9 x 4") = —cc.

7.6 |
( ) k> 00 L

Roughly speaking, (7.6) says that the large deviation principles take place on
% with E large but fixed. We omit the proof of (7.6) because it follows from
Lemma 7.3 below.

The measure &, is concentrated on (M, u) with u absolutely continuous
with respect to the Lebesgue measure. Unfortunately, the space of absolutely
continuous measures is not closed with respect to weak convergence. For our
purposes in this section we would rather restrict &, to the following closed
subset of .#:

M, = {,u €4 u(dx,dt) =v(x,dt)dx,
(7.7)
sup/l"3(va(x, [0, T]) dx < k}.

In other words, w is absolutely continuous in the x-variable and we have a
bound on its total variation in the ¢-variable.

LEMMA 7.2. The set .#,, is closed.
PROOF. Suppose u'(dx, dt) = vi(x, dt) dx, and
sup sup/rs(v;(x, [0, T])) dx < E.

Since I'; grows faster than the linear function at infinity, we can choose a sub-
sequence »', such that v (x, [0, ¢]) — f(x, t) weakly for each rational number
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t € [0, T'], where f is a measureable function with
Sup/I‘3(fa(x, £))dx < k.

It is not hard to see that f is nondecreasing in ¢. Therefore it can be extended
to all of [0, T'] in such a way that f(x, t) is right continuous in the ¢-variable.
Hence there exists a measure v(x, dt) with v(x, [0, t]) = f(x, ¢). It is not hard
to see that in fact u’ = u where u(dx, dt) = v(x,dt)dx. O

LEMMA 7.3.

- 1 ~
im lim supz log Z (9 x M — D X M}) = —00.

[
k=00 00

(7.8)

ProoOF. By the Chebyshev inequality and Theorem 6.1,
P(Dx M~ DX M) < exp(kn3L)/exp<n3LfF3(v(x, [0, T])) dx> dF,

< exp(—knsL +c,L)

for some constant c¢,. This evidently implies (7.8). O

On several occasions in this section and the next section we will use the
exponential martingale

M, = exp(F(t, a() - Fa©) - [ F(§ n M)eF<s, q(s))ds)
with

N
F(t,a) =33 pa(xi, ) L(e; = @),

a (=1

N
F(q) =32 Go(x) (e = a),

a (=1

where p is a smooth function. A straightforward calculation yields

N
M, = exp{ZZ Pa((T). TY L (a,(T) = )

a =1

— G(x;(0)) 1(;(0) = )

T N
- /O Z Z D, p(x;(¢t), )1 (a;(¢) = a)dt

a (=1

T
(7.9) ~ [ 3X VLt~ x(0)

i#j
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X Z K(“Ba ya)[exp(py(xl(t)y t) + pﬁ(xj(t)a t)
aByd

= Pal(xi(t), t) — pp(a (1), 2)) — 1]
x L(a;(t) = a, a;(t) = B) dt}.

If F(¢,9) = YN, H(x;,t)1(a; = a) and G = 0, where a is given and H is a
smooth function with support in T x (0, T'), then M, simplifies to

N
M, = exp[z H(x;(t), t)1(a;(t) = a)
i=1
- fot % D, H(x;(t), ) 1(a;(t) = ) dt
=1

[ S V(e - x,0)
(7.10) i#J
x S K(ap, yd)(exp(—H(x;(t), £) — 1)
Byd

x L(a;(t) = @, a;(t) = B)
+ K (8, aB)(exp(H(x;(t), 1)) — 1)

x 1(a;(t) =y, a;(t) = 5)] dt]

Recall the definition of a-differentiability as in (1.12). As a step toward Theo-
rem 7.1, we state and prove a lemma.

LEMMA 7.4. Suppose that there exists a positive number p for which (7.2)
holds for every open neighborhood of . Then m(¢, dx) = g(x, t) dx for some
g,and g, is a-differentiable for each «. Moreover, there exists a constant Cg(7T)
such that

(7.11) sup [ 65X u(x. 1)) dx = COVEL,
0<t<T 2 @ 6o
where 6, and Cy(T') are defined in Lemma 3.1, and
T
p
(7.12) fo /|Daga| didt = Co(T) + 1.
PROOF.

Step 1. Since for every x € T,

; +1 - ; 1 i 1+i+1
A GRR ) R C Cr A A R 7
+
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for some integer i, and since ¢ is convex, Lemma 3.1 implies

(7.13) OsfltJSpT exp[L00/¢(§ ;m“(t’ (x, ©t %))) dx}@L(dm)
< exp(Co(T)L).

Recall that ¢ is a smooth function with [{dx = 1, {,(z) = e *{(¢7'2) and
m,=mx/{, [see (5.1)]. Set mP)(x, t) = Lm(¢, (x, x+1/L)). A straightforward
calculation yields

(7.14)

C
<a
L

Z ma,s(x’ t) - mfo) * gs(x’ t)

for some constant c,. Integrate both sides of (7.13) with respect to £, and apply
the Jensen inequality. As a result,

sup / exp[Le0 / qb(% S mE) g (x, t)) dx} 2, (dm) < exp(Co(T)L).
0<t<T el
From this and (7.14) we learn that for every ¢ € [0, T,

(7.15)  limsup = log /exp[LGo/qb(Zma,a(x, t)) dx]@L(dm) < Co(T).

L—oo L

Let 4 be an open neighborhood of . By the Chebyshev inequality,

% log Z.(¥) < %Iog /exp[LGqu’)(% %ma’g(x, t)> dx}@L(dm)

. 1
— inf 90/¢<§ Xa:ma,s(x, t)) dx.
Hence, by (7.2) and (7.15),
. 1 Co(T) +p
(7.16) Sal;l(? s;p JQL[¢<2 §ma,£(x, t)) dx < PR

where the second supremum is over all open neighborhood of m(x, ¢). Choose
a sequence of open sets &, = {m: d(m, m) < 1/i} where d is a metric for the
weak convergence. Since ¢ is convex, the functional

m /q’)(%Zma,s) dx
is lower semicontinuous. Because of this,
- - l l -
l'l)rg WILQ;L f ¢<§ %ma,s(x’ t)) dx > /¢<§ %ma,s(‘x’ t)) dx.
From this and (7.14) we learn that for every positive ¢ and every ¢t € [0, T,

Co(T)+p
0o )

(7.17) sup d)(% > om, (x, t)) dx <

e>0
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Since ¢ grows faster than the linear function at infinity, a bound of the form
(7.1) implies that m(¢, dx) = g(x, t)dx for some g for which (7.11) holds.
Step 2. Consider the martingale M, given by (7.10). From E; M, =1 and
the inequality E; B2 < (E; AB)Y?(E;A"1)Y/2 we learn

N
Ep exp[% Y H(x,(Tp), Tp)1(a;(Ty) = )
i=1

T, N
3T DHG0. 01wl = @) de|
i=1

Ty
< Byexp|ciexp(IH o) | Aw(a(o)dr|

for some constant c;. If we replace T'; with T on the left-hand side, an error
will appear that is bounded above by exp(const.(T' — T';)L). Hence,

T N
E; exp[—%/o > D H(x;(¢),t)1(a;(t) = a)dt]
i=1
< By exp(T|| D, H| N)L(Ty £ T)
T, .
+Eyexp|ciexp(lHlL) [ Av(a(e)de |

From this, (4.4) and (4.5), we deduce

1 1 /T -

limsup - log [exp| =5 [ [ D H(x, tym(t, dx) | #,(dm).

(7.18) imsup 7 log Xp[ 5 | [ DaH (. ymy %) | #1(dm)
< Cyerexp([| H|lo)-

Let 4 be an open neighborhood of m. By Chebyshev’s inequality,

%Iog D) < %Iog/exp[—%/OT/DaHma(t, dx)]@L(dm)

1 T
—inf|—= D ,H .
i[5 [ [pormcao)
By (7.2) and (7.18),
T
(119)  supsup| ~Cocsexp(|H )~ § [ [ DoHm (e dn)]| <.
& med 0
where the first supremum is over open neighborhoods of m. Fix a positive &
and choose
< }

4 = {m: 1 /OT/DaHma(t, dx)—/oT/DaHma(t, dx)
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Then (7.19) implies

1 r =
|~Cocsoxp(H 1)~ 4 [ [ Do (1. d)] < pt e

This inequality is also true if we replace H with —H. We let & go to zero.
Recall that m (¢, dx) = g,(x, t)dx. Hence

(7.20)

T
L[| [ maDoH dxde] - Coerexp(l L) <

for every smooth H with support in T x (0, T"). We write H = Ar where A is a
positive scalar and r is a smooth function with |||, < 1. Since

Jy(a, b) :==sup[ar — be)‘] =

A>0

:—b, if a <b,

alog%—a, if a > b,
we learn from (7.20) that
o(8f) [ guparaxad.cyrres) <.
(Y |

for every smooth r with ||r|,, < 1. Note that if ¢ > 2eb then (a, b) > alog 2.
Hence

E/()T/gaDardxdt

< max (ZeCS(T)cl, @) .

From this we can conclude that g, is a-differentiable, and that (7.12) holds. O

In the previous lemma we established the a-differentiability of g,. We will
derive (7.3) by establishing a bound for the D,g,, using the results of the
previous section. The measure &, will allow us to relate D, g, to u,(dx, dt) =
v,(x, dt) dx for which an estimate of the form (7.7) is available. The next
lemma ensures that a condition of the form (7.2) for &, would imply a similar
condition for 2 . Recall the definition of .#), given by (7.7).

