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LONG-TIME BEHAVIOR AND COEXISTENCE IN A MUTUALLY
CATALYTIC BRANCHING MODEL!

By DONALD A. DAWSON AND EDWIN A. PERKINS

Fields Institute and University of British Columbia

We study a system of two interacting populations which undergo ran-
dom migration and mutually catalytic branching. The branching rate of
one population at a site is proportional to the mass of the other popula-
tion at the site. The system is modelled by an infinite system of stochastic
differential equations, allowing symmetric Markov migration, if the set of
sites is discrete (Zd), or by a stochastic partial differential equation with
Brownian migration if the set of sites is the real line. A duality technique
of Leonid Mytnik, which gives uniqueness in law, is used to examine the
long-time behavior of the solutions. For example, with uniform initial con-
ditions, the process converges to an equilibrium distribution as ¢ — oo, and
there is coexistence of types in the equilibrium “iff” the random migration
is transient.

1. Introduction and statement of results. There has been consider-
able recent interest in the study of branching measure-valued diffusions or
superprocesses for which branching can occur only in the presence of a (ran-
dom or deterministic) catalytic medium. One interesting feature of this work
is that in a variety of settings, branching in a singular medium leads to ab-
solutely continuous measure-valued processes [see Dawson and Fleischmann
(1994, 1995) or Delmas (1996)] in higher dimensions.

Another important development is the study of interactive models based on
superprocesses or Fleming—Viot type processes [e.g., Perkins (1995) or Dawson
and March (1995)]. Both these references characterize interactive models in
which the branching or resampling rate depends on the state of the system.
In both cases, however, the basic uniqueness results are not as general as one
would hope (for quite different reasons).

In this work we study a class of stochastic models proposed by Carl Mueller
which exhibit interactive, “mutually catalytic” branching and are therefore
closely connected to both of the developments described above. There are two
types of particles (you may call them male and female although the biology
implied by the mathematical model will be highly suspect) each of which may
branch only when the other is present. More precisely, the branching rate of
each type at a site is proportional to the amount of the other type present
at that site. If the set of sites is the real line, R, this leads to the following
system of stochastic partial differential equations in which y > 0 and W, (¢, x)
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(i = 1, 2) are independent space-time white noises on R, x R:

2
(i) Z—L:(t, %) = %%(t, %) + (yu(t, x)u(t, ©)) > Wy(t, 2);
(SPDE), .. a L u(0, x) = ug(x),
(ii) ﬁ—:(t, x) = zﬁ(t, x) + (yu(t, ©)o(t, x)) > Wy(t, x);

v(0, x) = vg(x).

The precise meaning of these equations (involving smooth test functions) is
recalled below. In the simple one-dimensional catalytic superprocess, one has
(i) where v is the density of a given random or deterministic catalyst which
is not affected by u. The interactive nature of (i) and (ii) invalidates the tech-
niques used to study these catalytic models and forces the development of new
methods. Our hope was that due to the simple and symmetric nature of this
model (linear branching rates) the general uniqueness difficulties encountered
in the work on general interactive branching models could be resolved in this
case. This problem was recently solved by Leonid Mytnik (1997), who proved
weak uniqueness of solutions to (SPDE), ., in his Ph.D. thesis.

Another interesting feature of (SPDE), ., is its potential extension to
higher dimensions. Here it may be formulated as a measure-valued martingale
problem involving the collision local time of the two types [see Barlow, Evans
and Perkins (1991)]. This change is necessary because it seems unlikely that
the solutions would be absolutely continuous in more than one spatial dimen-
sion. Note that if u were an absolutely continuous measure, then the results
for superprocesses [Dawson and Hochberg (1979), Perkins (1988)] suggest that
v would be a singular measure. If u were a singular measure, then the results
of Dawson and Fleischmann (1995) and Delmas (1996) suggest that v should
be absolutely continuous. The same reasoning holds when the roles of © and
v are interchanged and we are led to conclude that both » and v have non-
trivial absolutely continuous and singular parts. Although the situation looks
intriguing, the existence of solutions in higher dimensions is unresolved.

Once the basic issues of existence and uniqueness are resolved, it is natural
to ask about the long term behavior of solutions to (SPDE). Let m denote
Lebesgue measure, u,v € (0, 00) and set (ug, vg) = (um, vm). Dawson and
Fleischmann (1988, 1995) have shown that for the catalytic model in which
v(t, x) is the density of a one-dimensional super-Brownian motion and u(¢, x)
satisfies (SPDE), ,, (i), as ¢ — oo v, becomes extinct in bounded regions a.s.
and u, approaches um in probability, in the vague topology. A naive guess for
solutions of (SPDE),,, ., is that as ¢ — oo, (u;, v,) converges to a mixture
of (0, vm) and (um, 0). We show that as ¢ — oo, (u,, v,) converges weakly to
(upom, vy om), Where u v, =0, uy, has mean u, and v,, has mean v, and give
a simple explicit description of the law of (u,, v,,) (Theorem 1.8). Although
this shows that only one type survives in the limit, the convergence is only
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weak and so it may well be that the “dominant type” changes infinitely often
as t — oo. This remains open.

We suspect, as for super-Brownian motion [see Dawson (1977)], that the
asymptotic behavior of solutions is quite different in the transient case, d > 3
(assuming that such solutions exist). As the existence of solutions in higher
dimensions is unresolved, it is natural to study the limiting behavior of so-
lutions in transient and recurrent settings by considering the analogues of
(SPDE) on the lattice Z¢, in which Brownian motion on the line is replaced by
a symmetric Markov chain on Z?. We now describe our results in some detail
in this discrete setting.

Let (&,, (P*: k € Z%)) be a continuous time Z%-valued Markov chain and
set p,(J, k) = P/(& = k). Let @ = (g ;) denote the associated @-matrix; that
is, q j, is the jump rate from jto &k (j # k) and q;; = — > ;.;qp > —oo. If
k= (ky,...,kg) €Z let |k| = X%, |k;|. We assume the following:

(Ho) llgllec =sup;lg ;| < oo.

(H,) For each j, k € 77, qjr = qx; and hence p,(j, k) = p,(k, j) forall ¢t > 0.

(H,) There are increasing, positive functions ¢, ,(7', A) and A’'(A) on R? and
R, respectively, such that lim, ,A'(A) = 0 and for any 7', A > 0,

(gl + pe(J, k) exp(Alk]) < 11 (T, A)exp(N(M)]j]) Ve e[0,T], j e Z%
k

It is easy to check these hypotheses for continuous time symmetric random
walks with a subexponential tail (Lemma 2.1), including, of course, simple
symmetric random walk on Z¢ for which Qjjre, = (2d)71 (e; is the ith element
in the standard unit basis), ¢;; = —1 and g ;, = 0, otherwise.

If y > 0, the discrete analogue of (SPDE), , is the following system of
stochastic differential equations:

w(k) = wo(k) + [ 0, QUe)ds + [ (yu(yo, (k)" dBL,
t>0,keZ%
0i(k) = vo(k) + [ 0,Q(R)ds + [ (s (Ryo, () AW,

t>0,keZ?

> Vo

(LS. v,

Here, u,Q(k) = ¥ u,(j)gp and ug: Z¢ — Ry, vy: Z% — R, are a pair of
given initial conditions.

We say that (u, v, B, W) is a solution of (LS),, , on a filtered probability
space ({}, 7, %, P) iff the following hold:

(i) {B*, W*: k € Z9} are independent one-dimensional .%,-Brownian mo-
tions;
(i) ¥ lu(j)gul <ooVs=0, ke Pas,;
(i) {u(k), v(k): k € Z¢} are continuous, nonnegative .%,-adapted stochastic
processes satisfying (LS) forall ¢ >0, k€ Z¢ as.

Uog, Vg
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We stress that in all of our results on (LS) the hypotheses (Hy)—(H,) will be
in force.

Notation. If A € R, ¢,(k) = eM* for k e Z%, and we will use the same
notation to denote this function on R%. If u, v: Z¢ — R, (u, v) = Y, u(k)v(k),
providing this series is absolutely convergentor u > 0and v > 0. If A € R and
u,v: 2% > R, let Ju — v|, = (Jju — v, ¢,).

An appropriate state space for solutions of (LS),, ,, Will be My x Mg,
where

M = Men(2%) = {u: Z¢ — R,: (u, ¢,) <00 ¥A <0}.
We topologize M., by the metric

dtem(u7 U) = Z 2_n(|u - Ul—/\n A 1)’
n=1

where A, | 0. Let Q. = C(R, Mg, x M), €quipped with the compact-open
topology.

THEOREM 1.1. Let ug, vg € Mem.

(a) There is a solution (u, v, B, W) of (LS), , such that (u,v) € Qe a.s.

(b) Any solution (u, v) of (LS), , hassample paths in O, and the laws
of any two solutions of (LS), , on O, coincide.

The existence of a solution follows from standard techniques [e.g., Shiga
and Shimizu (1980)]. Several existence results and properties of solutions are
presented in Section 2 (the existence part of Theorem 1.1 follows from The-
orem 2.2) but most of the proofs are relegated to the Appendix. The unique-
ness was obtained by Mytnik (1997) through an elegant duality argument. We
present a proof in Section 2 for completeness (see Theorem 2.4) because our
setting is slightly different [Mytnik worked with (SPDE), ,, but the same
ideas work here] and the duality relation will be our main tool in studying the
long-time behavior of solutions to (LS). The strong Markov and Feller prop-
erties of the solution will follow easily (Corollary 2.7). Let P, , denote the
law of the solution to (LS), , on O and let (u,, v,) denote the coordinate
variables on this space.

As with bilinear systems of s.d.e.’s [e.g., Gauthier (1996)] it is not hard to
use Itd’'s lemma to see that Nth order moments of the form P([T"_, u(, k;)™
v(t, k;)™), where Y . m;+n; < N, peN, k; € Z%, solve a system of uniquely
solvable differential equations. In fact, one may explicitly describe the above
moments in terms of a dual system of N particles in Z¢ which are of two
possible colors, migrate as copies of &, and can change colour in an appropriate
manner. Unfortunately the moments grow too quickly for the moment problem
to be well-posed and so this approach does not establish uniqueness in law
of solutions to (LS). [The same situation holds for solutions of (SPDE).] We
will use these moments for N < 2 (they are derived in Theorem 2) but the

» U,
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expressions for moments with N > 4 are rather complex and so the above
dual process will not be described here.

Assume first that (u, 1)+ (vg, 1) < co. Then it is not hard to see that (u,, 1)
and (v, 1) are nonnegative martingales under P, ., [Theorem 2.2(d)] and
hence converge P, , -a.s. as ¢ — oo by the martingale convergence theorem.
Let (u.,1) and (v, 1) denote their a.s. limits. We say coexistence of types
is possible if P, ., ({#s;1)(ve, 1) > 0) > 0 whenever 0 < (ug, 1) < oo and
0 < (vg, 1) < oo. Coexistence of types is impossible if

P (oo, 1) (v, 1) > 0) = 0 whenever (vg, 1) + (vg, 1) < oo.

Ug, Vg

Notation. g,(j, k) = [o p,(j, k)ds, t €[0,00], j, k € Z.

The following result states that under appropriate “homogeneity” condi-
tions, coexistence of types is possible if and only if &, is transient.

THEOREM 1.2. Assume (ug, 1) + (vg, 1) < oo.

(@) If sup, g..(k, k) < oo, then coexistence of types is possible.
(b) Assume 3¢;, > 0 such that vV j € Z¢ 3T, ,(j) such that

(1.1) gr(J,Jj)=ciz Sl}:p gr(k, R)VT > T15(J).

If P;(§, = k forsome ¢ > 0) =1V, k e 7, then coexistence of types is
impossible.

The result is proved in Section 3. Under our hypothesis (Hg), the as-
sumption in (a) is equivalent to uniform transience of the chain. That is,
sup;, P,(&;, = k for arbitrarily large t) < 1. The hypotheses of (b) simply
state that all states communicate, are recurrent and are comparable in the
sense of (1.1). We suspect these conditions are not optimal. Now (a) is easy
to prove through a first moment argument; (b) is more involved and relies
on an integral equation for u,(k) and v,(%) [the mild form of (LS)] involving
Green'’s functions. The proof does not use the uniqueness of solutions to (LS)
or duality.

COROLLARY 1.3. Let (£,) be simple symmetric random walk on Z¢. Coexis-
tence of types is possible if d > 3 and impossible if d < 2.

ProOOF. Let {S,: n € Z,} be the discrete time simple symmetric random
walk on Z%. The holding times of (¢£,) are mean one exponential variables
and so

(k) = 2.,(0,0) = 3" Po(S, = 0),
n=0

which is finite for d > 2. Theorem 1.2(a) gives the first assertion. Equation
(1.1) is trivially satisfied by translation invariance and so Theorem 1.2(b) and
the point recurrence of random walk for d < 2 gives the second assertion. O
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Even when coexistence of types is impossible, it is not clear from the above
if extinction of one type can occur in finite time. A related question is whether
or not we may take the probability of coexistence to be one when coexistence is
possible. In a companion article [Mueller and Perkins (1997)] it will be shown
that regardless of the recurrence or transience properties of (£,), one may
select initial conditions so that finite-time extinction of one type occurs with
probability zero and other (nonzero) initial conditions for which this probabil-
ity is arbitrarily close to one. In particular, this shows that in the transient
case, P, o, ({¢s1)(vs, 1) > 0) may be arbitrarily close to zero for certain
nonzero uy and vy.

Finally, in any case one has (u,1) > 0 or (v.,1) > 0 P, ,-as. for
ug + vy # 0 because Theorem 2.2(d) allows one to see that ({u,, 1), (v;, 1))
is the time change of a planar Brownian motion stopped when it exits the
first quadrant and hence is bounded away from (0, 0) a.s.

Next we turn to the setting when uq(k) = u and vy(k) = v for all & € Z¢ for
some u, v > 0. Write P, , for the law of (u, v) with these initial conditions.

THEOREM 1.4. For each u,v > 0, P, ,((u;, v;) € -) converges weakly on
(Mem)? as ¢ — oo to a stationary initial distribution P, ,((¢, V) € ) for
solutions of (LS). Moreover for each k& € 74 P, (ux(k)) =uand P, ,(v,(k)) =
v. If g, , =d(j— k) forall j, ke Z% then for each k € Z%, P, ,((uoo(k+ ),
UVoo(B+ ) € ) = Py ,((Uoos Vo) € °) 1., Py (U0, Us) € -) IS a stationary
random field on Z%].

