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LONG-TIME BEHAVIOR AND COEXISTENCE IN A MUTUALLY
CATALYTIC BRANCHING MODEL1

By Donald A. Dawson and Edwin A. Perkins

Fields Institute and University of British Columbia

We study a system of two interacting populations which undergo ran-
dom migration and mutually catalytic branching. The branching rate of
one population at a site is proportional to the mass of the other popula-
tion at the site. The system is modelled by an infinite system of stochastic
differential equations, allowing symmetric Markov migration, if the set of
sites is discrete �Zd�, or by a stochastic partial differential equation with
Brownian migration if the set of sites is the real line. A duality technique
of Leonid Mytnik, which gives uniqueness in law, is used to examine the
long-time behavior of the solutions. For example, with uniform initial con-
ditions, the process converges to an equilibrium distribution as t → ∞, and
there is coexistence of types in the equilibrium “iff” the random migration
is transient.

1. Introduction and statement of results. There has been consider-
able recent interest in the study of branching measure-valued diffusions or
superprocesses for which branching can occur only in the presence of a (ran-
dom or deterministic) catalytic medium. One interesting feature of this work
is that in a variety of settings, branching in a singular medium leads to ab-
solutely continuous measure-valued processes [see Dawson and Fleischmann
(1994, 1995) or Delmas (1996)] in higher dimensions.

Another important development is the study of interactive models based on
superprocesses or Fleming–Viot type processes [e.g., Perkins (1995) or Dawson
and March (1995)]. Both these references characterize interactive models in
which the branching or resampling rate depends on the state of the system.
In both cases, however, the basic uniqueness results are not as general as one
would hope (for quite different reasons).

In this work we study a class of stochastic models proposed by Carl Mueller
which exhibit interactive, “mutually catalytic” branching and are therefore
closely connected to both of the developments described above. There are two
types of particles (you may call them male and female although the biology
implied by the mathematical model will be highly suspect) each of which may
branch only when the other is present. More precisely, the branching rate of
each type at a site is proportional to the amount of the other type present
at that site. If the set of sites is the real line, R, this leads to the following
system of stochastic partial differential equations in which γ > 0 and Ẇi�t� x�
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�i = 1�2� are independent space-time white noises on R+ × R:

�SPDE�u0� v0

�i� ∂u

∂t
�t� x� = 1

2
∂2u

∂x2
�t� x� + (

γu�t� x�v�t� x�)1/2
Ẇ1�t� x�	

u�0� x� = u0�x��

�ii� ∂v

∂t
�t� x� = 1

2
∂2v

∂x2
�t� x� + (

γu�t� x�v�t� x�)1/2
Ẇ2�t� x�	

v�0� x� = v0�x�


The precise meaning of these equations (involving smooth test functions) is
recalled below. In the simple one-dimensional catalytic superprocess, one has
(i) where v is the density of a given random or deterministic catalyst which
is not affected by u. The interactive nature of (i) and (ii) invalidates the tech-
niques used to study these catalytic models and forces the development of new
methods. Our hope was that due to the simple and symmetric nature of this
model (linear branching rates) the general uniqueness difficulties encountered
in the work on general interactive branching models could be resolved in this
case. This problem was recently solved by Leonid Mytnik (1997), who proved
weak uniqueness of solutions to �SPDE�u0� v0

in his Ph.D. thesis.
Another interesting feature of �SPDE�u0� v0

is its potential extension to
higher dimensions. Here it may be formulated as a measure-valued martingale
problem involving the collision local time of the two types [see Barlow, Evans
and Perkins (1991)]. This change is necessary because it seems unlikely that
the solutions would be absolutely continuous in more than one spatial dimen-
sion. Note that if u were an absolutely continuous measure, then the results
for superprocesses [Dawson and Hochberg (1979), Perkins (1988)] suggest that
v would be a singular measure. If u were a singular measure, then the results
of Dawson and Fleischmann (1995) and Delmas (1996) suggest that v should
be absolutely continuous. The same reasoning holds when the roles of u and
v are interchanged and we are led to conclude that both u and v have non-
trivial absolutely continuous and singular parts. Although the situation looks
intriguing, the existence of solutions in higher dimensions is unresolved.