LEMMA 7.5. There exists a constant Cq(p, T') such that if (7.2) holds for
every open neighborhood  of 7, then there exists a measure 4 in .Z¢(, for
which

1 -
(7.21) limsup I log %, (G) > —2p
L—oo

for every open neighborhood ¢ of (m, ft).
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PrOOF. For each k,
1 ~ 1 - ~ .
Z |Og '@L(j) < z IOg[e@L(j X u/k) + '@L(Q X e/k)]
1
(7.22) < ' log 2
+ max[ log Z.(G x 4,,), — Iog P (T x y//k)]

using the elementary inequality log(e + b) < log2 4+ max(log a, log b). By
Lemma 7.2, there exists £ = C4(p) so that

1 -
I log (2 x ;) < —2p .
This and (7.22) imply

(7.23) lim sup — Iog P (L x M) > —p

L—oo

for every open neighborhood & of m. We would like to establish (7.21) by
contradiction. Suppose to the contrary, for every u € .#,, there exists an open
neighborhood A(u) x B(n) € Z x .# such that

1 ~
(7.24) limsup — log #,(A(k) x B(k)) < —2p,
L—oo

where m € A(n), n € B(w). Since by Lemma 7.2 the set .#, is compact, there
exists a finite collection {u,, ..., u,} such that

My € B(p1)U--- U B(uy) .
We set & = A(uq)N---NA(un,). Then using the inequality log(a, +---+a,) <
log r + max,;., log o; and (7.24),
lim sup - Iog P (L x M) < I|m sup Iog .@L< U A(p) x B(;ui)>

L—co i=1

< max lim sup = Iog 2 (A(wy) x B(wy)) < —2p,

I<isr oo

which contradicts (7.23). O

ProOOF OF THEOREM 7.1.
Step 1. Recall that E; M, = 1where M, is given by (7.10). Assume H > 0.

For such H, e~ — 1 < 0. Moreover, by (1.5), if K(y8, aB) # 0 then Uy 7# Vg,
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vs # v,. Hence, for some constant c;,

T, N
Eyexp|- [ T D H(0. 0L (0) = @) ds
=1

vy h AEVECO-50)

x Y (exp(H(x;(t),t))—1)

Uss Uy 7y
x L(e;(t) =y, a;(t) = 9) dt} <1
Let c,(H) denote the Lipschitz constant of e?:
[eHx:0) _ H-D| < ¢y(H)[x — |
for all x, y and ¢ € [0, T']. Then, from (7.4),

> V(L(x; — x))(exp(H(x;, £)) = D1 (e; = v, o = 8)
i#]

= [ LY (x, 7, 8)(exp(H(x, 1)) = 1) dx + Ry(, ),
where

|RL(a, 8)] < csco(H)L™AL(Q)
for some constant c¢;. From this and (7.25) we learn

Ty
E, exp{—L /O / D, H(x, t)ym,(t, dx)dt

T
_LfO/ S ei(exp(H(x, t)) — 1)Y (x, v, 8) dx dt

Uy, V5FUq

Ty
~ iDL [ Ay(ae ] <1
0
for some constant c,. If we replace T'; with T in the first integral, the er-

ror will be small. In fact, we may use (7.6) and the inequality E; BY? <
(ELAB)Y?(E;A~1)Y? to deduce

/exp{—g /OTL /DaH(x, tym,(t, dx) dt

x % /OTL /(eXD(H(x +v,t, 1)) — Du,(dx, dt)}g?L(dm, du)

< ELexp(T|DH|N)L(T #T)

+ {EL exp <c4c2(H)L-1 /0 " AL dt) }1/2.
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We now use (4.4) and (4.5) of Theorem 4.1 to conclude

T
Iimsup%log/exp{—%/ /DaHma(t, dx)dt
0

L—o

(7.26) _ % OT /(exp(H(x —V,t,t)) — 1)dua}

x & (dm,dw) < 0.

Step 2. Choose /i as in Lemma 7.4 and let £ be a neighborhood of (7, ii).
By Chebyshev's inequality

- 1 T
@L(G)gexp{L sup [—/ /DaHma(t,dx)dt
(m, e L2 70

2 [ et + vt 0) - Ddn, |}
x /exp{—%/OT/DaHma(t, dx)dt
_ % /OT /(exp(H(x —v,t, 1) — 1) dﬂa}ﬁL(dx dt).

From this and (7.26) we obtain

1 . - 1T
limsup —Z.(G) < sup [—f /DaHma(t,dx)dt
Looo L (m, p)ed 2Jo
(7.27)
c; (T
+ ?/o /(exp(H(x +u,t,t)—1) d,ua}.
We choose

<e,

G= {(m, w): I% /OT/DaHma(t, dx)dt — %/()T/Daﬂma(t, dx)dt

% /oT /(exp(H(x — U4t 1)) —1)du,

<<

we use (7.21) and then we let ¢ — 0 in (7.27). As a result we get

_ %/OT /(exp(H(x —v,t, t))—1)dpi,

1 T
sup[——/ /DaHn'za(t,dx)dt
H 2 0
(7.28)

- % /0 i f (exp(H (x + v,t, t)) — 1) dﬂa} < 2p.
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Step 3. By Lemmas 7.3-7.5 we know
m,(t,dx) = g,(x,t)dx, a(dx, dt) =v,(x,dt)dx,

Cy(T
(7.29) Sl;'p[d)(% gga(x’ t)) dx < %

sup [ Ts(7,(x, [0, T])) dx = Co(p, T).

>

After an integration by parts, (7.28) implies

17 _
a0 > [0 / HD, g, dxdt

- 0_21 /OT /(EXD(H(x +u,t,t)) — D (x,dt)dx < 2p

for nonnegative smooth H with support in T x (0, T"). Let H be a nonnega-
tive bounded measurable function on T x [0, T']. Choose a sequence of smooth
functions H, with support in (0, T') such that

H,>0, sup || H,|le < o0 and H, — H a.e.
n
Since (7.30) holds for H,, we can use the dominated convergence to deduce

(7.30) holds for H, which is an arbitrary nonnegative bounded measurable
function. Set g,(x,t) = g,(x + v,t, ). Since

984
o (x,t)dxdt,

/OT/HDag‘adxdtzfoT/H(x—l—vat, )

(7.30) implies

Jat

for every nonnegative H € L*. Set 7(dx, dt) = (d8,/dt)dxdt, 71 (dx, dt) =
(98,/9t)*dx dt. We claim that 7™ « f,. To see this, take a set A with 4,(A) =
0, and then choose H = c1 4~ where B = {(x, t): (d&,/Jt)(x,t) > 0}, and ¢
is a positive number. We deduce 7+ (A) = 0 from (7.31) after letting ¢ — +o0.
Next, we choose

(7.31) %/OT/H@“ dxdt — 02—1 /OT /(exp(H(x, £)) — 1), (dx, dt) < 2p

log h(x,t), if h(x,t)>1,

Hx6) = {o, if h(x, £) < 1,

where h = d7t/dn, is the Radon—-Nykodym derivative of 7+ with respect
to ,. Of course, H may not be a bounded function but it can be approximated
by a sequence of bounded functions H, that increases to H. By the monotone
convergence theorem we still have (7.31) for such H. As a result

%/OT /[h'og h—ci(h—1)]1(h = 1)dp, < 2p.
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Note that

T T 7., \* T )
/O hd,uazfo /( = ) dxdtsfo |D,&.|dxdt.
From this and (7.12) we learn
T R
(7.32) /O /hlog hdp, < E(CS( )+ Iogz> +2p.

Step 4. By the entropy inequality,

T eF
hlog hdf, = Z, 1o —+su [ Fdr —Z,lo —d‘a},
(7.33) fo/ gnan J F>F3'/ T g/Z2 #
Z, =1t (TX[O, T)).  Z, =i (T x [0, T)).

If we restrict the supremum to functions F that depend on x only, we get

eF(x)
A Iog 21, Sup[f F(x)o,(dx) — Z, log f Z—ﬁa(x)dx:|
2

2 F>0

S/OT/hloghdﬂa S/OT/hlog+hdﬂa,

where o,(dx) = 6,(x)dx and

Y +
o = 2 t)dt
(7.34) %) /o ( ot ) (%, £,
Do(x) := ,(x, [0, T1).
From this and (7.32) we learn that

/ G4(x) log T2

for some constants ¢, and c3. Hence

Ta(%)
B (%)

dx <cp,+c3p

N Z,0, Z
(7.35) foa log Zzlﬁa dx < ¢y + cap + Z4 log Z—i
By (7.12) and Lemma 7.5, there exists a function Cyy(p) such that
Z
Z, log Z_2 <Z,log Z, +1 < Cyo(p),
1

because Z, = Cy(p). Hence (7.35) implies

. Z,6,
(7.36) /Ua log Zz‘f dx < ¢+ czp + Co(p).
1Va
By Lemma 7.6 below, (7.36) implies
(7.37) [Ta(62)dx < Cralp, T)

for some constant Cq4(p, T).
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Final step. Recall the definition of &, given by (7.34). We certainly have
g_a(x + 0,8, t) = ga(x’ t)
984

t
= gu(x.0)+ [ =2
Put 7,(x) = g,(x,0) + 6,(x). Then (7.38) says
(7.39) Sa(x,8) < 7 (x —v,0).