The existence of an equilibrium distribution will be an easy consequence of
Mytnik’s duality relation and so the above result is proved in Section 2. This
duality relation relies on the fact that (uz + v, u — v) is self dual with respect
an appropriate class of functionals. It would appear that this self-referential
technique would not shed much light on the nature of the equilibrium found
in Theorem 1.4 but the duality describes the above equilibrium in terms of
({uo» 1), (vs, 1)) for initial conditions with finite total mass. Therefore we
may use Theorem 1.2 to derive the following results in Section 4. Together
they state that under appropriate regularity conditions, coexistence of types
in equilibrium is possible if ¢, is transient and impossible if &, is recurrent.

Notation. If x € R, x: 7% — R, is the map which is constant and equal
to x.

THEOREM 1.5. Assume ¢, satisfies the (recurrence) hypotheses of Theorem
1.2(b) [including (1.1)]. Let u, v > 0 and assume B, = (B?, B?) is a planar
Brownian motion starting at (z, v) under P9 . If T = inf{s: B} B? = 0}, then

IP)u,v((uoo’ Uoo) € ) = Pg,v((B_]T’ B_%‘) € )

In particular, u,, =0orv, =0P, ,-as.
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REMARK. One readily calculates that

P% (B} edx, B5 =0)= P%  (B% edx, B}, =0)

-1
= duvmtx(4uPv? + (x2 + 02 —u?)’)  dx, x> 0.

For example, apply the conformal mapping z — +/z to the Cauchy distribution
obtained as the exit distribution of Brownian motion from the upper half-
plane.

THEOREM 1.6. Assume all states are transient for &, that is, g, (%, k) < 00
forall ke Z%. Let u, v > 0.

(@) us(k)>0and vy (k) >0VEkeZ P, ,-as;

(b) Cov(un(J), ux(k)) = Cov(v(J), vo(k)) = (yuv/2)g.(J, k) and
Cov(uo(J), Vao(k)) =0V j, k € Z2.

In Section 5 an elementary ergodic theorem is proved under the transience
hypotheses of Theorem 1.6. The pathwise behavior of (u,, v,) for large ¢ is not
well understood in the recurrent case. Some partial results and open questions
are giscussed in Section 5 when ¢, is a simple symmetric random walk on Z
or Z-.

We return now to (SPDE), . and introduce the analagous state space for
solutions. At times we adopt the notation used in the lattice case but there
should be no confusion as the context is quite different.

Notation. We write C(R) for the space of continuous real-valued functions
on the real line with the compact-open topology; C.(R) is the subspace of func-
tions with compact support. If A e R and g € C(R), let |g|, = sup,.g e"*!|g(x)|.
Then Cim = Ciem(R) = {f € C(R): |f]) < oo YA < 0} and we topologize
Ciem by the metric dien(f, 8) = >52,:27"(If — 8l_,, A 1) where A, | O. Let
Coom =A{f € Cem: f' € C and f” € Crem} and Coy = {f € Crem’ f = 0}. We
use these superscripts with other classes of functions [e.g., C2, C*(R)] without

further explanation. Finally Q.. is the space of (Cjem)z-valued paths on R,

with the compact-open topology. There should be no confusion with our earlier
(discrete space) definition of Qem-

If f, g € C(R), let (f, g) = [ f(x)g(x) dx whenever the integrand is inte-
grable or nonnegative.

DEFINITION. We say that (u,v, W;, W5) is a solution of (SPDE), , on
Q, 7, %, P) iff the following hold:

(i) W1, W, are independent (.%;)-adapted white noises on R xR [see Chap-
ter 3 of Walsh (1986)];
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(i) {(u(¢,-),v(¢,-)): t > 0} is a continuous Cy,(R)?-valued, (%,)-adapted

tem

process such that u(0, -) = ug(-), v(0,-) = vo(-) a.s. and V¢ € C2:
(w(t). ) = (wo. 9} + [ (u(s). % )ds

[ [ oruts, wuts, ) 2o dWs, ),

MR fu(e). o) = (o, )+ [ (o). 5 ) ds

+ [ [lruts, wyuts, ) 26(x) dWa(s, )

Vt=>0, P-a.s.

THEOREM 1.7. Let ug, vy € Ciyppy

(a) There is a solution (u, v, W,, W5) of (SPDE), ., .
(b) Any two solutions of (SPDE), , have the same law on Q. which we
denote by P,

Ug, U

>Up"

Existence follows easily from standard arguments [e.g. Shiga (1994)] and
is outlined in the Appendix (see Theorem 6.1). Uniqueness (see Theorem 6.3)
was proved by Mytnik (1997).

Coexistence of types is shown to be impossible when uy, v, are rapidly
decreasing at infinity [i.e., lim,_, o, ¢,(x)(uo(x)+vo(x)) =0V A > 0] (see The-
orem 6.6). The proof is similar to that of Theorem 1.2(b). As in the recurrent
lattice case, this then leads to the asymptotic behavior of the law of (u,, v,) as
t — oo with uniform initial conditions.

Notation. Here m denotes Lebesgue measure on R:
My = {Mi p a measure on (R, Z(R)), (w, ¢)) = /qu du <oo VA< O}.

Let dy be a complete metric on the space of Radon measures on R inducing
the vague topology, let A, | 0 and define a metric d on M, by

d(p, v) = do(k, v) + 3 (s doy) = (v, by ) [ AL)27"

n=1

Then it is easy to see that (M, d) is a Polish space and u,, — p in My, iff
lim, o (s &) = (1, d) V& € Coxp = {¢ € C(R): |b], < o0 for some A > O}
Here C{,,, may be viewed as a subset of M, by identifying u(x) with the
measure A — [, udm. Of course the induced topology is weaker than that
on Cipy If w, v > 0 we let P, , denote the law of the solution to (SPDE) with
uo(x) = u and vy(x) = v.
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THEOREM 1.8. If B, T and P} , are as in Theorem 1.5, then as ¢ — oo,
P, o((usv,) € -)in,U((B%pm, Bim) € )

in the sense of weak convergence of probabilities on (M, )?.

This is proved in Section 6 along with the other results on (SPDE). In
many instances arguments here are only outlined, as they are similar to the
corresponding proofs in the lattice case. See the remark following Theorem 1.5
for an explicit description of the above law.

2. Existence, uniqueness and basic properties for the discrete
model.

LEMMA 2.1. Assume &, is a continuous time random walk on Z¢ with sym-
metric step distribution F(x) satisfying [,. ¢, dF < co ¥ A > 0. More precisely

qj=F(k—j)for j#Fkin Z2. Then (Hy), (H;) and (H,) hold with A’(A) = A.
PROOF. Let ®(A) = [¢,dF. Then

(gl + p.(J, k) exp(Alk])
k

< exp(Aljl)(Z(F(k — )+ 0.k~ )) exp(Alk - j|>) T exp(Alj])
k
— exp(Aj1)(1+ D(A) + Po(exp(A&.]))).
Now for ¢ < T' we have

Py(exp(Alé;]) = i exp(—£)t"®(1)"/n! < exp(T(P(A) — 1)).

n=0

This proves (H,) with ¢y (T, A) = 1+ ®&(\) + exp(T(P(A) — 1)). (Hg) and (H,)
are obvious. O

Notation.

Mp=Mp(Z) = {u: z2¢ - R, Y u(k) < oo},
k

Mgy =M p(Z) ={u: 2% > R,: (u, b)) <o VA e R},
M, = M,(Z%) = {u: 7% — R,: sup, u(k) < oo].

We use M5, to denote those functions u: Z¢ — R such that |u| € M, and
similarly define M%, M{,,, M;. Topologize M ,, by choosing u, 1 co and using
the metric d,ap(u, v) = > 52, 27" (Jlu —v|, A1). Then My is topologized by the
I*-norm, |u — v|; = X4 lu(k) — v(k)| and M, is topologized by the [°-norm.
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These same metrics are extended to M;, My, M7,,, and M.
dem Was defined on M, in the previous section.)

Now Q,, is the space of M, x M ,,-valued paths on R, with the compact-
open topology and () is the same space with M in place of M.

Let S, = ZeN[—n,n]¢for n e N, P,f(j) = X, p:(j, k)f (k) is the semigroup
associated with ¢, and Qf (k) = >_; q;;f(j) is its generator.

(Recall that

THEOREM 2.2. (&) If ugp,vg € Miem, there is a solution (u,v, B, W) to
(LS),,, v, ONn some (£, 7, 7, P) such that (u, v) has sample paths in O, a.s.
(b) Let (u, v, B, W) be any solution to (LS) onsome (Q, 7, %, P), where
Ug, Vg € Mtem
(i) Then(u,,v.) € Qnas.and VA, T > 0, P(sup,p(u;+v,, ¢_))) < oc.
(i) If &, ¢ € M7,,, then

(ut’ d’) = <u07 Ptd)) + N?(ta d))a (Ut7 lﬂ) = <UO’ Ptl//> + N;)(ta l/j)a

where

Ugp, Ug

Nt ) = [ Pord(b)vu, (R, (R) P dBE, s <t
k
and

Nt ) = X [ P By (ko (k)2 AWt s <
k

are orthogonal continuous square-integrable .%,-martingales (the series con-
verge in L? uniformly in s < ¢) with square functions

(NU(t @), =7 [ P (Bu(kor(k) dr
k

and

(N"(t ), =7 [ S P w(kYu, (Yo, (k) dr.
k

(iii) If ¢, ¢: Z¢ — R_, then

( U, (]5 ) <u07 P ¢ > P(<Ut7 lﬁ)) = (UO’ Pt‘ﬁ) and
P((us, d)(vs, ) = (uo, Pib)(vo, Prih).

(iv) Assume ¢, ¢: Z¢ — R satisfy [¢(j)| + [p(j)] < ce XV j € Z¢ and
some ¢, A > 0. Then

(1) = (i 8) + [ (s, Q) s+ MY (),

(w0 ) = (o0, ) + [ (000 Qu) ds + M),
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where IP’(fot(uS, Qb)) + (v, |QY|) ds) < oo, M}(p) and M} (i) are orthogonal
square integrable (%,)-martingales such that (M*(¢)), = fg y(uzv,, $?) ds and
(MP())¢ = fo ¥ (w0, 97) ds.

(c) Let(u, v, B, W)beasin (b) butwith ug, vy € M,,. Then (u, v) € Oy as.
and VA, T > 0, P(sup;.r{u, + vy, ¢,)) < oo. Then (b)(ii) holds for ¢, ¢ € Mg,
and (b)(iv) holds if ¢, y: Z¢ — R satisfy |¢(j)| + [¢(j)| < cerlVl V j € Z¢ and
some ¢, A > 0.

(d) Let (u,v, B, W) be as in (b) but with uy, vy € M. Then (u,,v.) € Qp
a.s. and (b)(ii), (iv) hold for ¢, ¢y € M;3. In particular (u,,1) and (v, 1)
are orthogonal square integrable continuous martingales with square function
¥ Jy (15, v5) ds.

We give the proof in the Appendix. Although similar in spirit to arguments
in Shiga and Shimizu (1980), the proof is necessarily different in some re-
spects because of the different state spaces and several additional specialized
properties.

Let (u,, v,) denote the coordinate mappings on (., and for clarity we use
(@, 0,) to denote the coordinate maps on Q. Following Mytnik (1997) we
define

(Xe, YY) = (uy + v, uy — vy), (Xta Yt) = (&; + 0y, Uy — 0y).
State spaces for these processes are given by

E={(x,y): % € Mierm, ¥ € Mg, |y(k)| < x(k) V& € 27}

tem>

and
E={(x,y) € E: x € My} D E; = {(x, y) € E: x has finite support}.

Define a metric di on E by dg((x, ¥), (x', ¥')) = diem(%, 2') + diem(y, ¥') and
similarly define dz on E, using dyap- It is easy to check that (E,dy) and
(E, dg) are Polish spaces.

If (¢, ¥) € E, define a continuous function Fy ,: E— Cby

Fy (x,y)=exp{—(x, ¢) +i(y, ¥)}.

LEMMA 2.3. (a) If A, | Oand M, > 0O, then K = {(x,y) € E: (x,¢_, ) <
M, Vn e N} is compact in E.

(b) If P and @ are laws on E such that P(F, ,) = Q(F, ,) ¥(¢, ¢) € Ey,
then P = Q.

(c) Let{P,} be probabilities on E such that VA > O sup, [(x, ¢_,)dP,(x) =
K, <occand P,(F, ,)convergesasn — oo V(¢, ¢) € E;. Then {P,} converges
weakly to a probability P, on E and lim P, (F ,) = P (F, ,)V (¢, ¥) € Ef.

Proor. (a) Let {(x,,y,)} be in K. We will construct a subsequence
converging to a point in K. We may assume lim,_ x,(k) = x(k) and
lim,_ . v,(k) = y(k)existVEk e 7% by a Cantor diagonalization argument. By
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Fatou's lemma (x,¢_, ) < M, andso (x,y) e K. If Ne Nand 0 <\, <A/2,
then

(|xn - x|> ¢7)\> = <|xn - x|7 1SN¢)7/\> + exp(—/\N/Z)(|xn - x|7 1S3\,¢7)\/2>
< (lx, — x|, 1s,b_,) +exp(=AN/2)sup(x, + x, ¢, )

< (lx, — x|, 1s,¢b_,) +exp(=AN/2)2M,,,

This shows the left side approaches zero as n — oo and the same is true of
(ly,, — ¥, ¢_,). It follows that (x,,, ¥,,) — (x, y) in E.
(b) Fix N e N and let

EM™ = {(x, y) e RS x RS¥: |y(k)| < x(k) VE € Sy).

For (a,b) € EV), define F, ,: EN) — Cby F, ,(x, y) = exp{—(a, x)+i(b, y)}.
If o ={F, 4 (a,b) € E(N>} then the Stone-Weierstrass theorem shows that
the complex linear span of o is dense in the space of continuous complex-
valued functions on E(Y) with limits at infinity. If P and @ are as in the state-
ment of (b), it now follows easily that they have the same finite-dimensional
distributions and therefore coincide.

(c) We first show that {P,} is tight and hence relatively compact by Pro-
horov's theorem. Let ¢ > 0, A; | 0 and choose M ; > s*lszAj. Then C, =

{(x,y) € E: (x,$_,,) < M;V jeN}is compact in E by (a), and

ydP 00
P<CC><2/’“’“ "D Sk My <s men,

M; j=1

thus proving tightness. The convergence of P,(F, ,) for (¢, ¢) € E; and (b)
show that all limit points of { P, } coincide and hence P, —, P, for some P_.
The last assertion is then immediate by the continuity of ¥, , on E. O

If (&g, 0g) € Myap X My, then by Theorem 2.2 the law of a solution to
(LS)g,, 5, may be viewed as a probability on Qg or ,,. This convention is
used in the following uniqueness theorem of Mytnik (1997).