Once the basic issues of existence and uniqueness are resolved, it is natural
to ask about the long term behavior of solutions to (SPDE). Let m denote
Lebesgue measure, u� v ∈ �0�∞� and set �u0� v0� = �um�vm�. Dawson and
Fleischmann (1988, 1995) have shown that for the catalytic model in which
v�t� x� is the density of a one-dimensional super-Brownian motion and u�t� x�
satisfies �SPDE�u0� v0

(i), as t → ∞ vt becomes extinct in bounded regions a.s.
and ut approaches um in probability, in the vague topology. A naive guess for
solutions of (SPDE)um�vm is that as t → ∞, �ut� vt� converges to a mixture
of �0� vm� and �um�0�. We show that as t → ∞, �ut� vt� converges weakly to
�u∞m�v∞m�, where u∞v∞ = 0, u∞ has mean u, and v∞ has mean v, and give
a simple explicit description of the law of �u∞� v∞� (Theorem 1.8). Although
this shows that only one type survives in the limit, the convergence is only
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weak and so it may well be that the “dominant type” changes infinitely often
as t → ∞. This remains open.

We suspect, as for super-Brownian motion [see Dawson (1977)], that the
asymptotic behavior of solutions is quite different in the transient case, d ≥ 3
(assuming that such solutions exist). As the existence of solutions in higher
dimensions is unresolved, it is natural to study the limiting behavior of so-
lutions in transient and recurrent settings by considering the analogues of
(SPDE) on the lattice Zd, in which Brownian motion on the line is replaced by
a symmetric Markov chain on Zd. We now describe our results in some detail
in this discrete setting.

Let �ξt� �Pk� k ∈ Zd�� be a continuous time Zd-valued Markov chain and
set pt�j� k� = Pj�ξt = k�. Let Q = �qjk� denote the associated Q-matrix; that
is, qjk is the jump rate from j to k �j 
= k� and qjj = −∑

k 
=j qjk > −∞. If
k = �k1� 
 
 
 � kd� ∈ Zd, let �k� = ∑d

i=1 �ki�. We assume the following:

(H0) �q�∞ = supj �qjj� < ∞.
(H1) For each j� k ∈ Zd, qjk = qkj and hence pt�j� k� = pt�k� j� for all t ≥ 0.
(H2) There are increasing, positive functions c1
1�T�λ� and λ′�λ� on R2

+ and
R+, respectively, such that limλ↓0 λ

′�λ� = 0 and for any T�λ > 0,∑
k

(�qjk� + pt�j� k�) exp�λ�k�� ≤ c1
1�T�λ� exp�λ′�λ��j�� ∀ t ∈ �0�T�� j ∈ Zd


It is easy to check these hypotheses for continuous time symmetric random
walks with a subexponential tail (Lemma 2.1), including, of course, simple
symmetric random walk on Zd for which qjj±ei = �2d�−1 (ei is the ith element
in the standard unit basis), qjj = −1 and qjk = 0, otherwise.

If γ > 0, the discrete analogue of �SPDE�u0� v0
is the following system of

stochastic differential equations:

�LS�u0� v0

ut�k� = u0�k� +
∫ t

0
usQ�k�ds+

∫ t

0

(
γus�k�vs�k�)1/2

dBk
s �

t ≥ 0� k ∈ Zd�

vt�k� = v0�k� +
∫ t

0
vsQ�k�ds+

∫ t

0

(
γus�k�vs�k�)1/2

dWk
s �

t ≥ 0� k ∈ Zd


Here, usQ�k� = ∑
j us�j�qjk and u0� Zd → R+, v0� Zd → R+ are a pair of

given initial conditions.
We say that �u� v�B�W� is a solution of (LS)u0� v0

on a filtered probability
space ���� ��t�P� iff the following hold:

(i) �B.k�W.k� k ∈ Zd� are independent one-dimensional �t-Brownian mo-
tions;

(ii)
∑

j �us�j�qjk� < ∞ ∀ s ≥ 0, k ∈ Zd P-a.s.;
(iii) �u�k�� v�k�� k ∈ Zd� are continuous, nonnegative �t-adapted stochastic

processes satisfying (LS)u0� v0
for all t ≥ 0, k ∈ Zd a.s.