On the other hand, we can use (7.37) and the second equation of (7.29) to
claim

(7.40) [Ta(ra(x)) dx < Colp, T)

for some constant C,, because I'; is bounded above by a multiple of ¢. Let
x, y be two positive numbers. Using the elementary inequality log(A + B) <
log2 + log A + log B, it is not hard to show that

(7.38)

(x,8)ds < §,(x,0) + 7,(x).

wa(xy) < ¢4 + wy(x) + wy(y) < 3max(cy, wa(x), wa(y))
for some constant c,. Therefore,

(7.41) Ta(xy) = xy(wy(xy))* < xy3°[cf + (w4(x))° + (wa(¥))’].
Using this we have that whenever v, # vg,

/OT /F4(g'a(x +2,8)p(x, 1)) dx dt
< 3% /OT/ga(x +2,t)8g(x, t))dx dt
+ /T[3bga(x + 2, OT4(84(x, £)) dix dt
0
+ /Tfabgﬁ(x, OTa(8.(x + 2, £)) dx dt.
0
We can bound each term on the right-hand side. For example,
/OT/g‘a(x + 2, )T4(8p(x, 1)) dx dt
T
< fo /Ta(x — Vot + 2)l4(1g(x — vgt))dx dt

(7.42)
= ﬁ/fm(zl)m%)dzl dz,

1
= m/%(zl)d21/r4(22)d22,

where for the first inequality we used (7.39) and for the second equality we
made a change of variables (x — v,t + 2z, x — vgt) = (21, 2;). By (7.40), the
left-hand side of (7.42) is bounded by a constant that depends on 7' and p.
This evidently completes the proof. O
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LEMMA 7.6. There exists a constant C(p,, p», Z1, Z,) such that if for two
nonnegative measurable functions f and g,

/f'OQ ;—2 dx < py, /I‘g(g)dx = p2s
[fax=2.,  [gdy=2,,

then fr4(f) < C(py1, p2, Z1, Z;).

(7.43)

PrROOF. First observe that

S R

where (z) = zlogz — z + 1. Note that (z) > 0 for z > 0. Hence for any &
and [,

/fﬂ(le)dx=/;§2ﬂ<f 1% k)ngd

1 Z1 Z,
fZ, ( fZ2 )gzl
+ 1 <k dx
[ "8Zy ~ Z,

fZ,\8%,
Iogk—l/ < sz

fZ, (gzl I fz, )gzl
+ 1 > k dx
‘/gzl Z, "k gZ, ~ Z,

8Z, gZ, _ 1
1 e
SIogk 1+k/ < >k dx
P1 k <gzl>
< + r dx
logk —1 (wg(é))bf N\ 7z,
provided //k > e°. It is not hard to see that for some constant ¢,,

gZﬁ [gzl Z, Z,
r <c 1Ty(g) + gl .
3<Z2 'z, "z,° 322

[See, e.g., (7.41).] Hence

Y/ / / /
/F3< Z21> dx < 01|:Z1 + Z—;Pz + Z2F3<Z—;)] =:C'(Z1, Z3, p,).

(7.44)

IA

From this and (7.44) we deduce

< P1 k
[ = D < b * oD

We choose & = (w3(1))* for some a € (0, b). Then

C"(Zy, Z,, ps, p1)
wy(l)

C,(Zla ZZa p2)‘

[FLF=D <
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for some constant C”. Set 1,4(1) = (w4(1))®. Then
[Taprde= [ [ @O L(F > Ddldx

© lold
</ D)y &

= / " b (1) 2w, (1) Mwy(1) Y (log 1) dl

=c,C"(Zy, Z5, p1, p2)
for some constant ¢, and this completes the proof. O

8. The upper bound This section is devoted to the proof of (1.18). Take
smooth functions p: T x [0, T'] — R" and G: T — R". Define

B(p, G, & m)

= [ pule, TYmo(T, dx) = [ ¥ Go(x)m,(0, dx)
61 - /OT/Z D, p,(x, t)ym,(t, dx)dt

_ /OT/% Z K(aB, yo)m, .(x, t)mﬁ’g(x’ 1)

afyd
2 [exp(py(x’ t)+p5(x> t)_pa(x’ t)_ pB(xa t))_ 1] dxdt
where m € 2 and, as in (5.1),

M o(%,8) = [ G = y)ma(t,dy) .
LEMMA 8.1. For every r € (0, 1), define
N 1
(8.2) B(p,G, &, r)=limsup I exp[LrB(p, G, &sm)]|#,(dm).
L—oo

Then

(8.3) limsupB(p,G,e,r) < z log Zfexp(pa(x, 0) — Go(x))f°(x) dx.
e—0 r @

Proor. Recall the exponential martingale M, given by (7.9). We certainly
have

By My = By My = By xp| Xy (11,0) ~ Gy (31

=[5 erptputx.0) - Gunfio ]
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As a result, for (8.3), it suffices to show

N 1 1
(8.4) limsup B(p, G, ¢) < —limsuplimsup —log E; M p.
e—0 r e—0 L—oo L

By the definition of &, the expectation [‘exp[LrB(p, G, &; m)]|%,(dm) equals
2 =Ep eXp["Z pai(T)(xi(T), T) — G (0)(x;(0))

T
= [ D (1), )

(8.5) _r/OT/% > K(aB, y8)mq, o (x, t)mg ,(x, t)

aByd

X (exp(py(x, t) + pé(x’ t)

(. ) — py(x, 0)) — 1) dx dt},

where m, . is defined by (5.1). We replace T' in (8.4) with T';. The resulting
expression will be denoted by #. Since m,_, is bounded by Z /e, we have

L
(8.6) 2 <Y+ exp<i—2> P.(T, #T),
for constant c¢. Set

T
X; = Lr/0 /% Y K(aB, yd)m, (x,t)mg (x,1t)

aByd
x [exp(p,(x, t) + ps(x, t) — po(x, t) — pg(x, 1)) — 1| dx dt
T
—r [ 3 V(L - %)) ¥ K(ai(t)a(2), v9)
0 i 6
x [exp(p,(x;(2), t) + ps(x (), ) — Py 1)(%;(2), t)

— Pao(xs(0), 1)) — 1] dt

and choose ¢ such that r + 1/g = 1. From (8.5), (8.6), (4.4), (7.10) and the
Holder inequality, we deduce that for (8.4) it suffices to show

1
(8.7) lim sup lim sup — log E exp(q X ) < 0.

e—0 L—oo
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In X, first we replace p(x;(¢),t) with p(x;(¢),t). Since p is smooth and
V(L(x;(¢) — x;(t))) # O, the error would be bounded above by

Liog By exp(§ [ AL<q<t>>dt)

for some constant c. Hence the error goes to zero as L goes to infinity. Finally,
we apply (5.2) to establish (8.7). O

PROOF OF (1.18).

Step 1. Let ¥ be a compact subset of 2. Let .%, denote the set of m that
has a neighborhood #,, with limsup;_, . (1/Llog)%; (¥4,,) = —oc. Clearly %
is open and the set ¥ N.%, can be covered by finitely many such .£,,. As a
result, ¥ — %, is compact and

1
limsup I log % (7 NF) = —o0.

L—oo

This implies that for (1.18) without loss of generality we can take a compact
set & with . N% = @. In view of Theorem 7.1, we have that for such &, if
m € & then m(¢,dx) = g(x, t)dx, the function g, is a-differentiable and for
any pair (a, 8) with v, # vg,

T
(8.8) am/'/r4g4x+afgﬂxﬁndxdp<w.
zeT 70

Step 2. Pick a point m € 2 and let % be a neighborhood of m. From (8.3)
and Chebyshev’s inequality, it is not hard to show

1 N
limsup —log & (%) < B(p, G, e,r) — inf B(p, G, &;m).
L—oo L mex
Since this holds for all permissible p, G, ¢ and r, we have
1 N
limsup — log Z,(%) < inf sup(B(p,G,e,r)— B(p,G,&m)).
L—oo L P7G787rme%

Note that the functional B(p, G, ¢;m) is continuous in m. This allows us to
use the usual large deviation arguments [see, for example, Section 4 of [17])
to show that for any compact set .7,

1 N
lim supz log # (7)<sup inf (B- B).

L—oo meF PG, e,

To complete the proof, it suffices to show that for any m for which (8.8) holds,

(8.9) inf (B— B) <—dJ(m).
p,G,e,r
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Final step. Clearly m
holds, we deduce

Iim/OT/rma,smB’sdxdtz /OT/rgagB dxdt.

e—>0

converges to g, almost everywhere. Since (8.8)

a, e

By letting e — 0 and r — 1,

inf(B - B) < Z10g Y [ exp(pu(x,0) — G,(x))f2(x) dx
+ [ L (pal®, T)8ulx, T) = Go()8ul, 0)) da
_/OT/ZgaDapadxdt

—/OT/% > K(aB,v8)8.8p

afyd
x [exp(p, + ps — Pa — Pp) — 1] dx dt.