THEOREM 2.4. (@) If (ug, vg) € (Mem)?, there is a unique probability Py, 0,
on Qe so that (u,v) has law P, , whenever (u, v, B, W) is a solution of
(LS)y,, », On some probability space.

(b) If (ug,v0) € (Mem)?, (iLg, Ug) € (Mqp)?%, then [recall the definitions of
(X,,Y,), (X,,Y,) prior to Lemma 2.3]

]Puo,vo(exp{_<Xt’ XO) + i<Yt7 Y~v0)}) = Pﬁo,ﬁo (exp{_(XO’ Xt) + i<Y07 Yt>})

PROOF. (b) Let (¢, %) € E and write F(($, ), (x, y)) for Fy ;(x, y).
Define

AF($, 9,2, y) = F(d, ¥, x, y)[~(x, Q) +i(y, Q)

(2.1) 2 2 _ .2 j2 72
+H(yo /A (% = y%, 9% = 7).
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Let P, ,, (respectively, P; ;) be the law of (v, v) where (u, v, B, W) is a so-

lution of (LS), v [respectively, (LS)QO, 50]. Theorem 2.2(b)(iv) and Itd’'s lemma
show that [.% 1s the canonical right-continuous filtration on Q]

~ ~ ~ ~ t ~ ~ ~ ~
(22) F(d)’ d/a Xt9 Yt)_F(d)’ l»[j’ XO’ YO)_/(:) AF(d’a d/’ Xsa Ys) ds = Mt(d)a d/)

is a continuous (%;)-martingale under P, ., . If (¢,¢) € E, Theorem 2.2(c),
I1té’s lemma and the symmetry of @ show that

(23) F(X, Y, ¢ )-F(Xo Yo, 6, lp)—/ot AF(X,, Y, ¢, ¢)ds= N, )
is a continuous (%;)-martingale under P; ; . Let

F(s:) = Pay g, X Pug o (F(X 0 ¥ X1, YY)
Then (2.2) shows that

F(s.t) = Pao,ﬁo(m, ¥, Xo.Yo)

t ~ ~
+Pu0»vo (L AF(Xss Ys7 Xra Yr)dl"))

= leo, 50(F(Xsa Ysa XO’ YO))

(2.4)

t ~ ~
+/ Py o xP, , (AF(X,,Y,, X,,Y,)dr.
0 0> Y0 0> Y0

The application of Fubini’s theorem is justified because
|AF (b, 9, x, y)| < exp{—(x, §)}[(x, Q) + (¥, Q¥]) + (*/4)(x, $)?]
< (x,1QPN) + (5, 1QF]) +c,
and so

sup Pﬁo,ﬁo xP |AF(X37YS7 XraYr)l)

s<t,r<t

= Sup 22Z]P)uo,vo(Xr(j))|qjk|leo,ﬁo(Xs(k))+C

s<t,r<t j R

< sup ZZZ(Pruo(j) + PrUO(j))|qjk|(Psﬁ'0(k) + Psﬁo(k)) +c

s<t,r<t ik

Ug, UO(

<0

by Theorem 2.2(b)(iii) and a repeated application of (H,), respectively. Simi-
larly, we have from (2.3),

f(S, t) = Pdo,ﬁo(F(XOs YO! Xt’ Yt))

(2.5) : .
+/O Py s x Py o (AF(X,,Y,, X,,Y,))dr.
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A standard lemma [Lemma 4.4.10 of Ethier and Kurtz (1986)] now gives

f£(t,0) — £(0,t) = /Ot fi(s,t—s)— fo(s,t —s)ds =0 by (2.4) and (2.5),

where f, and f, are the derivatives of the absolutely continuous functions
(-, t) and f(s, -), respectively. This proves (b) for the laws of any solutions of
(LS)y,, v, @and (LS)z,, 5,

(@) The above result and the existence of a solution to (LS); ; for any
Ug, Ug € Mg, (Theorem 2.2) show that the left side of (2.1) is unique for any
solution of (LS),, ,, (which exists by Theorem 2.2) and any (X,,Y,) € E.
Lemma 2.3(b) and the fact that (X,, Y,) € E a.s. (Theorem 2.2) show that the
law of (X,,Y,) is unique for any ¢ > 0 and for any solution of (LS),, ,,. In
fact we only need the fact that (X, Y) satisfies the martingale problem for A
defined above on D(A) = {F; ;: (¢, ¥) € E}. A standard result on martingale
problems [e.g., Theorem 4.4.2 of Ethier and Kurtz (1986) and Theorem 6.2.3
of Stroock and Varadhan (1979)] shows the law of (X , Y ) and hence (u.,v.)
is unique. Again we use Theorem 2.2 to see that this law is on Q. O

REMARK 2.5. (a) The above argument shows that P, , is the unique law
on Q. Which solves the martingale problem for A given by (2.1) on D(A) =
{Fs.5 (b, ) € E;} and initial conditions (g, vy) € (Mey)?. We will refer to
this martingale problem as (MP), .

(b) Theorem 1.1 is contained in Theorems 2.2 and 2.4.

COROLLARY 2.6. If ug, vg € My, and 6 > 0, then
]P)Ouo,(?vo(') = Puo, 00(6(u7 U) € )

ProoF. P, , (0(u,v) € -) solves (MP),, 4, (alternatively consider
(LS)gy,, 6v,) @nd so this follows by the uniqueness in Remark 2.5. O

Notation. If f: (Mm,)?> — R is bounded and measurable, let P,f(u,v) =
P, ,(f(Uy;, Vy)) for (u, v) € (Myen)? and let C,(S) denote the space of bounded
continuous functions on a metric space S.

The Feller and strong Markov properties of solutions to (LS) are now easy
consequences of the duality result in Theorem 2.4.

COROLLARY 2.7. (@) P,: Cy((Mi)?) = Cp((Myem)?) ¥Vt > 0.
(b) Let(u,v, B, W) solve(LS)u v, ONsome (Q, 7, 7, P). If T isan as. finite

(F;)-stopping time, then for any bounded measurable f on (Mm)? and any
t>0

P(f(urse> vrse) | F1) = Pof (up, vr), P-as.

PROOF. (a) Let (ul,vg) — (ug,vg) in (Mm)? and let P, (respectively,
P,) be the distribution of (X,,Y,) = (u, + v, u; — v,) on E under Py» ,»
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(respectively, P, , ). We check the hypotheses of Lemma 2.3(c). Let A > 0 and
choose A > 0 so that A'(A) < A [recall (H,)]. Then

]Pug‘,vg(<Xt7 ¢—)\>)
=22 (ug(J) +vo() pi(J, k)db_,(k) by Theorem 2.2(b)(iii)
J ok

= 22 (wg () + vp(D))era(t; V(N (k)

Jj k

by (H,) and symmetry of p,
< c(t, A, D){(ul + vk, d_3)

and the latter is bounded uniformly in n because ug + vy — ug + vg IN Mygn,.
It is immediate from Theorem 2.4(b) that for (¢, ) € E,

Nim P,(Fy ) = im Py (opya(@xp{—(ug + v, X;) +ilug —vg, ¥,)})

= P12, (p-wy/2 (EXP{ (1o + vo, X;) + o — vo, Y1) })
since (X,,Y,) € E a.s. by Theorem 2.2(c)
=P (Fy )

Lemma 2.3(c) now shows that P, —, P, on E and so P,f(u},v}) —
P,f (o, vo) for f € C(Miem)?).

(b) This is a standard consequence of the uniqueness in Theorem 2.4 and
Remark 2.5. For example, see Theorem 4.4.2(c) of Ethier and Kurtz (1986).
The required measurability is clear from (a) or Theorem 4.4.6 of the same
reference. O

REMARK 2.8. It is easy to use the previous result and standard tightness
arguments, to see that (ug, vo) — P, ,, is a continuous map into the space of
probabilities on ., with the topology of weak convergence.

PROOF OF THEOREM 1.4. Let (¢, ) € E. Theorem 2.2(d) implies that
(i,;,1) and (0,,1) are non-negative continuous martingales under
Pg¢+w)/2,(¢ﬂ//)/2) = P and hence converge P-a.s. as ¢ - oo to (i,,1) and
(0., 1), respectively, (say) by the martingale convergence theorem. Theo-
rem 2.4(b) therefore shows us that

imP, ,(Fy ,(X,,Y),)

t—o00

(2.6) t'LTOP/(eXP{—(u + 0)(@; + 0y, 1) + i(u — v) (@, — 0, 1)})

=P'(exp{—(u + v)({@u, 1) + (U5, 1))
+ l(u - U)(<L~too7 l) - <6oov l))})
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Theorem 2.2b(iii) implies that for A > O,

]P)u,v(<Xt’ d’—A)) = (u + U)(Q')_)‘, 1) < Q.

Lemma 2.3(c) shows that P, ,((X,,Y,) € -) converges weakly on E as ¢t — oo
and since (uy, v;) is a linear function of (X,,Y,), therefore P, ,((u;, v;) € -)
also converges weakly on (M,)? as t — oo to a limit which we denote by
P, »((2s, Vo) € -). Lemma 2.3(c) and (2.6) also imply

u,v(Fd),lp(uoo T Vo0 Uo — voo)) = P/(exp{_(u + U)(<L~Loo7 1) + (ﬁoo? 1))

(2.7) g
i = 0)((fr 1) — {5 1)),

Turning next to the mean measures of u, and v, let ¢ € M, and note
that

= T an Pro/2, /\¢/2(9Xp{—(u + 0)({@oo» 1) + (0005 1))

A=0

@8) = D, a(exp]—(u + A(an 1) + (Gr 1))

A=0

+ L(u - U)A(<aoo’ 1) - (ﬁoo’ 1))})
by Corollary 2.6
=Py ¢2((U + V) ({Bee, 1) + (05 1)))
+i(u = V)P p2((flo> 1) — (U0, 1))
= (u + U)P¢/2, (;')/2((&007 1> + (5007 1))7
as the imaginary part must vanish since the left side is real-valued. By
the Dubins-Schwarz theorem and Theorem 2.2(d) under P, ., ({4 1),

(0,, 1)) is equal in law to B(A,) where B is a planar Brownian motion starting

at 3((¢,1), (¢,1)) and
A, = y[:(as, 0,)ds < T = inf{s: BLB? = 0}.

Standard estimates show that P(T > ¢) < ¢(t + 1) and so T? is integrable
for 0 < p < 1. Burkholder’s inequality therefore shows that sup, (i, + 7,, 1)??
is integrable for 0 < p < 1 and therefore {(@, + 0,, 1): ¢ > 0} is a uniformly
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integrable martingale. Equation (2.8) therefore allows us to conclude that
Pu,v((uoo + ) d))) = (u + U) tILrE)PqB/Z,(b/Z((dt’ 1) + (ﬁta 1))
= (u+v){¢,1) by Theorem 2.2(b)(iii)
= tlim P, ,({(u; + v, ¢)) by Theorem 2.2(b)(iii) again.
This and the weak convergence of (u, + v,, ¢) to (v + U, ¢) iMply that

{{u,+v,, ¢): n € N} is uniformly integrable and so the same is true of {«,(¢)}
and {v,(¢)}. This proves that

Pu,v((“’oo’ d))) = JLngoPu,v(<un’ )) = u<¢7 1)

Set ¢ = 1y, to conclude P, ,(u.(k)) = u and the same argument gives
Py o(vsc(k)) = V.

The fact that v(-) = P, ,((¢, Us) € -) is a stationary initial distribution
for the Markov process (u,, v,) is an easy and well-known consequence of the
above weak convergence and the Feller property [Corollary 2.7(a)]. Finally
if (¢ ;) is spatially homogeneous, then uniqueness to the martingale problem
(MP) (recall Remark 2.5) shows that (u,, v,) is a stationary random field under
P,., and so the same is true of (v, vy). O

As it will be useful later we record (2.7) as the following corollary.

COROLLARY 2.9. The equilibrium distribution for (u,, v,) constructed in
Theorem 1.4 satisfies

Py o(F g, 4 (thoo + Voos Uy — Vo))
= P(ypy/2, (0-uy2(@XP{ = (@ + V)((loo, 1) + (0, 1))
+i(u — V) (T, 1) — (U0, 1))})
v(¢, ) € E.

(2.9)

REMARK. Of course (2.9) in fact characterizes P, ,((¢x,Vs) € -) [bY
Lemma 2.3(b)]. Hence it codes up properties of this equilibrium distribution
in terms of the laws of ({@, 1), (0, 1)) for rapidly decreasing initial condi-
tions. In the next section we will study properties of these laws which will
allow us to decide when coexistence of types is possible for these equilibrium
laws (in Section 4). The fact that the self-dual relation (2.9) is nonetheless
very useful through its linking of finite and infinite initial conditions is
reminiscent of the situation for infinite linear systems in Chapter IX of
Liggett (1985).

3. Coexistence for integrable initial conditions. In this section we
prove Theorem 1.2. Recall from Theorem 2.2(d) that for uy, vy € My, under
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P, (u,, 1) and (v,, 1) are orthogonal continuous L2-martingales with com-

0> Vo

mon square function

t
vA =y [ (.0 ds.

Recall also that (.., 1) and (v, 1) denote their respective a.s. limits as ¢t —
Q.

PrOOF OF THEOREM 1.2(a). The mean value results from Theorem 2.2(b)(iii)
show that

P ) = [ (S olpts D)) (S eubipiho )

= X X uo(volh) [ panli by ds
J k

= (uO’ 1) (vO’ 1) Supj, k %goo(J7 k)
The strong Markov property of ¢ therefore shows that
Py, v, (As) < (ug, 1)(vg, 1) sup %goo(k, k) < oo by hypothesis.
k

Doob’s strong L? inequality for martingales implies
P00 (SUP (e, 1) (01, 1)) = Py (SUD (i, 1) + (07, 1))

= C(<u0’ 1>2 + (vO’ 1>2 + Puo,vo(Aoo))
< oQ.

Therefore (u,, 1)(v,, 1) is an H!-martingale and in particular

(3'1) Puo,vo«uooal)(l)oo?l)) = <u011><0011>'
This shows that coexistence of types is possible. O

In the proof of Theorem 1.2(b) we work directly with a solution (u, v, B, W)
of (LS),,,», defined on some (Q, 7, 7, P), with (ug, 1)(vg, 1) > 0.

PROOF OoF THEOREM 1.2(b). To simplify the notation, set y = 1. Define
p(k, j)=0forr <0,

M) = [ (e (D) dBl. N ) =X [ bk ) AR,
k

and similarly define M}/(j) and NI(¢t, j). Theorem 2.2(b) shows the above
series in k converges uniformly in s < ¢ in L? and that

(32)  u(j)=Puo(J)+ Ni(t. J),  vi(j) = Pwo(J) + Ni(¢, ) as.

Some care is needed as N¥(¢, j) is only defined up to a null set for each
t > 0, and we will need some appropriate versions in what follows. Let ¢,(¢) =
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([2"¢]+1)2". Then for ¢ fixed, an L? calculation making repeated use of (H,)
shows that

| s s |2
P sup | [ b (e DAMEE) - T [ oo,k ) AMB) )
s<ta(t) pes, 7O k0 !

< cyexp(—cyn)
and so by Borel-Cantelli a (predictable x Borel) version of (s, w, ¢) - N¥(t, j)
[agreeing with N“(¢t, j) a.s. for each ¢] is given by

o aim S [ b (R S dME(R), if the limit exists,
Ns (ta J) = { neo keS, /0 "o
0, otherwise.

Moreover s — N¥(¢, j) is a continuous square integrable martingale for each
(¢, j). This procedure also implicitly defines (predictable x Borel) versions of

(5,0, 8) = [ ik, j)dME(R) for each j, k
0
(and similarly when u is replaced by v).

We have from (3.2), for a fixed T' > 0,
T
Ar = [ Y (Pao() + N (8 D)(Proo() + Ni (2. j)) dt
J

T T T
= [ (Puo. Pwg)dt + [ (P, Ny(0)) dt + [ (Pvo, NY (1)) dt

T
+ [ (NE@), Ni(1) dt
0
1 2 3 4
=AY + AP + AP 1+ AD.

One can readily check (using Theorem 2.2) that the series defining the inte-
grands of A® and A® converge in L? uniformly in ¢ < T and the integrand
of A® converges in L! uniformly in ¢t < T. Considering A(TZ), we have (the
limits being in L?)

T t
AP = tim tim [© 5 5 Puo()) [ pe-r(k j) dMi(R) dt

m— 00 n—00 jeS,, keS,

- - T T . .
— lim lim Z/ </ > Ptuo(J)pt_,(k,J)dt> dMP(k).
MTONTO hes, 0 jes,,

r

In the last line a stochastic Fubini argument has been used [see page 116 of
Ikeda and Watanabe (1981)] and recall we have chosen a jointly measurable
version of (¢, w) — fot pi_r(k, j)dM?P(R)]. It is easy to see that the above L?
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limit exists jointly in (m, n). Therefore, we may interchange limits and take
the limit in m through the integrals to conclude

@) T v T v
33) AP =X [ [ Pauo(k)dtdMi(k) =Y [ h*(r. k) dM(h).
k r k
where hto(r, k) = 1 [2T77 P uy(k) ds. Similarly we have

T
A(T3>=2/ hYo(r, k) dMY(E).
k 0

The above series converge in L2. Define A§2> =Y. fg h¥o(r, k) dM?Y(k) and
similarly define Aﬁg) for ¢t < T. Integrating by parts in the expression for A(T4)
we have (the limits now being in L%)
T
AW = lim
0

m—0oQ0

[jgm [} ¥ AN D+ [ N DN )] d

T t
= lim_lim [fo Y X [ N Dk AMIR)dt

o0
Mmoo nTee jeS,, kes,

H[ XX [N b b dmihyat]

JjeS,, keSS,

= lim lim L{Sj /T 3 /TNz(t, Jpe—r(k, j)dt dM (k)

m—00 n— 00 .
jeS, "

£ 3 [ X [ N D dedmih)|

keS,, jeS,, "

In the last line we again have used a stochastic Fubini theorem [the bounded-
ness condition on page 116 of Ikeda and Watanabe (1981) may be weakened
to an integrability condition and we have already addressed the measurabil-
ity requirements]. The L!-convergence in the above (or in the original sums

defining A(T4)) is joint in (m, n) and we may therefore interchange limits and
take the limit in m through the stochastic integral. If

T
g k) =Y [ Nt j)pi(k, j)dt
j r
and gv is defined similarly, this gives

T T
AP =3 [ g M + X [ g by AME(R) = AT 4 AT
k k

The sums converge in L. Define A§4), A§4‘1) and A§4'2) as above butwith ¢ < T
(T is fixed in the definitions of g* and g?, however).
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Our plan centers on the fact that A converges as T' — oo as it is the square
function of a nonnegative (and hence convergent) martingale (up, 1). We will

show that as Ay levels off, so do A(Ti) for i = 2,3,4 but that if (up, 1)(vy, 1)
remains bounded away from zero then A(Tl) will continue to grow. This forces

A to continue to grow, a contradiction. Our first step is to control Agpi) (i>2)
in terms of A, and for this we will bound the square functions (A®)), of the

martingales A(i), t < T (recall T is fixed).
Consider first A“Y_ If r < ¢(< T) is fixed then (3.2) shows that, w.p.1,

INY(E D < P(u(j) | ) + Pruo(J)
=P, , (u,,()))+ Puo(j) Markov property—see Corollary 2.7

=P, ,u.(j)+ P,ug(j) Theorem 2.2(b)(iii).
This shows that for »(< T') fixed, w.p.1,

T
184 )| = [ Pogepyaey (k) + Py o) d

IA

2T
%fo 2 ps(k, J)(ur(J) + uo())) ds
J

IA

(((wr» 1) + (1o, 1)) /2) sup g21(J, k).
J
If (up, 1) = sup,_r(u,, 1) and || gorlle = SUP; 8or(J, J)(= SUpP;, 1 821 (J, k) by
the strong Markov property of £), then this shows that
(AUD)p < (u7, 1)?|g2rll5 Az and analogously,
(A4 < (v7, D)%l g2rllZAr-

Turning next to A, and recalling the definition of A% in (3.3), we have,
w.p.1,

(3.4)

2T
|R*o(r, k)| < %/0 > ps(k, Nuo(f) ds < 3{uo, Dl garll
J

and therefore
(A@) 7 < (ug, 1)?| gorll2, Az and analogously,
(A®) 7 < (vg, 1)?|| 273 Ar.

Let N, denote the martingale 2‘2‘ Agi), t < T. The Kunita—Watanabe inequal-
ities, (3.4) and (3.5) show that for some universal ¢; > 0,

(3.6) (N)r < er((ur, 1)% + (07, 1)?) [ gar 5 Ar-

Next we establish a lower bound on A(Tl). First choose m = m(ug, vy) such
that

(3.5)

S uo(k) = L{ug, 1) and Y wo(k) = (v, 1).

|k|l<m |k|l<m
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Our recurrence hypothesis on ¢ shows that we may then choose T =
T1(ug, vy) < 00, @ measurable function of (g, vy), such that

(3.7) Pi(¢=kforsomet<Ty)>3 Vjl<m,|kl<m
and
c .
(3.8) %(uo’ 1)(vo, 1)lI&2r,loc =2 and T, > ls‘llp T1,(J)-
jlsm

In (38) ¢;, and T,, are as in (1.1) and we have used the fact that
limp_ o g7l = oo by the recurrence hypothesis and sup;|q;;| < oo.
We are also using the fact that (g, 1)(ug, 1) > 0. To complete the definition
of Ty, set T4 (ug, vg) = oo if (ug, 1){(vg, 1) = 0. If T > T'1(ug, vg), then

AP = 5 Y ol j)vok)5 821 )
Jj k

IV

LS Y wolyolkyint{gar(, ): 1] < m, k] < m)

[l=m |k|<m

1

> §(uo, 1) (vg, 1) inf{Pj(ft hits & before T')gr(k, k): | j| < m, |k| < m}
C

> 2 {uo, 1) (v, 1) g7l by (1.1) and (3.7).

The strong Markov property implies that g,r(k, k) < 2g7(k, k) and so

1 C
(3.9) A = 22 (1, 1) {ve, Dllgarle  for T = T1(uo, vo).

Set ¢, = ¢1,/32 and choose R > 0 so that
(3.10) R > max(2({ug, 1) + (vo, 1)), (©o, 1) (v, 1)).

Let B, denote a real-valued Brownian motion starting at x under P,. If T' >
T1(ug, vg), then

P(Ar < 1) < P(cp(ug, 1) (vo, D &orll + Np <1, Ap <1) by (3.9)
< P(Np = —cp{uo, 1) {(vo, 1) 821 ll0/2, A < 1,
((u?, 1) v (v, 1)) < R)
+P((uyp,1) > R, Ap <1)+P((vy,1) > R, Ap < 1)
(3.11) by (3.8)
<P(Np < —co{uo, 1) (vo, 1) 821/l 0/2,
(N)r < 2¢,R?||gorl12)

+ Pl (sup B, > R) + Py, 1) (sup B, > R) by (3.6).

s<1 s<1
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The reflection principle, (3.10) and a standard Gaussian tail estimate bounds
the sum of the last two terms by

(3.12) 2P0(Sup B, > R/z) — 4Py(B, > R/2) < %exp(—Rz/S).

s<1l
The first term on the right side of (3.11) is dominated by
Py(inf{B,: t <1} < —c,{ug, 1)(vy, 1)R™*(2c;)"/?/2)
=1— Py(|By| < cp(2¢1)V?27 (ug, 1) vy, 1)R ™)

by the reflection principle

(3.13)

= 1- C3<u0’ 1><UO’ 1>R71a

where in the last line we use R > (u, 1)(vg, 1) by (3.10) and c¢3 > 0 is univer-
sal. Now set

R = R((uo, 1), (v, 1))
= max(2((uo, 1) + (vo, 1)), (o> 1) (vg, 1), (8] In(16/c5 (1o, 1) (ve, 1))]) %)
Use (3.12) and (3.13) in (3.11) and conclude that for 7' > T';(ug, v),
P(Ap > 1) > c3(ug, 1)(vg, 1) R~ — 8R~Lexp(—R?/8)
(3.14) > ¢3{ug, 1) {vo, 1) (2R ({ug, 1), (15, 1))
= q((uo, 1), (vo, 1)).

Also define ¢g(u,0) = ¢(0,v) = 0, so that the above remains valid if
(vg, 1){vg, 1) = 0. Note that

-1

(3.15) inf{q(u,v): 6 <u,v}=¢(8)>0 vé>0.

Inductively define T,y = Ty(up ,vp )+ T,, if T, <oo,andset T, ; = oo
if T, = oco. Clearly T, is an (%;)-stopping time and so by the strong Markov
property (Corollary 2.7),

(3.16) =Py, v, (A(T1(uo, vo)) = 1)L(T,, < o0)

z q(<uTn7 1>’ (UTn7 1))1(Tn < OO)

By Lévy's conditional version of the Borel-Cantelli lemma [see 12.15 of
Williams (1991)], we have

{A(T,,1) — A(T,)=1i.0.}

(3.17) ») {% Q((UT,,’ 1), (vp,, D)UT, < o0) = OO} as.
n=1
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Since A(o0) = lim,_, , A(t) is a.s. finite (A is the square function of the non-
negative, and therefore convergent, martingale (u,, 1)), the left side of (3.17)
is a null set and so

(3.18) i q((ur , 1), (vp , 1)U(T, <o) <oco as.
n=1

If T, < oo for all n, then (3.18) and (3.15) imply that (omitting a null set)
liminf,_ (ur ,1){vy ,1) = 0 and hence lim,_, (u,;,1)(v;, 1) = 0 by mar-
tingale convergence. If T, = oo and n is minimal, then T,_; < oo and
(wr, ,,1){vp, ,1) = 0. This implies (u;,1)(v;, 1) = 0 V¢ > T, ;. In either
case we have shown (u.,1){(v,,1) = 0 a.s. and so coexistence of types is
impossible. O

4. The equilibrium distributions. We now use the results of Section 3
to study the equilibrium laws found in Theorem 1.4, which we continue to
denote by P, ,((¥w, V) € <) for u, v > 0. For ease of reference we recall from
Corollary 2.9 that

Py o(F g y(thoo + Voos Uy — Vo))
=Pprp)2.(6-0)2(@XP{=(1 + V) ({lo, 1) + (U, 1))
+i(u —0){Ug, 1) — (D0, 1))})
Y(¢, ) € E.

(2.9)

PROOF OF THEOREM 1.5. Choose (¢, ¢) € E, let

(@, Bo) = (¢ + 1¥)/2, (b — ¥)/2) (€ (M 15p)%)

and let L(u,v) denote the expressions in (2.9). If A, .(u,v) = exp{—(v +
v)b + i(u — v)c} (b, c € R) and the Laplacian, A, is applied separately to the
real and imaginary parts of 4, . then one readily checks that Ak, ., = O if
|6] = |c|. Theorem 1.2(b) implies that |(@.., 1) + (Du, 1)| = [{Zo> 1) — (U, 1)]
Py, 5,-a.s. and so we can differentiate through the expected value on the right
side of (2.9) and conclude that AL(u,v) = 0 for u,v > 0. The right side of
(2.9) also shows that L and its first order partial derivatives are bounded
and continuous on [0, c)?. Here we have used Fatou’s lemma to see that
Pg,.5,({Too> 1) + (050, 1)) < (&g + Dp, 1) < co. The left side of (2.9) shows that

(4.1) L(u,0)= exp{—u(¢, 1) +iu(y, 1)}, L(0, v) = exp{—v(¢, 1) — iv (i, 1)}.

A simple application of Itd's lemma now shows that if (B!, B?), P% ,, and T
are as in the statement of the theorem, then

L(u,v) = lim P, (L(B(T A 1))
= P, ,(L(B(T)))
= PJ ,(exp{—(B} + B%)(¢, 1) + i(B}y — B7) (¥, 1)}) by (4.1).
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Returning to (2.9), we have shown that (recall the notation BiT in the state-
ment of the theorem)

]PU, U(F¢>,l//(uoo F Voo U — Uoo))
= P{ ,(Fy4(By+B7. By~ B)) (o, 4) e E.
This and Lemma 2.3(b) imply the required result. O

Notation. Define an equivalence relation ~ on Z? by j ~  iff p.(j,k)>0
for some (or equivalently all) ¢ > 0. Let [ j] = {k: j ~ k}.