We then let G, (x) = p,(x,0) — K, (x) and take the infimum over p and K
separately. As a result we get that the left-hand side of (8.9) is less than
—Jo(m)—J 4z(m; p) for any smooth p. By the dominated convergence theorem
we can show that

I!LTO Jaq(m, py) = J4(m, p)

if the sequence p,, is uniformly bounded and p, converges pointwise to p. This
clearly completes the proof of (8.9). O

9. The lower bound. First we construct a class of processes for which
the corresponding macroscopic densities satisfy a perturbed equation of the
form (1.16).

Let p: T x [0.T] — R"™ be a smooth function, and define the new jump rate

K(aB, vd;x, y,t)
= K(OZB, ’}/8) exp(ﬁ‘y(x, t) + ﬁ5(y’ t) - ﬁa(x’ t) - ﬁﬁ(ya t))
A new process is characte[ized as an inpomogeneous Markov process with the
infinitesimal generator o/\%) = o7 + .o/, where

»Q/;F(CI) = %Z V(L(x; — x;))

i J

(9.1)

(9.2) 5
x ) K(a;a;, v8;x;, x5, t)(F(SZ,’jCI) — F(a)).

v, 8
The relationship between .»#X) and o/ is

o/ L)(Fu) QQ/(L)uF
u u

o F =

K
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where u = e% and

w(d, ) = X Py (25 )

The new process q(¢) induces a probability measure @; on the space
D([0, T'], E). The initial distribution for the new process is 47 given as in
(1.7) with g,(x,0) instead of f%(x). By Girsanov's theorem, @ is absolutely
continuous with respect to P; and

dQy
dP,,

©3) M, = exp(w(t, Q(6) = w(0,6(0) ~ [ &3, +5/P)e" s, a(5)) ds),

_ 84,0)(%;(0),0)
Xo= exp(? log —fgi(O)(xi(O)) )

Using Theorem 4.1, it is not hard to see that

= XOMT’

(9.4) E; M7 <exp(c,L)
for some constant c,. We use this and Lemma 3.1 to deduce

[ exp[L% sup <b<q<t>)}QL<dq)

0<t<Ty,

(9.5) < (B M}, Ey exp| Lo sup <I>(C4(t))]}l/2

1 1
< exp(ECO(T)L + EclL)'

By standard arguments, one can show that (1.16) has a unique solution
with the initial density g(-, 0) (the uniqueness proof of [4] for the case p =0
can be readily applied for the case bounded p). Once (9.5), (4.4) are available
for our new process, we can apply the arguments of [13] to establish the kinetic
limit. Let 2; denote the distribution of m with respect to @;..

THEOREM 9.1. The sequence 2; converges to £ that is concentrated at a
single g, the unique solution to (1.16).

PROOF OF (1.19). Let & be an open set. Suppose g € & and that g sat-
isfies (1.16) for a continuously differentiable p. Construct the corresponding
process 2;. Since g € &,

(9.6) lim 2(5) = 1.
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On the other hand, it is well known that

1— 9,(& D (&
(1 - 2,(£))log W;Ef; + 2,(£)log %

(9.7) P
< H(2,, 2,) = [log 7= d2;, < H(Qy, Py).
L

We then let L — oco. From (9.6) and (9.7) we deduce
R § o1
Ilmlgf I log % (%) > — Ilmlgf ZH(QL’ P;).

Now, using (9.3), we have

H(Qy, Pr) = Jo(&)+ [ [w(t, q(T)) — w(0, q(0))
[ o+ s, a) ds | a@s
= Jo(g) + /[w(t, a(7)) — u(0, q(0))
= [} 0+ S P)ts,a(s) ds | Quda)

T
[ [ (/Pw - e P (s, a(s) ds Qu(da)
= Jo(8) + [ [(aw — e o/e")(s,a(s)) ds Q(da)

= Jo(&)+ 3 [ [ L V(L(xi(s) — x,(5)))
LJ

x (K (ai(s)aj(s), y&)y(p(xi(s), v)

yé

+ B(x (), 9))

1315

— P(xi(s), @;(s)) — B(x j(s), @(s))) ds Q(dq),
where for the second equality we used the fact that the expression in the
brackets is a @-martingale and /(z) = (z — 1)e? + 1. Once more we can apply

Theorems 4.1 and 1.1 of [13] to our new process to conclude that

. 1
Jfim 7 H(Qu. P1)

T r1 . . . .
=Jo(&)+ [ [5 X K(aB.v9)g.gp(exp(by + b5 — Pa — by) — 1) dx dt

afByd

= J(m).

In Section 11 we will establish (1.20) and this will complete the proof of (1.19).
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10. The rate function, part I. In this section we establish some of the
properties of the rate functions. A bound of the form J(g) < %k will yield
several useful bounds on g. These bounds are the macroscopic counterparts

of the estimates we obtained in Sections 3—7. We first state the main results
of this section.

THEOREM 10.1. For every positive number &, the set {g: J(g) < k} is com-
pact.

THEOREM 10.2. (i) Let e =(eq,...,e,) € R" such that
e, +eg=e,+e; if K(af,yd)#0.
Then, whenever J;(g) < oo, we have

14

d
10.1 — =0.
(10.1) &t<§eaga>+&x<§vaeaga> 0
in distribution. In particular,
(10.2) /Zeaga(x, t)dx = /Zeaga(x, 0)dx.

(ii) Suppose J4(g) <ooand [ Y, g,dx < co. Then
T
L[ X we—vp)8agpdxdt
a, B

< [ [ [ 2. - vp)eulx gsly. Oy dx dy dt
(10.3) o T 20T e B D8RS BER S

+ (&) + [ [ (v~ vp)(ga(x, 0)gp(y, 0)
a, B
- ga(x> T)gB(y7 T))f(x - y) dx dy

THEOREM 10.3. Let A =(Aq,...,A,) beasin (1.4)(vi). Then

sup /Z g,(x,t)log EACR) dx
0<t<T o )\a
(10.4) (2, 0)
o x’
< Ju(@)+ [ L gu(x. 0)log E2 2 d,

43
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THEOREM 10.4. There exists a constant B,(%, T') such that for every pair
(a, B) with v, # vg,

T
sup [ [ HG Dgux D(ga(x + 2.0) - go(x. 1) dx dt‘
(10.5) < Jy(g)+ By(k, T)|log |t
« Os::g(l n [2 g.(x, ) logt g.(x, 1) dx)

for every smooth H with ||H || + |0H /9t||o + |0H /0| s < k.
THEOREM 10.5. There exists a constant B,(k4, k,; T') such that if
(10.6) Ja(8) < k1, /Zga(x, 0)log™ g,(x,0)dx < ky,

then for every triplet (v,, vg, v,) with v, # v # v,,
T

(10.7) /Fl(/ 2.85(x + v, t, t)dt) dx < By(ky, by T).
0

THEOREM 10.6. There exists a constant Bj(kq, k,; T') such that if (10.6)
holds, then

T
(10.8) sup [ [ 3 Ta(ga(x + 2. 0)gp(x. 1)) dx dt < Ba(hy, ki T).
‘ aAp

PrOOF OF THEOREM 10.2. (i) Let r: T x [0, T] — R be a smooth function

and choose p,(x, t) = cr(x, t)e, where c is a constant. Since p,+ ps = p,+ P;
whenever K(af, y8) # 0, we have

T
Ja(g) > c/o /r%eQDO,ga dxdt.
We let ¢ — to0. Since J4(g) < oo, we obtain

/OT/r;eaDagadxdtzo.

This is precisely (10.1). The statement (10.2) is an immediate consequence
of (10.1).
(ii) Define m(x,t) =>, 8.(x, t), u(x,t) =% ,v,8,(x,t) and

pal, t) = v, [ m(y, O&(x = y)dy - [uly, é(x - y)dy,

where ¢ is defined right after (2.1). Clearly, for some constant ¢,

(10.9) Pl t) < ey [m(y.)dy = 1 [ m(y,0)dy,
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where for the last equality we have used (10.2). By our assumption
[ m(y,0)dy < oo, hence p, is bounded. Moreover, by conservation of momen-
tum,

pa+pB:p'y+p59

whenever K(af, v6) # 0. We set p,(x,t) = p,(x,0) for t <0 and p,(x,¢) =
po(x, T)for ¢t > T. In this way p is defined for all . We pick a smooth mollifier
d®(x, ¢) and define p{ = p, * ¢®. As a result pi*’ is smooth and we still
have p&k) + pfgk) = pf/k) + pfsk) whenever K(af, y8) # 0. Using this and the
definition of </ 4,

_/T/Zgapapgk) dx dt
(10.10) «
= Ja(g) +f2(p§k)(x, 0)ga(x,0) = pF(x, T)gu(x, T)) dx.

We let % go to infinity. The right-hand side of (10.10) converges to the last
line of (10.3) by the dominated convergence theorem. We now concentrate on
the left-hand side of (10.10). The conservation of mass and momentum can be
used for (10.1) to deduce

om  du du (9E_

10.11 — 4+ — =0, — 4+ — =0,
( ) &t+&x &t+z9x

where E(x,t) =Y, v2g,(x, t). We would like to use (10.11) in order to calcu-
late D, p,. From the definition of £, it is not hard to see that

IDo _ B
(10.12) 8= —vmtut va/m(y, t)dy /u(y, t) dy

in the distributional sense. Moreover, by (10.11),

9Pq
at

(10.13) =0, [ T 08 = ) dy+ [ 0.0 - )y

= v, [ (08— vy — [ Ty, 06 - ) dy

=vu—E-v, [u(y, )dy + [ E(y.t)dy

in the distributional sense. The formal calculation (10.13) can be readily made
rigorous by first multiplying both sides by a smooth function and integrating
by parts. From (10.12) and (10.13) we learn that

—D,p, =v2m —2v,u+E — vi/m(y, t)dy
(10.14)
+2v, [u(y, )~ [ E(y,t)dy.
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We convolve both sides of (10.14) with ¢® to obtain an expression for D, p".