LEMMA 4.1. Let u be a probability on (M, )?. For Lebesgue-a.a. ¢ > 0,
v,(j) > 0 implies v,(k) >0 VEkelJj]
and
u,(j) > 0 implies u,(k) > 0 Vk e [j],P,-as.
PROOF. We may assume u = g, ,, for (uq, vg) € (M )?. 1f LY is the local

time at O of the semimartingale v,(k) under P, [recall Theorem 2.2(b)(iv)],
then by Corollary 2 of Yor (1978),

t
LY = lim s_l‘y/O 1(0 < vy(k) < &)u,(k)v,(k)ds
i t
< lim y/o 1(0 < vy(k) < &)uy(k)ds =0.

Theorem 2(iv) of Yor (1978) now implies [again using Theorem 2.2(b)(iv) with
¢ =1l

t
0=L%-L1% = 2/ 1(v,(k) =0) Y v(j)gpds Vi>O0as.
0 J#k
This implies P,-a.s. for Lebesgue-a.a. s > 0, vy(j) > O implies vy (k) > 0
whenever g ; > 0. By Fubini’'s theorem we may fix ¢ > 0 outside a Lebesgue
null set and then o outside a P,-null set so that

(4.2) v,(j) > 0 implies v,(k) > 0 whenever j, k € Z¢ satisfy q, > 0.

If v,(j) > 0 and % € [j], there is a finite number of distinct points j = j,
Ji»+-+» Jp = ksuch that []i_; q; ;. > 0 and so a repeated application of (4.2)
implies v,(k) > 0. The same argument applies to . O

PROOF OoF THEOREM 1.6. (a) We claim it suffices to show

(43) (UOO, 1[0]) > 0, P a.s.

u,v”
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Fix t > 0 outside a Lebesgue null set so that the conclusion of Lemma 4.1
holds with u =P, ,((#, V) € -). The fact that u is a stationary distribution
for (u, v) (Theorem 1.4) implies that
0="P,((v;, 1)) > 0, v,(k) = O for some % in [0]) by the choice of ¢

=P, ,({(veo» o) > 0, v,o(k) =0 for some % in [0])

=P, ,(v(k)=0 for some % in [0]) by (4.3).
The same reasoning applies to every other equivalence class and to «.,, and
so (a) would follow from (4.3).

Turning to (4.3), we may use Theorem 2.2(b)(ii) with ¢ = 1, uo = u and
vp = v to see that for ¢ > ¢y > O,

w(@ =+ Y [ piesh O) vy (R, (k) dB
k

(4.4) 2 [ b O)(yuy(Ryvy(R)) Y d B!
ke[0] "o

=u+ My(¢ - to) + My(2).

Let £ > 0. Theorem 2.2(b) shows that

t—tg
Puo((Ma)eosy) = yuo Y [ peoo(k0) ds
k

4.5 00
@ < yuv [ ppy(0,0)dr
t

4 0
< g7,

where the last line is valid providing we choose ¢, = ty(¢) sufficiently large
[recall that g..(0,0) < oo]. Having fixed such a ¢,, note that if £ € [0], then
(H,) and (H,) imply

(4.6) sup p,(J, k) = c11(to, 1)1jg)(7) exp(X' (1) || = [ J]).

r<ty

Let ¢_,(k) = 1j0)(k)¢p_1(%k) and (F;) denote the canonical right continuous
filtration on Q. Then for ¢ > ¢,

IP)u,v((M2>t > 83 | Z—to)

£
oo Z [ P Oy, By, By dr - &)
© 0 \keqo 70

to
= [ % pigr(B 0¥t g2 o W) (V1 P B
ke[0]

(4.7) Theorem 2.2(b)(iii)
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to
< 873C1‘1(t0, 1)2')//0 Z pto—r(ka 0)
ke[0]

x eXp(2X (L)[R]) dr{u;_sys 1) (Ve—ty é_1) by (4.6)

= 8_3c(t0)<ut7t07 (z)—l><vt7t05 $_1) by (Hyp).
We also have
IP)u,v(vt(o) > £ | Z—to) = ]P)ut,to,vt,,o (vto(o) > 8)
(4.8) = 8_l<vt—to, Py, (5 0))
< e7tey 1(to, 1)(vsy, $_1) by (4.6).

Let A;(?) = {o: (ut—toad;—l><vt—t0’¢;—l> < 9, <Ut—t0¢~>—1> < &}. Equations
(4.7) and (4.8) show that for ¢ > ¢y3(¢) and 6 < 8y(e) [for some 8y(e) > O
independent of the choice of ¢ > #,(¢)], on As(¢) we have

P, (IMa(t) > & or 0,(0)>¢| T )
(4.9) <e+P, (IMa(t) > &, (M), < &° | 7y,
<2¢

by a standard martingale argument [note that working with M,(¢) condition-
ally on &,_, poses no difficulties]. This together with (4.4) and (4.5) shows
that for ¢ > #y(g), 0 < 6 < 8y(e) and & < 1/4,

P, o(|u(0) — u| < 2¢,v,(0) < ¢)
> Py, o (IM5(2)] < &,0,0) < &) =P, , (IMa(t — to)| > &)
(4.10) > (1-28)P, ,(As(t)) =P, ,(IM1(t — to)| > &, (M) (t — tp) < 83)
— Py ((M1)y, > &°)
> 3P, o (As(1)) — 2e,

by a standard martingale inequality and (4.5). If M(u) = >, fO” Dpi_s(k,0) -
(yuy(R)og(k)"2dBE and N(u) = 3 [y prs(k, 0)(yu (k)vy(k))*/?dW}
[L? convergent by Theorem 2.2(b)] (v < t), then (M(u), N(u)) may be
written as B(r,) where B is a planar Brownian motion starting at the origin,

=Y /0 C b, (B 0yu (B)v (k) ds,  w<t,
k

and we may have enlarged the probability space to fill out the Brownian
path B. Inverting (4.10) and using Theorem 2.2(b)(ii) with ¢ = ¢ = 1, we
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have for ¢ > t5(¢) and 0 < & < §y(e),

P, ,(As(t)) < 2P, ,(|u:(0) — u| < 2¢,v,(0) < ¢) + 4¢
< ZIP’u,U(|B(Tt) +(0,v)| < 38) + 4e
<2P, ,(IB(s) +(0,v) |< 3¢ for some s < T) + 2P, (7, > T) + 4¢
<2P, ,(|B(s) + (0, v)| < 3¢ for some s < T

+ (1/T)'yuU/0 p,(0,0)dr + 4e.

If n > 0 is fixed we may first fix T' large enough and then & sufficiently small
so that for 6 < 8y(e) and ¢ > ¢y(e), P, ,(As(t)) < . For 6 > 0 fixed as above,
since

(g ®1)s (Vigys D1)) > (oo B_1)s (Voo 1)) @S E— 00

by Theorem 1.4, we have
I[:Du,l)((voo? d;fl> = O) = |I¥n inf Pu,v(AS(t)) =.

This gives (4.3) and the proof of (a) is complete.
(b) If 6,(j) = 1(j = k), Corollaries 2.9 and 2.6 show that for 6 > 0 and
ke 79,

Py, o (eXP(—0(to (k) + voo(k))))
= P(o2)5,. (8205, (EXP{— (& + 0)({ise, 1) + (U, 1))
+i(u —0){Uy, 1) — (Do, 1))})
=Ps,.5,(XP{—(u + 0)(0/2)({@, 1) + (0, 1))
+i(u = v)(0/2)({ls, 1) = (s, 1))})-

Differentiate both sides twice with respect to 6 and let 6 | O to see that

P o ((tso (k) + vse(R))?)
=P;,. 5, (1 + 0)?/8)((oos 1) + (To0s 1))° — ((u — v)?/4)
X (i, 1) = (U005 1))
—i((® = v))/2)Ps, 5, ({, 1) = (00, 1))
This shows that P;, 5 ((@in, 1)* — (04, 1)*) = 0 and allows us to simplify the
right side to give
Pu o (oo () + 00s(R))*) = (u? + 0?)Py, 5, ((fngs 1) (0cs 1))

(4.11)
+uvPs, 5 ((Ges 1) + (0, 1)%).
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Recall from Theorem 2.2(d) that under P, ; , (i, 1) is a continuous martin-
gale such that

t
Bs,.5, (8. 1)2) = 14y [ 3 py(k. j)ds
J
‘ Y
= 1+7/ p2s(k, k)ds 1 1+§goo(k, k) ast— ooc.
0

Hence it is also L?-bounded and as sup,{(&,, 1)?> + (d,, 1)?} is integrable by
Doob’s maximal inequality, the obvious uniform integrability allows us to de-
duce from (4.11) that

P, o((toc(B) + v (R))?)
= 1im (2 + v))Ps, 5, ({1, 1)(D,, 1)) + wvPs, 5, (@, 1)2 + (5, 1))
t
(4.12) = tlim(uz + %) + 2uv <1 + y/ Dos(k, k) ds>
— 00 0
by the above and Theorem 2.2(b)(iii)
= (u+v)?* + yuvg (&, k).

Theorem 2.2(b)(ii) and (iii) imply
t
Nim P, (k) + v, (k))%) = lim u? + v? + 2yuv/ S Do (s k)2 dr + 2uv
—00 — 00 0
J

= (u+ v)? + yuvg,o(k, k)
=Py o ((o(k) + vo(k))) by (4.12),

This together with the weak convergence of u,(k) + v,(k) to u (k) + vy (k)
shows that {(u, (k) + v,(k))?: n € N} is uniformly integrable for each k. This
implies that

_ 224 lim /n yuw Y po (s ) pnr(l, k) dr
0 I

n—oo

Theorem 2.2.(b)(ii)

yuv .
=u®+ Tgoo(.]a k).

Similarly we get P, ,(us(J)vo(k)) = wv and P, (v..(J)vs(k) = v +
(yuv/2)8..(J, k). O
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5. Some ergodic theorems and open problems. If £ is transient [and
so (u,, v;) exhibits coexistence of types in equilibrium], it is easy to establish
ergodicity under P, , by a second moment calculation as we now show. Let

Ip(K) = T [l uy(k)ds, and Jp(k) = T [ v(k)ds for ke Z¢, T > 0. A
simple application of the Markov property and Theorem 2.2(b)(ii), (iii) shows
that

t+s
(5.1) P, ,(us(k)u,(k)) =u?+ (yuv/Z)/ p,(k, k)dr, kel s, t>0.
|t
We work with respect to P, , throughout this section.

PROPOSITION 5.1.  Assume g (k, k) < oo for all & € Z¢.
(@) As T — oo, Ip(k) -1, u and Jp(k) > v for all k e Z¢.
(b) If for some n > 0, h(k, T) = [; p,(k, k)dr < cT™", then

TIim Ip(k)=u and 7[im Jr(k)=v, P, ,-a.s.

Proor. From (5.1) we obtain

T T
Puo(Ip(R)?) =T72 [ [ Py (u(k)u, (k) dsdt
(5.2) 00

T T ,t+s
— 2 272y .
u? + yuv(2T?) /O/O/M_Slp,(k,k)drdsdt

Therefore, if A(%, T') is defined as in (b),

T ot
P, o((Ir(k) —u)?) < vuvT‘Z/O /O h(k, |t — s|)dsdt

2 T .t
< yuoT /0 f(t_ﬁ)+ g..(k, k)dsdt

T (t—T)*
+ yuvT*Z/ h(k,~T)dsdt

o Jo
< yuvg(k, B)T~Y2 + yuvh(k, TY?).

Let T — oo in the above to prove (a).

For (b) note that the hypothesis implies the right side of (5.3) is summable in
n if we set T' = n” and p is sufficiently large. The Borel-Cantelli lemma shows
thatlim,_, I,,(k) = u a.s., and an easy interpolation argument completes the
proof for I,. The same derivation is valid for J,. O

(5.3)

REMARK 5.2. The hypotheses of both (a) and (b) are satisfied when ¢ is a
simple symmetric random walk on Z¢ and d > 3. In this case the local central
limit for the discrete time random walk [e.g., Lawler (1991), page 14] gives

(5.4) lim ¢Y2p,(k, k) = (d/2m)*?  VkeZ'vdeN,

and so the hypothesis of (b) holds for d > 3 with n = (d/2) — 1.
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The long-term dynamics of (u,, v,) in the recurrent case appear to be quite
interesting but we have more questions than answers. To illustrate the prob-
lems, we focus on the case when ¢ is simple symmetric random walk on Z¢
and d < 2.

PROPOSITION 5.3. Let ¢ be simple symmetric random walk on Z¢ and u,
v > 0.

@ 1fd =1 limg P, J(I(k)?) = limg ., Py o(J(R)2) = 00 YV € Z.
() 1f d = 2 limp P, ,(In(k)?) = u + yuv(In2)7* and lim;_ P, ,
(J7(k)?) = v? + yuv(In2)m~ L Yk € Z°.

Proor. (b) Equation (5.4) and an easy estimate (using the calculation be-
low) allows us to use (5.2) to conclude

lim P, , (I(k)?) = u2 + lim yuoT 2 /T /t<ft+s(w(r+1))1 dr) dsdt
Tooo Y r T—o00 0o Jo t—s

=u? + lim uv(sz)_lfT/tln(1+t+s)
o T—>oo‘y o Jo

—In(1+¢—s)dsdt

. -1 T 1+ 2¢
=u® + lim yuv(7T?) l/ 2t|n< + )
T—oco 0

1+1¢
+In(1+2¢)—2In(1+¢t)dt

T 14 2¢
.2 . 2y—1
= u?+ lim yuo(T?) /0 2t|n(1+t)dt

= u® + yuv(In2)7 1.
(@) Use the bound [from (5.4)] p,(k, k) > c(r+1)"'/2 and argue as above. O

REMARK 5.4. Consider the d = 2 case. In spite of (b) above, I(k) does
not converge in L? as T — oo. To see this we can use (5.1) and (5.4) to see
that if T, = T'1(T',) increases sufficiently quickly with T, (we certainly need
T,>T,), then

Aim B, (I, (R) 7, (R)) = u?,

thatis, Iy, and I, are asymptotically uncorrelated. We omit this calculation.
It then follows from Proposition 5.3(b) that

Nim By (T (k) = Ir,(R)) = 1im By (I, cr,y () + I, (R)?)
— 2P, (I, (r,)(R)I1,(k))

= 2yuv(In2)7~1 > 0,
and so {I;(k)} is not Cauchy in L2 as T — oo.
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Recall (Theorem 1.5) that under P, ,, (u,(k), v,(k)) —,, (B}, B7)as t — oo,
where T = inf{¢: B:B? = 0} and (B, B?) is a planar Brownian motion start-
ing at (u, v). We suspect that (1/7) fOT u,(k) ds fails to converge because long
stretches of time where % is in a large block dominated by the “u population”
are followed by even longer stretches of time where % is in a larger block domi-
nated by the v population [and the u,(%) values are negligible] and so on. This
picture of “alternating types” at a fixed site is consistent with the following
simple result.

PROPOSITION 5.5.  Assume ¢ is simple symmetric random walk on Z? and
u,v > 0.UnderP, ,, u,(k) and v,(k) do not converge in probability as ¢ — oo

Vke7®

PrOOF. We may set £ = 0. The fact that a.s. convergence fails is a simple
consequence of Fatou's lemma, Proposition 5.3(b) and the fact that

(55) HDu, v(uoo(o)z) = Pg, v((B%")Z) = HDu, U(T) = oC.

For convergence in probability, the argument is only slightly more involved.
Suppose that u,(0) converges in probability to «.,(0) under P, ,. Recall

from Theorem 1.4 that

(5.6) P, o(#(0)) = u.

We claim there is a sequence ¢, — oo such that

(5.7) Ii]rglirolf I, (0) > u(0) as.

To see this, first note that for each M in N, |u(0) — u,(0)|1(u,(0) <
M) < u(0) + M and so by dominated convergence [use (5.6)] we have
lim,_ P, ,(|us(0) — u,(0)[1(u,(0) < M)) = 0 and therefore

T
7Iwim IPM’U(T*/ |4 (0) — u;(0)|1(u,(0) < M) dt) =0 foreach M eN.
— 00 0
As we have
- -1 T
Tll_)ngoIP’u,U(T /0 1(|1(0) — u,(0)] > 1) dt) —0,
if M, + oo (M, € N), we may choose ¢, 1 co such that for a.a. w,

lim t,;lfotk 1(|u0(0) — u,(0)] > 1)

+ us(0) — ut(0)|1(ut(0) = Mk) dt =0.

(5.8)
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Fix w so that (5.8) is valid. Then

liminf 7,,(0) > lim nf £;* /Otk 1,(0)1(x,(0) < M,) dt
= liminf (tzl fotk (1(0) — 4se(0))1(u,(0) < M,) dt
PO [ 1((0) = My) dt)

= u(0) — u.(0) lim supt;lfotk 1(u,(0) > M,)d¢ by (5.8)

k— o0

v

Uoo(0) — u s (0) lim Sup(l(uoo(O) >M,-1)
k—o00

+ /Otk 1(|oo(0) — 1,(0)] =) dt)

=u,(0) by (5.8) again.
This proves (5.7). Fatou's lemma now shows that
lim inf P, ,(1;,(0)?) = P, ,(1,(0)°) =00 by (5.5).

This contradicts Proposition 5.3(b) and so convergence in probability must
fail. O

We conjecture that in the setting of Proposition 5.5,
{u;(0):t > T} ={v,(0): ¢t > T} = (0, 00) VT >0 as.

The description of the large time dynamics when d = 1 remains completely
unresolved.

Note added in proof: Cox and Klenke have recently proved this conjecture
for d < 2. More generally they show, under the recurrence hypotheses of
Theorem 1.5, the dominant type at 0 switches infinitely often as ¢ — oo.

6. A stochastic partial differential equation. We now study solutions
(u,v) of (SPDE), , . Here are some additional state spaces for the solu-
tions, which augment the spaces introduced in Section 1. Recall that |f|, =
sup, |£(x)e!¥]. Let

Crap ={f € C(R): |f|, <00 VA >0}

topologized by the metric

(o]

diap(f, 8) = >~ 8lu, A 1)27" where p, 1 .

n=1
Here Q,,, is the space of (C;;p)z—valued paths with the compact-open topol-
ogy.
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Then {P,: t > 0} denotes the Brownian semigroup on the bounded measur-
able functions on R and p,(x) is the Brownian transition density

Cint = {f € C(R): (|f],1) < oo},
Cy= | € CR): sup|f(x)] < oo},
C,={feCR):|f], <o}, peR
THEOREM 6.1. (a) If ug, vg € Ciyy, there is a solution to (SPDE), , , de-
fined on some (Q, 7, %, P).

(b) Let (u,v, Wy, W,) be any solution to (SPDE),, , on some (Q, 7, 7, P)
for a given (ugq, vo) € (CE)"

(i) If € Cyyp, then Vit > 0,
(s ) = (o, Pt} + [ [ Prosd(o)yuls, w)ecs, 0)% dWa(s, )
and

t
(v 9) = (w0, Pid) + [ [ Pryd(@)(yuls. 2)o(s, ) dW(s, ) as.
where both stochastic integrals atre square integrable.
(“) u(t, x) = PtuO(x) + fo fptfs(y - x)('yu(s, y)v(s, y))l/z dWl(s’ y)’

(%) = Puo(@)+ [ [ pres(y = 0)(vuts, 3)u(s, ) dWo(s, )
a.s. for each (¢, x) e R, x R,

where both stochastic integrals are square integrable.
(iii) Forall s,t e R,, x,y € R, A, ¢ > 0,

P(u(t, x)) = Piug(x), P(v(t, x)) = P,vo(x),
P(u(s, 2)v(¢, ¥)) = Puo(x)Pvo(y)
and

(6.1) sup}P’(/(ur(x)q + v,(x)7)e M dx) < 0.

r<t

If ¢, y: R - R, are measurable, then for all s,¢ e R_,

P((”h ¢)>) = (uO’ Ptqb)’ ]P)(<vt7 d’)) = <v09 Ptd’)

and

P((”sv ¢><Ut, d’)) = <u07 Ps(;b)(vov Ptd’)
(iv) If ¢, ¢ € C,p, then

() = (o, &) + [ (s 6/2) ds
—i—fot/qb(x)(yu(s, x)v(s, x))l/2 dW (s, x)
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and
t
(0 9) = (00, ¥) + [ {0, 0/ /2) ds

+ /Ot/tlf(x)(yu(s, x)v(s, x))l/2 dW,(s, x),

where the stochastic integrals are orthogonal square integrable continuous
(&;)-martingales and the Lebesgue integrals are of integrable total variation.

(c) Let (u, v, W,, W,) be as in (b) but with (ug, vg) € (C:”ap)? Then (u.,v)) €
Q4 a.s. and

(6.2) sup P(/(u(r, x)? + v(r, x)7)er dx> <o Vgq,T,\>0.
r<T

Moreover, (b)(i) holds for ¢ € Cy,, and (b)(iv) is valid for ¢, € C2

tem*

(d) Let (u, v, Wy, W,) be as in (b) but with (ug, vg) € (Ci-,)2. Then (u,, v,) €

int

(CE)? vVt > 0 as., (b)(i) holds for ¢ € C, and (b)(iv) holds for ¢, ¢ € C%.

In particular, (u,,1) and (v,, 1) are orthogonal square integrable continuous
(F;)-martingales.

The proof is presented in the Appendix. Many of the ideas in Shiga (1994)
are easily modified to the present context.

As for the discrete setting in Section 2, we introduce state spaces for our
anticipated self-dual processes.

Notation. F = {(X,Y) € Cf,, X Cem: |Y| < X on R}.

tem
F={(X,Y)eF: X eCf,}
O F,={(X,Y) e F: X has compact support].

Metrize F by dp((X,Y), (X', Y")) = diem(X, X') + dem(Y, Y') and similarly
metrize F using d,,p. If (6, ¢) € F, define G, ,; F — Cby G, ,(X,Y) =

eXp{—(X, ¢> +l<Y7 ¢,>} -
It is easy to check that (F, dr) and (F, d) are Polish spaces.

LEMMA 6.2. If P and @ are probabilities on F such that G, ,dP =
[Gy ,dQV(d, ) € F,, then P = Q.

Proor. If o7 ={G, ,: (¢, ¢) € F } and ¢ is the complex linear span of
o/, then ¢ is a complex algebra containing the constants and closed under
complex conjugation. A monotone class theorem [e.g., 1.21, 1.22 of Dellacherie
and Meyer (1978)] reduces the problem to showing that o(7) (the minimal
o-field making functions in .27 measurable) is the Borel o-field of F. For this it
suffices to fix rational numbers s and ¢ and show that (X, Y) — (X(s), Y(?)) is
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o(&7)-measurable. Let {K (-): ¢ € (0, 1]} be a continuous approximate identity
(as ¢ | 0) with compact support. Then

(X(s), Y(1) = [j[g((X, K,(—s)+K(—1),(Y,K.(—1))

- (X, K,(-—1)),(Y,0))

and (K.(-—s)+ K,(-—t), K,(-—t)) and (K.(- — t),0) are in F . The result
follows easily. O

Just as in the discrete setting we let (u,, v,) and (@,, 0,) denote the coordi-
nate variables on (., and Q,,,, respectively (as well as arbitrary solutions of
SPDE), and define

(X, Y)=(u,+vu,—v,) e F and (XtaYt)z(at+ﬁtaﬁt_5t)€F-

If (ug, vg) € (C:fap)z, Theorem 6.1 allows us to view the law of a solution to
(SPDE),, ,, @s a probability on Qe oF Oy

THEOREM 6.3 [Mytnik (1997). (a) If (ug, vy) € (Cipy)?, there is a unique
probability P, . on Q. so that (v, v) has law P, whenever (u, v, Wy, W5)
is a solution to (SPDE), , on some (£, 7, %, P).

(b) If (ug, vg) € (Ciy)? and (éig, 1) € (Cr+ap)2, then

]Puo,vo(exp{_<Xt> Xo) +i(Y,, Yo)}) =Py, 5 (exp{—(Xo, X)) +i(Y,, ?0})-

REMARK. The argument is very close to the proof of Theorem 2.4. Clearly
(b) implies the uniqueness in (a) by Lemma 6.2. Part (b) is established by a
duality argument. The latter differs slightly from that given in Theorem 2.4
because test functions for X, (or X,) should be smooth and X, (or X,) is not.
One may use the heat semigroup P, to smooth these functions and then let
e 0.

If G: (CL,)> — R is bounded and measurable, let P,G(ug,vq) =
Py, v,(G(u;, v)) denote the semigroup associated with solutions of (SPDE). To
prove the Feller property of { P,} we will use the following slight modification
of Lemma 6.3(ii) of Shiga (1994).

LEMMA 6.4. Let{P,: n € N} be a sequence of probabilities on Cyg,. Suppose
VA >0, there are C, p > 0 and a > 1 such that

sup P, (Ju(x) — u(x)[?P) < Ce|x —x'|* forall [x — x| <1

and
sup P, (|lu(0)|) < C.

Then {P,} is tight.
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COROLLARY 6.5. (a) P,: Cp,((Ct,)?) — Co((C)?) for each ¢ > 0.

tem tem
(b) Let (u,v, Wy, W;) solve (SPDE), , onsome (, 7,7, P)and let T be

an a.s. finite (.%,)-stopping time. For any bounded measurable f on (Cy.,,)?,

, U,

P(f(upys> vrye) | F7) = Pof (up, vyp), P-a.s. for all ¢ > 0.

PROOF. (a) Let (ul,vl) — (ug,vg) in (CL)? t > 0 and set P,(A) =

tem
Pus on((uy,v;) € A). We must show the weak convergence of P, to

Py, v, (14, v;) € A). Theorem 6.3(b) implies that for (¢, ) € F,
r!Lrgopug, vl (Go, y(uy + v u, —v,)) = Py, vo(Gd),l//(ut + v, uy — v,))

and, as this class of functions is a determining class on (Cy;,)? by Lemma 6.2,
it suffices to prove that {P,} is tight. For this it suffices to show {P,(u € -)}
is tight on Cy,,,, and here we use Lemma 6.4. The last condition of Lemma 6.4
holds by Theorem 6.1(b)(iii). The first condition is implicit in the derivation
of Theorem 6.1(a) but this time we sketch the details. By Theorem 6.1(b)(ii),
an easy estimate on |P,uqy(x) — P,ug(x’)| and the Burkholder-Davis—Gundy
inequality, this reduces to showing that for A > OthereareC, p>landa > 1

so that

t R P
SupPuS, vy ((/ /(ptfs(y - x) - ptfs(y - X )) yu(s, y)U(S, y) dy dS) )
(6.3) n 0
< CeM*l|x —x'|* for |x — x| < 1.

By Jensen’s inequality, the left side of (6.2) is bounded by (let A’ = %/\)
t 7\ 2 2 2p
y? sup By s ([ [ (peoy = %) = peoyly = )" (uls. 9)°7 + v(s., y)?P) dy ds
¢ 5 p-1
x </O J(Pesy = ) = Prosly = &) dy ds)
¢ 1/4
64) = Coup| Py ([ (s, 9% + (5, ) exp(-4x ) dyis) |
n 0
t 4 ’ 7\ 8/3 3/
<[ oo (5051) (bas =0 - psty =) dyds|

x |x — x'|P7L,

The last line used Lemma 6.2 of Shiga (1994) to bound the last term on the
left side by C|x — x/|?~* and used Holder’s inequality on the first term. Using
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Lemma 6.2 of Shiga (1994) again, for |x — x'| < 1 we get

! o \18/3
fo /exp(4/3)\ [yD|Pe—s(y — %) + pr_s(y — x')| "~ dyds

< [t =575 [expOy (pros(y = 0) + Pyl = <) dyds
< Cexp(Alx|).

A Gronwall argument [see (6.16) of Shiga (1994)], as in the derivation of (6.1),
shows that the first factor on the right side of (6.4) is finite. Using these
estimates in (6.4), we see that (6.3) holds with « = p — 1 and taking p > 2,
we are done.

(b) This is a consequence of Theorem 6.3, whose proof actually shows
the uniqueness of the analogous martingale problem (as for Theorem 2.4),
and standard arguments [see Theorems 4.4.2 and 4.4.6 of Ethier and Kurtz
(1986)]. O

As in the lattice case, the duality relation in Theorem 6.3(b) reduces the
longtime behaviour of (u,, v,) with constant initial conditions to the long-time
behavior of ({u,, 1), (v, 1)) with rapidly decreasing initial conditions.

THEOREM 6.6. Let ug, vy € Cy,. Then lim,, (u,, 1) = (uy,1) and

lim,_ (v, 1) = (v, 1) eXist P, -a.s. and (v, 1) (v, 1) =0, Py, -a.s.