Note that

vim —2v,u+E =Y (v, — vp)’gp.
B

Since this is nonnegative, we can use Fatou’s lemma to pass to the limit as
k — oo on the left-hand side of (10.10) to yield the first term of (10.3). For
the second term we use the dominated convergence theorem. This clearly im-
plies (10.3). O

The following elementary lemma will be used for the proof of Theorem 10.3.

LEMMA 10.7. Let a4, ay, as, a4 be four positive numbers and let a; =
min(a;, k). Then

aLa, aja:

(10.15) alaza,g—af‘—i-agcu 172

PP L R L < (a; +ay)(az + as).
103 30y

PrOOF. Let x denote the left-hand side of (10.15). If all a;’s are less than
k, then x = 0 and (10.15) holds. If a4, a,, a3 < k < a,, then

a

x=az(k—ay)+ <f - 1)a1a2 < ayay.

If ai,a3,a, > k> a,, then
az

x=a k+ (304~ — A3y — 010, < a,as.
If either a4, a» < kB < a3, a4 OF a3, a4, < k < ay, ay, then x < 0. If a4,
as; < k <a,, a4, then

X = 0503+ Q104 — Q304 — Q10 < Qr03 + Q104.

The remaining cases can be treated likewise. O

PrOOF OoF THEOREM 10.3. We first explain the idea of the proof. If we can
allow p, =log(g,/A,), then

Y K(aB, v8)8.8s(eXp(py, + Ps — Poa — Pp) — 1)
af

8y8s 8.88
=Y K(aB, yd)AAg| =222 - 222F) =0
" (aB’Y)a B(/\y )\5 )\a /\[3)

because K(afB, y0)A,Ag = K(v3, aB)A,As. If g, is differentiable,

(x, T)

/OT/paDaga dxdt = f|:ga(x, T) log £° 8, T)

o

— g.(x,0)log w + g.(x, 0)} dx.

o
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To make the above computation rigorous, we introduce some cutoff functions:

logg, ife<g<k,
(e, k;g)=1loge, ifO<g<se,

logk, if g=>k,
.y _Jlogg, if0O<g<k,
"”(k’g)—{log k, ifg>k

We then choose p, = ¢(e, k; 8,) where g, = (g,/A,)- Since p, is bounded,
T A
Ju() = [ [ é(e. ki g)Dug, dxdt

T
| 3T K@B.yd)g.8
(10.16) aBy>

x [exp(d(e, ks &) + d(e, k; &5)
— b2, B 8a) — b(e, ks ) — L] dx dt
=0y (e, k) — Qy(e, k).
Note that if v, # vg,
max 8,85 eXP(4(2, b &) + d(2, ks 5) — d(e, ks 8a) — B2, ks &)

< 8a8peXP(P(e1, ks 8,) + d(e1, k3 85) — w(k; o) — (ks £p))
is integrable. Hence we can apply the dominated convergence theorem:
Iingﬂz(a, k) = Q,(k)
(10.17) T
= [ [3 T K(aB.v9)g.g5(A(y5. ap) ~ 1) dxdt.
aByd
where A(?’Sa O(B) = eXp(‘ﬂ(’% §y)+¢(ka éa)—¢(k, §a)_¢(ka gﬁ)) Furthermore,
by (1.4)(vi),
Lw=[ [ Kp.ys)
= - af3, yO)A, A
2 0 4 By B
(10.18)
A A 1
X [gagB(A(75, aB) —1)+ g«/gs(m - 1)} dxdt.

By Lemma 10.7, we know that

o A 1
gagB(A(ys’aB)_1)+gyg5< 1)

(10.19) A(v8,aB)

< (8a+ 8p)8&y + &5)-
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Since K(aB,yd) # 0, by (1.5) we know that v, # v,,vs; and vg # v,, Us.
Therefore the right-hand side of (10.19) is integrable. As a result, we can
apply Fatou’s lemma to deduce

limsupQ,(k) <0

k— o0

because the left-hand side of (10.19) converges pointwise to zero. From this,
(10.17) and (10.16), we deduce

T
(10.20) lim sup lim sup/ de)(s, k;$.)D,g.,dxdt < J4(g).
k—00 e—0 0 «
Define
V4 z
log — — A ife<— <tk
zg)\a Z+ A, Is_)\a_,
k . 2
D, (e, k;z) =4 zlog— —k+1A,, if—>k,
)\a ADl
zlogA—i—s+)\a, ifO_Aiafs

Note that ¢, is nonnegative and (d®,/dz)(e, k;2) = ¢(e, k, 2/A,). 1t is not
hard to show that in fact ®,(e, k; g,) is a-differentiable with

Do ki ) = (.5 82 ) Do,

o

From this and (10.20) we learn that

limsup limsup [ 3@, (e, & gu(x, T)) = D, (e, b gu(x, 0)) dx = J4(8).

k—o00 &—0

Since @, is increasing in ¢ and &, we use the monotone convergence theorem
to deduce

[ 2] eutx 1109 £ g (e, 7y 4, [

x,0)
A

- [ et 0109 ELED g 5,0y 40, ax < o)
Finally, we use the conservation of mass
[ X gu(x. Tdx = [ g.(x,0)dx
to conclude (10.4). O

To prepare for Theorem 10.4, we state and prove a lemma.
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LEMMA 10.8. Let f be a positive measurable funciton. Then for any mea-
surable set B,

INEEE 3h(B)[1+ [ flog* f dx].

Moreover, there exists a constant ¢, such that for every measurable function g
with ||gll., <1,

[ fgdx < cohllgll)|1+ [ flog* f dx].
PrROOF. Forany!/l>1,
/ fdx <1|B| +/f]1(f > I)dx < I|B| + i/flog*fdx.
B - - - logl
The lemma follows if we choose
1 +
The second inequality can be established in the same way. O

PROOF OF THEOREM 10.4.
Step 1. Suppose |z| < . Define

P, 8) = H(x,2) [(g5(y +2,1) — 85(y, D)E(x — ) dy,

pp(x. ) = — [ H(3, )(8uly — 2.8) — 8u(y, )E(x — y) dy.

We set p, = 0 for o # a, B. Since H is bounded and by the conservation of
mass,

(10.21) IPalloe < 201 Hllos  IPgllec < 21 H |,
where m = [}, g,(x,0)dx. From the definition of J,

Ta(8) = [(pal®, T)gu(x, T) + ps(x, T)gp(x, T)
— Pa(x,0)84(x,0) - Ps(x, 0)g4(x, 0)) da

T
~ || [(8uDupu+ 8Dppp) dx di

(10.22)
T 1 'l A
—/0 [3 ¥ KW@B. Y8z 8p
a/B/,y/sl
x [exp(py + Py — Pw — Pp) — 1]dxdt
= Ql - QZ - 03.

Clearly we can write

Pa(x, ) = H(x,t) [ ga(y, O)(E(x — y +2) — &(x — y) dy.
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Moreover, it is not hard to see that if ¢ is not in (—e¢, ¢) then £(a+2)—£(a) = 2.
Hence

pule O] = 1Bl [ 600,01y + [ 23 01(x = v € (e |
(10.23)
< [H .o+ 30(26) (1+ [ g5(3. 10" g5(. 1y ) |

where for the second inequality we used the conservation of mass and
Lemma 10.8. From (10.23) we deduce
10| < 4m|H||

X [sn‘z + 3h(23)(1 + sup /Zé’y(% t)log* g, (,t) dy)]

Y

0<t<T

(10.24)

Step 2. A straightforward calculation yields
D, pa(x,t) = D H(x,t) [ g5(y, )(E(x — y +2) — £(x — ) dy

(10.25) +H(x, t)a% [ 8p(y. O)(Ex =y +2) - &(x — ) dy

+ H(x, t)v,(gp(x,t) — gp(x + 2, t)).

Some explanation is needed for the meaning of the second term on the right-
hand side of (10.25). Since g, is a-differentiable, the distributional derivative
D, g, is meaningful as an integrable function. From this, it is not hard to show
that any spatial average of g, is weakly differentiable in ¢-variable. Similarly,

Dypp(e,t) == = [ H(y, 08,3 O(Ex 3~ 2) — &(x — ) dy

—vg(H(x,t)g,(x,t) — H(x — 2,8)8,(x — 2, 1)).
Using this and (10.25) we have

(10.26)

Oy = Qo1 + Qoo + Doz + Oy + O
= [ gz D, H(x, 0
x [ g5(2. D(E(x = y+2) = £(x — ) dy dx dt
+ /OT go(x, )H(x, t)
x| 8o(y, O(EGx — 3 +2) — Ex — y) dy dx

(10.27) —/OngB(x, )
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x 2 [H(, 08,3 (e~ v~ 2) — &(x — ) dy da s
T
n /0 /vaga(x, t)H(x, t)(g5(x, ) — gp(x + 2, 1)) dx dt

T
—/0 /Uﬁgﬁ(x, t)(H(x’ t)ga(‘x7 t)

— H(x — 2,t)g,(x — 2, t)) dx dt.
We can show
|| < 8m| D, H|

X [en‘z + 3h(23)(1+ sup /Xy:gy(y, t)log* g,(y. ) dy)},

0<t<T

(10.28)

in just the same way that we established (10.24). Furthermore, since £ is odd,
T
Qpp+ 05 = [ [ gule, O H(x, 1)
0

X %/gﬁ(y’ £)(E(x — y + 2) — £(x — y)) dy dx dt

—/OT/gﬁ(%t)

X %/H(’“ £)ga(x, )(E(y — x — 2) — &(y — x)) dx dy dt
T
Z/O [%//ga(x, t)H(x,t)gg(y,t)

< (E(x -y +2)— E(x— y))dy dx] dt

= [ [(gulx. DY H(x, T)gp(y, T)—&a(x, 0 H(x, 0)g4(y, 0))

x (é(x —y+2)— é(x—y))dxdy.
Once more we can apply the argument of the first step to derive
Qg5 + Qg

< am||Hllw

X [srﬁ + h(28)<1+ sup /Xy:gy(y, t)log* g,(y. 1) dy)}

0<t<T

(10.29)

for some constant c,. Moreover,

Oop + Qs = /OT /(va —vg)H(x,t)gu(x, t)(gp(x, t) — gs(x + 2,t)) dx dt.
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From this, (10.29), (10.28), (10.27) and (10.22) we learn that

T
/o f(vﬁ — v )H(x,t)g,(x,t)(gp(x,t) — gp(x + 2, t)) dx dt
(10.30) <Jq(8)+ Qs

+ czmk[am + h(Zs)(l + sup /; g,(y, t)log" 2,(y, ) dy)]

o<t<T

Final step. Recall that an inequality of the form |A| < B implies |e4 — 1| <
eB|A|. This and (10.21) yields

T
Qlzes [ [ 3 ggsexp@mlH)(p,) + |psl) dxd
U, FVs
for some constant c;. We then use (10.23) to deduce
Q3] < czexp(4m | Hl| )| Hl
X [sn‘z + h(28)<1 + sup /Z g,(x,t)log™ g, (x,t) dx)}
Y

0<t<T

x/OT/ > g,8sdxdt.

U, #Vg
This and (10.30) evidently imply (10.5). O
ProOF OF THEOREM 10.5.

Step 1. Without loss of generality we may assume v, —vg > 0. Let H be a
smooth function and define

Pl t) = [ gy, E(x — ¥)

Vg — U v, — U,
xH(B Yx + 2 y—v7t>dy,
Vg — Ug Vg — Ug

(10.31)
pp(x.1) = [ guly, )E(y — %)

Up— U v, —U
xH<B Yy ax—vyt>dy.
Vg — Uy Vg — Uy

Assume first that g, and g, are differentiable functions. Then

L[ [ gulx Dgaty. 0EC — )

Ug— U v, — U
xH(B Yo+ 2 ay—vyt>dydx
Vg — U, Vg — U,

-/ %(x, 1)gp(y, )E(x — y)
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Vg — U, v, — U,
x H x+ y—v,t)dydx
Vg — Vg Vg — Vg

+ //ga(x, t)%(y, t)é(x —y)

X H(UB B OV Uy_vay— vyt) dy dx
Vg — Uy Vg — Uy
— [ [ gulx. Dgp(y. Y — ¥)

xvyH’<

(10.32) :/paDagadx—i—/pBDBgB dx

UB_UV U,y—U

X+

Ty — vyt> dydx
Vg — U, vg —

[43

_//%%%WJMA%ﬂﬂx_”

Ug— U v, — U
xH( B Vx4 2 ay—vyt)dydx

Vg — Uy Vg — Uy

- /fga(x, t)v,s%(y, £)é(x —y)

vg— v, v, — U,
x H x+ y—v,t|dydx
Vg — Uy Vg — Uy

[ [ gulx. Dgp(y, EG - ¥)

Vp— U
xvyH’< B Yx +
Vg — Uy Vg — Uy

Uy — Vg

y— vyt> dydx.
After an integration by parts, (10.32) equals
/paDaga dx + prDBgB dx
+ (g — va) [ 8ul®, )8p(x, YH(x — v t)dx

(10.33)
+ (02— vp) [ [ gulx, )8p(3, 1)

vg — U, Uy — Vg
x H x+ y—v,t)dydx.
Vg — U, vg— U

o

In the case of an arbitrary g with J(g) < oo, we still have that the left-hand
side of (10.32) equals (10.33) in the weak sense. To show this, we multiply
both sides by a smooth function of ¢, integrate with respect to ¢, replace ¢ by
a smooth approximation and rearrange terms so that only D,g, and D;gg
appear (avoiding dg,/dt and dg,/dx). Then by a standard argument we pass
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to the limit and derive (10.33). In summary,
T
/O /(paDaga+pBDBgﬁ)dxdt
T
= o —vp) [ [ galx. Dgp(x. NH(x — v,0) dx

Fp o) [ [ [ e 08,0

vg— v, v, — U,
x H x+ y—v,t|dydxdt
Vg — Uy Vg — Uy

, T , T _
(10.34) +//gﬁ(x )85(y, T)é(x — y)

vg — U, Uy = U,
x H x+ y—v,T)dydx
Vg — Vg Vg — Vg

_//gﬁ(x’o)gg(y,O)g(x_y)

Vg — U v, —v
xH( B Yyt 2 ay)dydx

Vg — Vg Vg — Vg

— (v, — UB)/OT/ga(x, £)gg(x, ) H(x — v,t)dax dt
+ U (T) + Qo(T) — Q,(0),

for any smooth function H. Since D,g,, Dgzgz and g,gg are integrable func-
tions, it is not hard to establish (10.34) for an H that is bounded and measur-
able.

Step 2. We set p, =0 if & # «, B. We have

Jd&)z [ [T puDygydudr

10.35 T :
(10:35) -[ [} T K@B.¥8)euss
By
x [exp(py + Py — Pw — Pg) — 1] dx dt
We choose H(z) = A1 z(2) where A is a constant and B is a measurable subset
of T. From Lemma 10.8 we have that p, and pg are bounded above by A times

(10.36) clh(cl|B|)|:1 + Z/ga, log* g, (x, ¢) dx]
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for some constant c;. Since xlog™ x < xlogx — x + 1, we can use (10.4) to
deduce that (10.36) is bounded above by A times

(10.37) clh(cl|B|)[l + Z/ga,(x, 0)log* g, (x,0)dx + Jd(g):|.

We now choose A to be the reciprocal of (10.36). For such a choice of A, p, and
pp are bounded by 1. Hence

T T
Ju&) = [ [(PuDuge+ PpDpgp)dxdi—c, [ [ Y gugpdxd

Vo FUpr

for some constant c,. From this, (10.34) and (10.3), we learn that for some
constants c; and ¢y,

T
(Vg — uﬁ)/o [ga(x, £)gg(x, )H(x — v, t) dx dt
< Jq(8) — W (T) — Q(T) + Q,(0)

(10.38) ed o(2) +03</2ga(x, 0) dx>2

2
< col a2 D+ 0D+ 0,0 s [ X a(x,0) )
Once more we apply Lemma 10.8 to yield that for every ¢,
T
(D) < eh [ [ gulx. ) dxdr-he|B)
x [1 + sup /Zga, log" g, (x,t) dx}
0<t<T o
= TZ/ga,(x, 0)dx,
20| = X [ galx, 0)dx,

where for the equality we used the conservation of mass and the fact that A
is the reciprocal of (10.36). From this and (10.37) we conclude

/T/ga(x’ t)gp(x, t) L g(x — v,t) dx dt
(10.39) 0 2
< AL |:C5Jd(g) + cg <1 + /Z 8. (x,0) dx) i|,

where A1 is given by (10.36).
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Final step. Let G(x) = [ g,85(x + v,t,t)dt. Set B, = {x: G(x) > I}. Then,
by (10.39),

/Fl(G(x))dx - //:O b% 1(G(x) = 1)dl dx
= [estu@ +es(1+ [ St 01ax)
(10.40) xcq [1 + f(Z g(x,0)log g, (x,0)

— go(x,0)+ 1) dx + Jd(g)}

b-1
Mdl,

x [ bh(el By
On the other hand,
Bl<7 [Gw)d
1= I X X.

Hence

b-1
[ w2

© (o (log >+
< /1 h(cl)T +/a h(T /de>f.
If we choose a = max(1, (¢; [ G dx)?), we deduce
b-1
/ h(c 1|Bl|)% dl < c6(|og+/de + 1)
1
for some constant cg because [ > a implies
(10.41) h(%l / de) < 2(log 1)1,

On the other hand, by (10.3), the integral [ G dx is bounded by a constant
that depends on k; and k,. This, (10.40) and (10.41) imply (10.6). O

We now turn to the macroscopic counterpart of our results in Section 8. Set

ngm—/ Y gugp(x v, Al Ba(%,8) = gu(x + Ve, D),
a?ﬁvfﬁﬁv

where the summation is over distinct triplets of velocities (v, vg, v,).
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LEMMA 10.9. Let o, (x) = [) (98,/3t)* (x, ) dx. Then

T > T Jo(8)
2 0
(10.42) /o /|Daga|dx dt <n KUHZ#B/O fgagﬁ dx dt+—logz .
Oy 2 17 r
(10.43) /aa log 3y dx < K/O /|Dag| dx dt +2J4(g).