PrRoOOF. The existence of the a.s. limits follows from Theorem 6.1(d) and
the martingale convergence theorem. The proof of the last assertion (no coex-
istence) proceeds as for the recurrent lattice case and so we only sketch the
parts which are different from the proof of Theorem 1.2(b).

Set y = 1 to simplify the notation. Let A, = fg(us, vs) ds. As in the proof of
Theorem 1.2(b), we use Theorem 6.1(b)(ii) to write

(6.5) Ap =AY + Ny,

where A(Tl) = fOT(PtuO, P,vy) dt and (N,,t < T) is a continuous martingale
satisfying

(6.6) (N)r < e((wp, 1)% + (v7, 1)%) g2r(0)* Ap.

Here (u}, 1) = sup,.r(u,, 1), similarly for (v7, 1), and g,7(x) = fOZT ps(x)ds.
As in the discrete case, some care is needed in the derivation of these for-
mulas. A two-parameter stochastic Fubini theorem is required [Theorem 2.6
of Walsh (1986) may be used]. To verify the integrability hypothesis of this
Fubini theorem, one needs to use (6.2) for appropriate ¢ and A = 0.

If M = M(uo,vo) is chosen sufficiently large so that (ug, 12, a/2)) =

%(uo, 1) and similarly for vy, then an application of Chapman-Kolmogorov

leads to

AY = [ [ g21(y = wyuo(y)vo(w) dy dw = gor(M)} (o, 1) (vo, 1).
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If T > M?,

1/2 2T 1/2
gor(M) = 2 [~ (2mt) 2t

> e 1/2 |:ng(0) - %ng(O)} = ¢o8o1(0),

and so for a universal constant ¢; > 0, we have
1
(6.7) A > ¢18,0(0)(ug, 1) (v, 1) for T > M(uq, vy)?.

The proof now proceeds exactly as that of Theorem 1.2(b), using (6.6), (6.7)
and the fact that lim,_,  g,(0) = oo, in place of (3.6), (3.9) and (3.8). O

We recall the notation introduced prior to Theorem 1.8. If (¢, ) € F define
H, ,: (Mem)? — C by H, ,(u,v) =exp{—(u+v, ) +i{u—v, ¢)}. Recall also

we may consider Cy,, as a subset of My, and so H, , is defined on (C,,)?

by the above.
LEMMA 6.7. Let {P,} be a sequence of probabilities on (M )?. If
(6.8) sup[(M tv,¢_)dP, (n,v) <00 VA>0

and for each (¢,¢) in F. lim, P, (H, ,) exists and is finite, then
Pn —w Poo in (]‘Jtem)2 and Iimn—)oc Pn(H(b,ll/) = Poo(HqS,n//) V(d)’ lﬂ) € Fc'

ProOF. It is straightforward to show that (6.8) implies {P,: n € N} is
relatively compact in the weak topology. An argument similar to, but simpler
than, the proof of Lemma 6.1 shows that {H, ,: (¢, ¥) € F} is a determining
class on (Mm)?. The result follows. O

Proor oF THEOREM 1.8. We apply the previous lemma. Theorem 6.1(b)(iii)
shows that if A > 0, then

SUPT, (e + 01, b,)) = sup(u +0) [ Prb_y(x) dx

=(u+ v)/ci)_A(x)dx < 00.
Let (¢, &) € F,. Apply Theorem 6.3(b) with (&g, 0g) = (¢ + &, ¢ — )/2 to
see that
lim Pu,v(H([), o (g, 0,))

= 1im By, o, (Xp(—(t + 0)(L, &+ 5,) + i(u — v)(L, & — 5,)))
= Pﬁo,ﬁo(exp(_(u + U)<1’ lzoo + ﬁoo> + l(u - U)<1’ aoo - 500)))

In the last line (1, @&, £ 0,.) = lim,_ (1, &, £ 0,) exist a.s. by the martin-
gale convergence theorem [recall Theorem 6.1(d)]. The previous lemma now
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establishes the weak convergence of P, ,((u;, v;) € ) in (Myey)? as ¢ — oc.
The identification of the weak limit now proceeds just as in the proof of The-
orem 1.5. Theorem 6.6 is used in place of Theorem 1.2(b). O

APPENDIX

Proofs of Theorems 2.2 and 6.1.

ProOOF OF THEOREM 2.2.(a). Skorokhod's Peano existence theorem shows
that on some (Q,.7,%,P) there are independent (.%)-Brownian motions
{B*, Wk k € S,} and solutions (u?(k), v(k): k € Z%,t > 0) of

uf (k) = up(k), vi(k) =vo(k) for keSS, t>0,
t
Wl (k) = uo(k)+/o u"Q(k)ds
t n n 1/2 k
(LS), + [ ViR ?dBl ke S, =0,
t
(k) = vo(k)—i-/o " Q(k)ds
t
+ [ i) dWE,  keS,,t=0.
0

Note that by writing
ugQ(k)= 3 ui(Nap+ X uo(j)q

Jjes, Jjese
we see that (LS), is a finite dimensional s.d.e. Then (H,), (H,) and the fact that
Ug, Vg € Mo, Show the infinite series in the above is absolutely convergent.

We claim that u}(k) > 0 and v}(k) > 0Vk € Z¢, V¢ > 0 a.s. Note that the
local time at 0 of u™(k) is

t
LY = Iim/ 1(0 < u(k) < &)y|ul(k)||v (k)| dse™!
|0 Jo
t
< |j£51/() 1(0 < u™(k) < &)|v"(k)| ds = 0.
Tanaka’s formula implies that

> ul(k) =M, +/0ta(s) ds,

kesS,

where M is a continuous local martingale and

a(s)= 3 ug(k) g — 2 2 Lui(k) <0)ug(f)qn

keS, keS, jeS,, j#k
- Z 1(”:(/3) < O)( Z uo(j)q]'k)
keS8, Jjes¢

IA

Yo > ui(j)gp=<0.

keS, jesS,
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The last inequality is clear because for each j in S,, > es 9 < Xrqjn =
0. The previous inequality is seen by considering the cases u?(k) < 0 and
uy (k) > 0 separately. This shows }",.¢ u;(k)~ is a nonnegative supermartin-
gale starting at zero and hence is identically zero a.s. The same argument is
valid for v}. This proves the nonnegativity claim.

Let TY = inf{t: (u} +v},1g ) > N}. Clearly T} 1 oo as N — oo for each
n. It ¢,(j) = pi_s(J, k) for s < ¢ (¢, k fixed), then ¢, € M,, [by (H,)] and
d.(j) = —Qd.(j) [by (Ho)] is bounded and continuous. Using (LS), and Itd's
lemma, we have for s < ¢,

(ug, bg) = (ug, Lg: ds) + (uo, 1, o)

[ @@ 1s, 6, + (ul 15, b, dr
+ 2 [ oDuriywr(i) " dB]
JeSy
= (uo, 1sc (s — d0)) + (wo, ¢o)
+ [ QLs, 6, — 15, Qey) dr + N2 U(4),

where NZ-%(¢) is defined to be the sum of the stochastic integrals in the
previous line. Write

(uf7 Q]-S,,d)r - 1S,,Q¢r> = Bn(r) —a(r),
where
B (r)= > > ul(Na;d.(J)= 2 > u(f)g;¢.(j')=0
J¢S, j'eS, J#S, €S,
and

a"(ry= > > ui(jg,;;¢o,.(J)=0.

JeS, J'¢S,
If ty =t A TY, we therefore have
(uy , du,) = (o, p,(, k) + Ny “(¢) + (w0, Lsg (dr, — b0))

(A.1) ty
+/0 B (r) — a™(r)dr.

By (H;) and (H,), for any A’ > 0 and X > 0 such that \'(2X) < X/,

sup(uo, Ls; és) < €5 SUp 3, exp(ALj]) ps(J, k)

s<t jess

(A2) < ciexp(—An)sup 3 exp(2Alj)ps(J, k)

<t jess,

< c(t, A) exp(—An) exp(X'|k]),
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for some c(¢, A) which is increasing in ¢. We will implicitly assume all constants
increase with ¢ in this argument. Similarly for any A" > 0 and A > 0 such that
AN(N(2)1)) < X, we have

supB™(r) <cisup Y. Y exp(Aljg ;i po(J's k)
r=t 5=t jgS, JeS,

(A.3) <exp(—An)cisup > > exp(2A|j])q;; ps(J', k)
St jgS, j'eS,

< c(t, A, M) exp(—An)exp(A'|k[) by (Hp) and (Hy).
Use Fatou’s lemma, (A.2) and (A.3), while taking means in (A.1), to see that
P(u(k)) < (uo, pi(-, k)) + 2¢(t, k) exp(—An) exp(A'| k)
+ te(t, A, X') exp(—An) exp(X'|k|)
< P,uo(k) + c(t, X, ') exp(—An) exp(X'|k|)
for any A’ > 0 and A > 0 sufficiently small.

(A.4)

First bound (u;%N, ¢y, ) by the right side of (A.1) without the foﬁv-a(r) dr term,
use (A.2) and (A.3), and then use the analogous bounds for v" and Fatou's
lemma to conclude that for A’ > 0, and A > 0 (sufficiently small, depending
on \),

P(uf(k)vi (k) < I|m|nf P(u? (pt o, (> R)) vy (pt 0, (5 k)
< ((uo, P b)) + 2¢(t, A) exp(—An) exp(X'| k|)
+te(t, X, M) exp(—An) exp(X'|k|))
(A-3) x ((vg, pi(-5 B)) + 28(t, X) exp(—An) exp(X'|k'|)
+té(¢, X, M) exp(—An) exp(X'|E'[))
< P,ug(k)P,vo(k) + c(t, A, \')
x exp(—An) exp(A'(|k| + %)) by (Hy).

Use (A.4) and (A.5) in (LS), to see that for A, T' > 0, if A’ > O is chosen to be
sufficiently small, then for A = A(X") sufficiently small,

P(supluf, &) = {ug, &) + £ 3 [ B(ul())la 4l exp(-AlK) ds

t<T keS, Jj

+0P[(/ 3 exp(- 2Alkl>7u"(k)””(k)ds)1/z}

keS,
T — —
< (o, 1) + 23 [ (Paauo() + (T, X, Xy exp(~An)
L)

x exp(A']71))lq x| exp(—Alk]) ds
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T
+e| [} T exp(-2alkDy () Povo(h)
k

1/2
+¢(T, A, X)exp(—An + A'|k|2)) ds}

< (ug, ) + (T, A) < o0,

where we have used the choice of A’ and (H,) in the last line. Hence by sym-
metry we have

(A.6) sup]P(sup(uf + o, du)) <o VA, T >0.

t<T

Now let O = (C(R,,R,)? x C(R,,R)2)%" with its Borel o-field & and
canonical right-continuous filtration (.%). Standard weak convergence argu-
ments and (A.6) will now show that {(u"(k), v*(k), B, Wk): k € Z%} is a
tight sequence in Q and any weak limit point {(«.(k), v.(k), B%, W*): k € 2%}
(with law P) will be a solution of (LS), ,, on (Q,7,%,P). For example,
to show tightness of the stochastic integrals in the definition of »}(%) [in
(LS),,] one may work with the predictable square functions, use exponential
bounds on the increments of a continuous martingale in terms of the incre-
ments of the square function (use Dubins—Schwarz) and utilize the fact that
sup,; uz(k)vi(k) is bounded in probability uniformly in n for each ¢ > 0 and
k in Z? [by (A.6)]. The tightness of the drifts in the definition of u/(k) is
clear from (A.6); (A.6) also shows that u,(-) and v,(-) are M-valued. The
continuity in M., will follow from (b)(i) below.

Another approach to the construction of solutions to (LS) is to use the finite-
dimensional approach of Shiga and Shimizu (1980) (see the proof of their
Theorem 2.1). This again uses (A.6) and (A.5).

(b)(i) Let (u, v) be asolution to (LS),, ,, Where ug, vy € M. Define uy by
t .
wi (k) =uo(k)+ [ ¥ u(ajuds
0 jes,
t
+/ (yuy(Ryv (k))"*dBt,  t>0,kez
0
Note that lim,_, . ui (k) = u,(k). If ¢5(j) = 1g (J)pi—s(J, k) for s < ¢ (¢, k

fixed) then a simple calculation [similar to, but simpler than, that of (A.1)]
shows that for s < ¢,

(ul, 87) = (o 88) + N2“0) = [ X ¥ w(Dayyp (7 B)dr
JES, J'ES,
(A7) < (1o, 93) + NI“(8).
N2U@) = 2 [ (o) b, R B

JES,
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As in (a), Fatou’s lemma and a stopping argument leads to

P(u,(k)) < lim inf P(u;(k)) < P,ug(k) and similarly

(A.8)
P(v,(k)) < Pyvo(k)
and
(A.9) P(u,(k)v (k) < liminf P(u} (k)v} (k) < P,ug(k)P,vo(k).

Argue as in the derivation of (A.6) [now using (A.8) and (A.9)] to see that for
any A, T > 0,

]P’(sup(ut + vy, q’)_)‘)) = lim ]P’(Sup(ut + vy, 1Sn¢—)~>> < 00.

t<T n—>0o0 t<T

The same reasoning shows that

lim IP’(sup(ut +v,, 1S%¢_A)) -0 VAT>O.

n—o0o t<T

It follows that (u,, ¢_,) is a.s. continuous in ¢ since it is the uniform limit of
(us,1g, ¢_)), t €[0, Tl as n — oo a.s. This shows that (u.,v.) € Qe as.

(i) Let ¢ € M7, fix ¢t > 0and let ¢,(s, k) = Ig (k)P,_ (k) for s < t.
If N“(¢,) is defined as N¥%(¢, ¢) in the statement of the Theorem 2.2(b)(ii),
but with £ summed over S,,, then Itd’s lemma gives

(s 6,(0)) = (o, $u(0)) + [ (s, ()
+ {0, 6,(s)) ds + N ().

(A.10)

Note that
P 1t (50 + (,@. (5D ds

t| .

- P(/O i_ J_Ezsn kg us(J)q P sP(k)
|

LHDIDY us(j)qjkpt_sfb(k)ids)

jeSe keS,

-0 asn— oo,

where in the last line we have used (A.8) and (H,) and argued as in the
derivation of (A.3). Equation (A.9) shows that N (¢,) is a square integrable
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martingale and also shows that for n > m and A’ > 0,

PN () = N ))) = B[ 9Pr (B2 Pa()P,o(k) ds )

keS,-S,,

IA

IA

t
c(t, \) /O S P, (k)P exp(2X|k])ds
keS,—-S,,

6Nl [ X Prb(hyexp(2n|kl) ds

keS,—S,,

A

— 0 asn,m — oo by (H,).