ProOF. For every bounded measurable function p,(x, t),

/OT/paDagadxdtsJo(anZK > /OT/gagdedt.

Vo #Vg

A repetition of the final step of Lemma 7.4 would lead to (10.42).
One can derive (10.41) in just the same way we derived (7.35) from (7.28). O

Proor OoF THEOREM 10.5. We first note that in fact if in Lemma 7.5 we as-
sume [ T;(g)dx < p, instead, then we can replace I'; with I, in the conclusion
of that lemma. Now (10.8) follows from Lemma 10.9 and Lemma 7.5. O

ProOOF OoF THEOREM 10.1. It follows from Theorem 11.2 of the next section
that for functions g with J(g) < k&, the family { g,(x, t) p,(x) dx} is equicon-
tinuous as a function of ¢. This clearly implies that the set {g: J(g) < k} is
precompact. Hence it remains to show the closedness. Let g() be a sequence
with J(g®) < & such that g — g. We would like to conclude J(g) < k. For
this, it suffices to verify

(10.44) Jo(g)+J(g:p) <k
for any smooth function p. Let &, be an approximation to identity and set

gV, = gV« &,. Since J(g?) < k, we can apply Theorem 10.4 to deduce

J () r D sDdxd
o8N+ | > peD.gy) dxdt

T
!
(1045) -1 /0 | ¥ K(ap,v9)el, g5,

aByd
x [exp(p, + ps — Po — Pp) — 1] dxdt < c1h(e) + &,

where ¢, is a constant that depends on 7', H and % only. Since the functional
8o > &4, . 1S CONtinuous, we can pass to the limit in (10.45) to conclude

T
To(g®) + [ [ X puDog,dxdt

T
(10.46) _ %/O / Y K(aB,v8)8,, -8p, e

aByd

x [exp(py + Ps — Poa — Pg) — 1] < c1h(e) + k.
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We then let ¢ — 0. Using Theorem 10.6, we know that the sequence {g, .&3, .}
is uniformly integrable. Since g, .85 . — 8.8 almost everywhere, (10.46)
implies (10.44). O

11. The rate function, part Il. Recall that # (resp. €) denotes the set
of profiles g for which there exists a bounded (resp. smooth) p such that (1.16)
holds. To complete the proof of lower bound, we need the following theorem.

THEOREM 11.1. If J(g) < oo and g € 4, then there exists a sequence g, € ¢
such that g, converges to g and J(g;) converges to J(g) as k goes to infinity.

We also establish a temporal regularity of profiles with finite rate function.
Recall the function w5 defined by (6.1).

THEOREM 11.2. There exists a constant B,(%k, T') such that if J(g) < &,
then for any smooth p,(x),

| |
J (g t) = gu(x D) pu(x) d

IPg
ox

lap. |
(11.1) = lval| 7271
I ox |

([Z et 0ds)it -l

Flpdae D (s 2))

As a step toward the above theorems, we derive a nonvariational formula
for the rate function. Recall the function H(g, p) defined by (0.5). It is not
hard to show that H is convex in the p variable (see also Lemma 11.5 below).
Let G denote its convex conjugate:

(11.2) G(g,d) = Sl;D(p -d — H(g, p)).

PROPOSITION 11.3.
T
(11.3) J(g) = [O | G(g. Dg)dxdt.

The proof of this is based on some properties of G that are formulated in the
next lemma. We first state some definitions. Recall the definition of conserved
vectors as in the previous section. In this section we need a g-dependent
definition of conserved vectors.

DEFINITION 11.4. Let g € R". We write A, for the set of vectors e € R” such
that

ea+eB:e,y+e5
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whenever K(af, y5)g,8p # 0. We also define
A;={decR" d-e=0foreveryec A,}.

Finally we set D, = {d: G(g, d) < oo}.

LEMMA 11.5. (i) If J(g) < oo, then for almost all (x, £),
(11.4) (g(x,t), Dg(x,t)) € {(g,d):d € Ag}.

(i) D, < Ag. Moreover, if g, # 0 for all a, then D, = A.
(iii) H(g, p) is strictly convex on the set Ag.

PRrROOF. (i) From the definition, H(g,e) =0ife € A,. Now take a bounded
measurable function p: T x [0, T] — R” such that for every (x, t), p(x,t) €
A g(x, 1. For such p we clearly have

[()T/Ap~ngxdt§Jd(g)

for every scalar-valued measurable function A(x, ¢). If J;(g) < oo, we deduce
that for such p, p- Dg = 0 for almost all (x, ¢). From this, it is not hard to
conclude (11.4).

(i) A version of the previous proof (i) shows that if G(p,d) < oo then
(p,d) e A;

Suppose g, # 0 for all . To show G(g, d) < oo for all d € AL, it suffices to
verify

_ H(g,

(11.5) lim 2182 _ |
p=oo | p
peAg

because (11.5) would allow us to restrict the supremum in (11.2) to a suffi-
ciently large bounded set of p. Let S = {p € Ag: |p| = 1}. If p € S, then
for some («, B, v, 8) we have p, + pg — p, — ps # 0. Since S is compact, we
can find a positive ¢ such that whenever p € S then for some (a, B, v, 8),
|Py + Pg — Py — Ps| > & From (1.4)(vi), we know that if K(aB, yd) # 0 then
K(yé, aB) # 0. Hence, for ¢ > 0,
K(OZB, ys)gagﬁ exp(t(pa + ﬁﬁ - ﬁy - p&))
+ K(‘)/B, aﬁ)g«/gs exp(t(ﬁy + pﬁ - ﬁa - pB)) z cets

for some constant c. If p € A, we can choose p = p/|p| and ¢ = | p| to conclude

H(ga p) = Ce€|P‘ —C1,

for some constant ¢, that is independent of p. This clearly implies (11.5).
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(iii) A straightforward calculation yields
dH

Zﬁ

o o

= Z K()’Ba aB)gygﬁ exp(pa + Ppg— Py — pﬁ)ba
aByd

— > K(aB,v8)8,8peXP(Py + Ps = Pu— Pp)ba
afyd
1
= E Z K(aﬂ> ys)gagﬁ exp(py + Ps — Pa — p,B)(by + b3 - ba - bﬁ)v
aByd
”H
e — b,b
QXB:&pBapa(g’p) a”B

1
=5 Z K((IB, '}/B)gagﬁ exp(py + Ps — Pa — pB)(by + b8 - ba - bB)2

2 aByd

This clearly implies the strict convexity of H(g, -) on Ag. m|

(8, p)b,

PROOF OF PROPOSITION 11.3. Evidently we have

T
(11.6) Ju(g) < f / G(g, Dg)dx dt.
0
Hence, for (11.3), we only need to show that if J;(g) < oo then
T
(11.7) Ja(g) = [ [G(g Dg)dxadt.
0

By (11.4), we may assume Dg € Ay almost everywhere. Suppose d € A, and
p=p'+ p* with p' € A, and p® € AL. We clearly have

d-p—H(g,p)=d-p*— H(g, p°).

Therefore
G(g,d)=sup(d-p— H(g, p)).
peAg
For every d € AL, define
(11.8) Gile.d) = max (d-p- Hlg. p)).
peAg

Recall that H(g, -) is strictly convex on A. Hence the maximizer in (11.8) is

unique. We denote the maximizer by P*)(g, d). Clearly P® is a continuous
function. We then define p®(x, t) = P%®(g(x, t), Dg(x, t)). Then

T
Tu(8) = Ju(g: ™) = [ [Gu(g. Dg)dx .

Since G;, 1 G, by the monotone convergence theorem (11.7) holds. O
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We continue with an example to illustrate G.

ExXAMPLE 11.6. Consider the left-right model of Example 1.7 with I, =
{1, 2} and I, = {3, 4}. We also assume the conservation of momentum. Assume
K(aB,v,8) = 1 whenever K is nonzero. We then have A, = {e: e; + e, =

esteu}if g8, +g38,#0and A, = R* otherwise. Hence if 8182+ 8384 #0,
Ay ={d:d=(r,r,—r,—r) for some r € R}.
Moreover
D,=A; ifg,8,8:8,#0,
D,={(r,r,—r,—r):r >0} ifg18,=0,838,#0,
Dg = {(r, r,—r,—r)r=< 0} if g18,#0, g38,=0.

In the same order, the corresponding G(g, d)'s are

—r+/r>+4
G(g,d) = g18,0(A) + gz8,0(—A), A =log vV g1g2g3g4,

28182
|7
G(g,d)=|r|log —— — |r| + g384,
(g, d)=|r]| 222 7|+ 8384
||
G(g,d) =|r|log —|r|+ g185.
(g,d)=1r| 212, 7l + 818>

The next issue we would like to address is the existence of p in (1.16). As
the previous example illustrated, it is possible to have D, # AJg-. This in fact
corresponds to examples for which p becomes infinite. Hence some care is
needed for the meaning of (1.16).

PROPOSITION 11.7. Suppose J(g) < oo. Then there exist measurable func-
tions A(afB, y8): T x [0, T] — [—o0, +00) such that for all «,

D,g,= ) K(v6,aB)g,gsexp(A(aB, vb))

(11.19) pov?
— > K(aB, v8)g.85exp(A(v8, aB)),
B,v,0
T
(11.20) J(@) = [ [ X K(ap.v9)2.850(A(v5. ap)) dxdr.
aByd

As Proposition 11.7 indicates, it is more convenient to deal with the dif-
ferences p, + ps — p, — pg than p,. Note that by (11.20) we know that
P(A(y8, aB)) < +oo almost everywhere. Hence A(yd,aB) < +oo when-
ever K(aB,vd)g,8s # 0. Because of this, the expression K(af, y5)g.8s
exp(A(yé, aB)) is well defined.
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Proor or PrOPOSITION 11.7. Fix g and consider the convex functions
H(g,-) and G(g,-). Let B, denote the affine hull of D,, that is, the inter-
section of all affine sets which contain D,. It is known that the topological
interior of D, as a subset of B, is contained in the range of the gradient
dH /dp (see, for example, page 224 of [3]). Hence if G(g, d) < oo, then there
exists a sequence p® such that

(11.21) d® = %(g, p*) - d.

It is not hard to show that in fact d®) = d®)(g,d) € D, can be choosen in
a measurable manner. Since H is strictly convex on A%, the function p® =

p®(g, d) is uniquely defined and measurable. Since G(g, -) is lower semicon-
tinuous,

(11.22) liminf G(g, d®) > G(g,d).

Clearly, d® € D;. As a result,
G(g,d®)=d™ . p» — H(g, p) < G(g,d).

This and (11.22) imply lim, G(g, d®) = G(g, d). On the other hand,
G(g,d®) = 3 K(aB, v8)8.8p1 (A (aB, ¥9)),

afyé
(11.23) & =Y K(v5,aB)g, 85 exp(A%)(aB, v5))
Byo
— Y K(v8, aB)g.g5exp(AP (8, ap)),
Byd

where
k 3

From (11.22) and (11.23) we learn that the sequence exp(A%®)(aB, v8)) is uni-
formly bounded. We then use a subsequence so that exp(A®*)(af, y8)) con-
verges. The limit will be denoted by exp(A(af, y$; g, d)). We clearly have

d,=Y K(v5,apB)g,8sexp(A(apB, v9))
Byd

— Y K(aB, v8)g,85exp(A(y8, aB)),
Bvé

G(g,d) = )  K(aB, v5)8.85%(A(aB, v8)).

afByé

From the measurability of p®), we conclude that A is a measurable func-
tion in (g, d) variable. Finally we choose A(aB, v6)(x,t) = A(aB, v8; g(x, ©),
Dg(x,¢t)). O
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PrOOF OF THEOREM 11.2. We certainly have

| |
(gl 1) = g 1) pu)

(11.24) 'f /pa agadxdt' '// gadxdt'
<[ [p. agadxdt'+|va| i ot [ Y x. 00,

|
where, for the second inequality, we used the conservation of mass. From

(121.19) we learn that

[/ paDagadxdtl

< / [ 1pal & K (78, aB)g, 25 exp(A(aB, v8)) dx dt

Bvs

(11.25)
+ / [ 1Pal & K(aB. v9) 8,85 exP(A(y5, aB)) dix dit
Byd

= Ql + Qz.

Furthermore, for every [ greater than 2,

0, = f [ 1pal X K (v, aB) g, g5 exp(A(aB, 79))
Byd
x 1(A(aB, y8) < 1) dx dt

+ / [ 1pa X K(v8, aB)g, g5 exp(A(aB, ¥9))
By
x 1(A(aB, y8) > 1) dxdt

(11.26) = clllpallooe/ / Y g,8sdxdt
UpFUs

=N / | X K (8, aB)g, s exp(A(a, ¥8))A(aB, 5)
Bys
x 1(A(aB, y8) > 2)dx dt,

c1ll Palloce / [ £ gug,dxdt+ 2ip.lada(e)

Vg#V,

A

L1l Palloce’Qua(te, t2) + 51 Palloo T a(8),

where for the last inequality we used (11.20) and the elementary inequality
2y(A) > Ae? for A > 2. On the other hand, we can use Theorem 10.5 to assert
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that for any r greater than e,

123
Qll(tlatz):/t / > 8p8y1(8pg, <r)dxdt
1

Ug#U,

173
+/ / Y. 858,1(gs8,>r)dxdt
123

(11.27) et
1
< (=t + s /t /; T(gsg,)dx dt
< (t2 =t + o)

for a constant c¢,(%) that depends on % only. If we choose

1 1 -
=t {57
in (11.27), we obtain

Qs (s, 1) < Cz<k)(w2(t2 - t1>>b

for a suitable constant c,(%). Substituting this in (11.26) yields

1 2k
R e e e K
2 1

We now choose
1\ 72
= Iog(log log 5)

with 6 = ¢, — ¢, to conclude

(11.28) 0 = ||Pa||ooc3(k)<w3<t2 i t1>>_l

for some constant c;(%). The term ), can be treated likewise. This, (11.28),
(11.25) and (11.24) imply (11.1). O

For Theorem 11.1 we need the following lemma that would guarantee the
boundedness of g when g € £4.

LEMMA 11.8. There exists a constant Bs(k, T') such that if (11.19) holds for
a family of measurable functions A(af, y8) with

> lA(eB, ¥d)lx < &,

a,B,v,8

Y [ gulx. 0)dx < .
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then

(11.29) |8a(%,8)| < Bs(k, T)| ga(- 0)|
for almost all (x, ) € T x [0, T].

The proof of this lemma is omitted because it follows the proof of Theorem 1
in [1].

The proof of the following lemma can be found in [16] in the case of A = 0.
Toscani’s proof can be readily generalized to treat the general case.

LEMMA 11.9. Let g(® be a sequence of solutions to (11.19) with

(11.30) sup supfzggk>(x, t)log* g®(x, ) dx < oo.
t k «
Suppose that the function A is bounded and
(11.31) lim /|g<k)(x, 0) — g(x,0)|dx =0,
where g is another solution to (11.19) of finite entropy. Then,
im [ [1e®
(11.32) len;fO /|g (x,t) — g(x, t)| dx dt =0.

PROOF OF THEOREM 11.1.

Step 1. Assume J(g) < oo and g € %. First we want to replace the ini-
tial data by a smooth function. More precisely, let g®)(x, 0) be a sequence of
smooth functions such that (11.31) holds. Let g*)(x, t) [resp. g(x, t)] be the
unique solution of (11.19) with the initial data g(®(x, 0) [resp. g(x, 0)]. We
would like to conclude that for a subsequence of g®), we have

(11.33) Jim J(g®) = J(g).

By Lemma 11.8 we have that g(®) converges to g in the L-norm. As a result,
for a subsequence g® converges to g almost everywhere. Using the conser-
vation of momentum, as in the proof of (10.3) we deduce that

T
(11.34) sup Y / /gg“ggk) dx dt < .
0

L) #U
B7 %y
Since the corresponding A is bounded and independent of %, (11.20) implies
(11.35) sup J(g®) < o0.
k
This and Theorem 10.3 imply (11.30). By Lemma 11.8 we have that g*) con-

verges to g in the L-norm. As a result, for a subsequence g*) converges to
g almost everywhere. Moreover, by Theorem 10.6 we have

T
(11.36) sup/ / Y To(gPgl) dxdt < oo.
r Y0

UB#UY
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This implies the uniform integrability of the sequence g&k>g;k). Since A is

bounded and g® converges to g almost everywhere for a subsequence, we
have (11.33) for a subsequence.

Step 2. From the previous step we learn that we may assume g(-,0) is
smooth. By Lemma 11.8 we deduce that g(x, t) is bounded for (x,t) € T x
[0, T']. We then approximate p by a sequence of smooth functions p®):

sup | "]l < oo,
(11.37) k
fim | p = p®P|lpz = 0.

Let g® denote the corresponding solution to (1.16) where p is replaced with
p® and the initial density is g(-,0). From Lemma 11.7, we have

Sl]:P ||g(k)||Lvo(1rx[o,T]) < o0.

Moreover, by standard arguments we can show that g(®) is smooth (see,
e.g., [4]). Using the analog of (1.10) for our equation (1.16), it is not hard to
show that for almost all ¢,

[ EleP . 6) = gulx, )] da

t
(11.38) <eif [ X Jexp(pt+ pi” — o - py”) g gy

Vo #Ug
—exXp(p, + Ps — Po — Pp)8a8p|dx dt

for some constant c;. Since |p(®|, |g®|, | g| are all bounded by a constant, the
right-hand side of (11.38) is bounded above by a constant multiple of

t
[ [Z1p8 = pul + 218 ~ g, dxdt.

From this, (11.37) and Gronwall’s inequality we deduce

im [ | (k) _ | _
lim [ [3]e®(x,8) - gu(x, 1) dxdt =0.
0 (04

k— o0

(k)
As a result, a subsequence of g, converges to g, almost everywhere. From
this, (11.20), and the bounded convergence theorem, we conclude

Jim J(g®) = J(g). O
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