The above bounds allow us to prove (ii) by letting n — oo in (A.10), using a
similar argument for (v,, ), and noting that the orthogonality of the martin-
gales is obvious.

(iii) This is immediate from (ii) and a monotone class argument.

(iv) For ¢ as in the statement of (iv), if ¢,(j) = Ig (J/)$(J), we may
write

(s b2) = {tis ) + [ (0, 8,) ds
+ X 60 [y, Bt
keS,

One now may easily prove (iv) by letting n — oo and using the moments
obtained in (iii) and (H,) to see that the martingale term converges in L? and
the drift term converges in L*.

(c) Letug, vg € M qp. If A > 0 we may use (b)(iv) with ¢ = 15 ¢, to see that

P(sup(u, 1s,41)) < (uo, Ls,b,)
t<T

+ cP(< 2 /OT yu(R)o (k)b (k) ds)1/2>

keS¢
T
[ X TP Dlaulérk) ds
keS¢ j
< <u0’ 1S§l¢/\>
T 1/2
ro 3 ([ vPaok PRy (1Y ds)

keS¢
T
[T L Pao(i)lalérk)ds
keSe j

—-0 asn— o

by an easy argument using (H,). From this it is easy to see that (u,, v;) € Q4
a.s. and P(sup,.r(u; + vy, ¢,)) < oo. It is also clear from the above that if
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|¢| + [¢| < cep, for some ¢, A > 0, then we may apply (b)(iv) to 15 ¢ and 1g &
and let n — oo to get (iv) for ¢ and . The derivation of (b)(ii) for ¢, ¢ in
M., is similar.

(d) Let ug, vy € M. Use the bounds
> Poug(k)Psvo(k) = DY uo(i)pas(is J)vo(J) < (@g, 1)(vo, 1) < 00
- — £

rJ

and

ZZPsuO(j)qu‘k| < 2|Iqllo D Psuo(J) (recall Z|qj‘k| = 2|ij|>
EoJ J k

= 2||Q||oo<u0’ l) < o0,

and argue as in (c) with A = 0 to see that P(sup,_p{u;, 1)) < oo, (u.,v.) € Qp
a.s., and (b)(iv) holds for ¢, y € Mj. The derivation of (b)(ii) for ¢, ¢ € My is
now also clear. Since @1 = 0, the last assertion is immediate from the above
extension of (b)(iv) with ¢ = ¢ =1. O

We next turn to the proof of Theorem 6.1, the corresponding result for the
stochastic p.d.e. We need to work with super-Brownian motions with initial
condition ug(x) dx where u, € Cg,, and as we don’t know of a proper reference,
a terse outline of the theory is presented. If ¢ : R — R, is bounded and
measurable, s, > 0, u, € Cf,,, and W is a white noise on R, x R, Theorem 2.5
of Shiga (1994) establishes the existence of a continuous Cj,,,-valued solution,

u, of

Ju 15%u 1/2 14
(SP) E(t’ x) = Ew(t, x) + (o(x)u(t, x)) "W, t > so,

u(sg, x) = ug(x).
(The methods in Shiga’s paper easily accommodate a variable o.) A precise
formulation of a solution to (SP) on (Q, 7, %, P) is given by the obvious ana-
logue of that for (SPDE)MO’ v * If u is a measure and ¢ is a real-valued func-

tion, u(¢) denotes the integral [ ¢ du. We now set s, = 0 for convenience. The
measure-valued process X,(dx) = u(t, x) dx clearly satisfies the martingale
problem

Ve Chy M) =Xi(d)~ (u0. ¢) — [ X(&"/2)ds

is a continuous (.%;)-local martingale with

(M), = [ X (o6 ds.

(MP)

ug, o

We need only check the extension from C? to Cfap. For this, suppose more

generally that ¢ € C§ for some A > 0 and let Ay be a smooth function with
support in [—N, N] which equals one on [-N +1, N —1]. A simple application
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of the fundamental theorem of calculus shows that |¢'|, < A71|¢"”|, < oco. This
allows us to use (MP), , with ¢y = hy¢ in place of ¢ and let N — oo to
derive (MP), ,, for ¢.

Let M., denote the space of measures, u, on R such that u(¢$_,) < oo
VA > 0 and topologize M., so that u, — p in M, iff lim,_  u, () = u(d)
Vo € C.(R)U{¢p_,: A > 0}. One readily defines a metric p on M, SO
that (M, p) is Polish. In (MP),, , we will implicitly assume that X is
an (%)-adapted continuous M .,-valued process. As in Chapter 2 of Walsh
(1986), the martingale measure M in (MP), , extends to integrands which
are #(7.) x #-measurable [2(F ) is the predictable o-field on R, x Q and
# is the Borel o-field on R] and satisfy [} X (d2¢?)ds < oo VT > 0 as.
Then M,(¢) = fotqu)(s, x, w)dM(s, x) is still a continuous (%)-local mar-
tingale with square function [ X (c%$2)ds. Now (MP),, , extends in the
obvious way to those functions ¢: R, x R — R such that ¢ — ¢(¢,-) and
t — (d¢/dt + 2(?¢/3x?))(¢, -) are continuous C,-valued functions on [0, T,
where A > 0 is fixed. For example, one may use Proposition 1.3.3 of Ethier and
Kurtz (1986) and the generator of space-time Brownian motion to bootstrap

up from {(s, x) = d1(s)bo(x): ¢1 € CH([0, T), ¢, € C3}. If & € C77, let
U,¢(x) denote the unique solution of

U, 1 42 a?
Js _2z93c2US 2 Uss Uo = ¢

Now P, is a strongly continuous semigroup on C, [Lemma 6.2 of Shiga (1994)]

and so t — U,¢ is a continuous C -valued map. Let ¢(s, x) = Up_ p(x) in

(the extended) (MP), , (valid because d¢,/ds + 3¢, = o?¢?/2) and use Itd's

lemma as in the usual uniqueness proof for superprocesses to see that

P(exp{—Xr(¢)}) = exp(—(uo, Urd)).
This gives the uniqueness in law of solutions to (MP), , and therefore the
uniqueness in law [on C(R,, Cg,,)] of solutions to (SP). Let Qs,, 4o, » denote

the law on C(R,, C,,,) of the unique (in law) solution of (SP).

PrOOF OF THEOREM 6.1. (a) Let (Q, 7, %) be Qi With its Borel o-field
and canonical right-continuous filtration. The coordinate variables on Q.
will be denoted by (u,, v,) and F s, t] = o((u,,v,): s <r < t). Let u™(t, x) =
u([tn]/n, x) A n and similarly define v (¢, x). Here Q" is the unique law on
(2, 7) such that for all i in Z, and A in [i/n, (i +1)/n],

Qn((u’ v)e Al 9;/") - Qi/’l,ui/n’yvm x Qi/n; vi/n,vuﬁ’/ln)(A)’
Hence given .%; ,,, on [i/n, (i +1)/n], (., v.) evolves like a pair of independent
(n) (n)

i/n i/n’

super-Brownian motions with branching rates yv
follows easily from (MP), , that

Qn«ut’ ¢>) = (uo, Ptd))’
Qn(<vt’ lr[/)) = (vO’ Pt‘rl’> for d): ‘!f € Crapa

and yu;,’, respectively. It

(ME)



MUTUALLY CATALYTIC BRANCHING 1135

and that if ¢, ¢ € CZ,,, then

MHB) = (s, 6) — (o, 8) — [ {us 8/2) ds
and
MEW) = (e ) = (w0, ) = [ {0,072} ds

are orthogonal continuous (.%)-local martingales such that

(M 0)); = [ (rug, ¢?)ds and (MP)), = [ (vl v, ?) ds.
0 0

Denote the above martingale problem by (MP),,. As for superprocesses, M1(¢)
and M?2(i) extend to orthogonal martingale measures and to the usual class
of predictable integrands, and (MP), extends to time dependent coefficients
including ¢(s, ¥) = pyyo_s(¥y — %) = pryo_s(y, x), s < ¢, for £ > 0. This leads to

(ALL) (s P 0)) = Prostto@) + [ [ prres( ) dMYs,3),  Qeas,
and Fatou’s lemma shows that
Q™(u(t, x)) < Pyug(x), Q"(v(t, x)) < Pvg(x),
Q" (u(s, x)v(t, ¥)) < Psuo(x)Prvg(y).

To check that we may let £ | 0 in the stochastic integral in (A.11), note that
for A >0,

v (fot J(Peseesys %) = Pro3, )08 ()usl(3) dy d8>

(A.12)

< /()t/(pa+t—s(y7 %) = Pr_o(5, %))° PlanymUo(¥) Pstio(y) dy ds by (A.12)
¢ 5 1/2
=< (-/o /(pathfs(y’ x) = Pr_s(¥s x)) dy ds) c(t, A)

t 1/2
< ([ [ Pereara2?+ s 0P expaly s
by the Cauchy-Schwarz and Lemma 6.2(ii) of Shiga (1994)
¢ 1/2
< c(t, )\)81/4 (/ (e+t— 8)71/2 + (¢t — 5)71/2 ds)
0

x exp(A|x|/2) by Lemma 6.2 of Shiga (1994)
< c(t, \)e* exp(A|x]/2).
Therefore, letting ¢ | 0 in (A.11) gives

(A.13) u(t, x) = P,ug(x) + /0 t [ pesy, ) dM s, y), Qs
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The Gronwall argument in Shiga (1994) (Section 6) [which relies on (A.13)
and its counterpart for v(z, x)] is now readily modified to prove

(A.14) sup supfexp(—)\|x|)(@”(u(s, 2) +o(s,x))dx <oco VA q,t>0.
n s<t

Now proceed as in Section 6 of Shiga (1994) to see that {Q"} is tight on Qe
[the truncation in the definition of u( and v(™ poses no difficulties]. Let
P be any limit point of {Q"}. Standard arguments, using (MP),, and (A.14)
show that for ¢, ¢ € CZ,,, M;(¢) and M7(y) [defined in (MP),] are square
integrable continuous (% )-martingales under P such that

(M), = [ (v, 9 ds, (M)}, = [ by, 0 ds
and

(M*($), M?(4)); = 0.

By enlarging the probability space to include independent white noises W,
and W,, one may easily define mutually independent white noises (W, W,)
in terms of (M, M,, Wy, W) so that (u, v, Wy, W,) solves (SPDE), . This
proves (a).

(b) Let (u,v, W,, W,) be a solution to (SPDE)MO’U0 on (Q,7,%,P). The
representation in (iv) for ¢, ¢ € C?ap (or even Ci for some A > 0) follows
from the corresponding result for ¢, ¢ in C, by approximating by hy¢ and
hyi, as for (MP), . Note that the fact that u, and v, are C{,,-valued is
used here. The integrability assertions in (iv) will be immediate from (iii).
As in our discussion for superprocesses we may extend the semimartingale
decomposition in (iv) in the obvious manner to ¢: R, x R — R such that
s — ¢(s,-) and s — (9 /ds)(s, -) + 2(5%/dx?)¢(s, -) are continuous C,-valued
maps on [0, ¢] for fixed A, ¢ > 0. If ¢ € Cfap, these conditions are satisfied by
¢(s, x) = P,_;¢(x) and lead to the representation in (i). If ¢ € C\,p,, then we
have the representation in (i) for P,¢ € Cfap and by taking ¢ | 0 we get this
representation for ¢ [the square functions of the martingale term converge in
probability because sup,_, |P,¢|, < oo and (u,,v.) € Qem a.S.].

To prove (ii), fix ¢ > 0, x € R and use (i) with ¢(y) = p.(x — y). Now let
¢ | 0 and use Fatou’'s lemma (both with respect to £ and an appropriate family
of stopping times to handle the stochastic integrals) to see that

P(u(t, x)) < Pug(x), P(v(¢, x)) < P,vo(x),
P(u(t, x)v(¢, x')) < P,ug(x)P,vg(x)).

The representations in (ii) are now obtained by letting ¢ | 0 in the above
representation, as in the derivation of (A.13) and the square integrability of
the stochastic integrals is also immediate from this argument. The first three
equalities in (iii) are immediate from (ii) and the last three follow by Fubini’s
theorem. Finally (6.1) may be proved by a Gronwall argument using (ii) as in
Section 6 of Shiga (1994).
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(c) Let (u, v) be as above but with ug, vy € Cf,,. Let ¢, ¢ € C2,., hy be as
in the derivation of (MP), , and set (¢y, ¢y) = (hyo, hntp). Apply (b)(iv) to
(dn, ¥n) and let N — oo to see that it remains valid for (¢, ). The first set
of moments in (b)(iii) show that the stochastic integral terms converge in L?
uniformly in £ < T and the drifts converge in total variation in L. Note that
in fact (iv) holds if ¢, ¢ € C2 for some A > 0. As in (b), but with C_, in place
of C,, (b)(i) now follows for ¢ in Cep-

To prove (6.2) we modify the proof of Theorem 2.4 in Shiga (1994). By the
above argument we see that ¢ — [(cosh Ax)u(t, x)dx is continuous for all
A € R. Since (u.,v.) € Qem, this shows that for T', A, ¢ > 0,

Supfqb)\(x)u(t, x)4dx
t<T
< o(T', g, 0)sup [ exp((A +q — Dlxu(t, ) dx
t<T
<2¢(T,q, w)sup/cosh((/\ +q—1)x)u(t,x)dx <oo as.
t<T

Therefore,
T, = inf{t: /exp(/\|x|)(u(t, )7+ u(t, 2)9) dx > k] too as. as k- oo.
Shiga’s Gronwall argument is now easily modified to show that

supsup[P’(/exp(A|x|)(u(r, x)?+u(r,x)?) dx1(r < Tk)) <00 Vg, AT>0.
k. r<T

Fatou’s lemma now gives (6.2). Arguing as in the proof of Theorem 2.4 of Shiga
(1994) [using a suitably modified version of Lemma 6.3(iii) of that paper], one
easily shows that (u.,v.) € Q,, as.

(d) If ug, vy € Cif,, the validity of (b)(i) and (iv) for ¢, ¢ as in the statement
of the theorem follows as in (c) (use C, in place of C,). Set ¢ = 4 = 1 to get
the last assertion which implies (u,, v,) € (C;r,)? V¢ >0 a.s. O
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