MUTUALLY CATALYTIC BRANCHING 1091

We stress that in all of our results on (LS) the hypotheses (H0)–(H2) will be
in force.

Notation. If λ ∈ R, φλ�k� = eλ�k� for k ∈ Zd, and we will use the same
notation to denote this function on Rd. If u� v� Zd → R, �u� v� = ∑

k u�k�v�k�,
providing this series is absolutely convergent or u ≥ 0 and v ≥ 0. If λ ∈ R and
u� v� Zd → R, let �u− v�λ = ��u− v�� φλ�.

An appropriate state space for solutions of (LS)u0� v0
will be Mtem × Mtem,

where

Mtem = Mtem�Zd� = {
u� Zd → R+� �u�φλ� < ∞ ∀λ < 0

}



We topologize Mtem by the metric

dtem�u� v� =
∞∑
n=1

2−n(�u− v�−λn ∧ 1
)
�

where λn ↓ 0. Let�tem = C�R+�Mtem×Mtem�, equipped with the compact-open
topology.

Theorem 1.1. Let u0, v0 ∈ Mtem.

(a) There is a solution �u� v�B�W� of �LS�u0� v0
such that �u� v� ∈ �tem a.s.

(b) Any solution �u� v� of �LS�u0� v0
has sample paths in �tem and the laws

of any two solutions of �LS�u0� v0
on �tem coincide.

The existence of a solution follows from standard techniques [e.g., Shiga
and Shimizu (1980)]. Several existence results and properties of solutions are
presented in Section 2 (the existence part of Theorem 1.1 follows from The-
orem 2.2) but most of the proofs are relegated to the Appendix. The unique-
ness was obtained by Mytnik (1997) through an elegant duality argument. We
present a proof in Section 2 for completeness (see Theorem 2.4) because our
setting is slightly different [Mytnik worked with (SPDE)u0� v0

but the same
ideas work here] and the duality relation will be our main tool in studying the
long-time behavior of solutions to (LS). The strong Markov and Feller prop-
erties of the solution will follow easily (Corollary 2.7). Let Pu0� v0

denote the
law of the solution to �LS�u0� v0

on �tem and let �ut� vt� denote the coordinate
variables on this space.

As with bilinear systems of s.d.e.’s [e.g., Gauthier (1996)] it is not hard to
use Itô’s lemma to see that Nth order moments of the form P�∏p

i=1 u�t� ki�ni
v�t� ki�mi�, where

∑p
i=1 mi+ni ≤ N, p ∈ N, ki ∈ Zd, solve a system of uniquely

solvable differential equations. In fact, one may explicitly describe the above
moments in terms of a dual system of N particles in Zd which are of two
possible colors, migrate as copies of ξt and can change colour in an appropriate
manner. Unfortunately the moments grow too quickly for the moment problem
to be well-posed and so this approach does not establish uniqueness in law
of solutions to (LS). [The same situation holds for solutions of (SPDE).] We
will use these moments for N ≤ 2 (they are derived in Theorem 2) but the
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expressions for moments with N ≥ 4 are rather complex and so the above
dual process will not be described here.

Assume first that �u0�1�+�v0�1� < ∞. Then it is not hard to see that �ut�1�
and �vt�1� are nonnegative martingales under Pu0� v0

[Theorem 2.2(d)] and
hence converge Pu0� v0

-a.s. as t → ∞ by the martingale convergence theorem.
Let �u∞�1� and �v∞�1� denote their a.s. limits. We say coexistence of types
is possible if Pu0� v0

��u∞�1��v∞�1� > 0� > 0 whenever 0 < �u0�1� < ∞ and
0 < �v0�1� < ∞. Coexistence of types is impossible if

Pu0� v0
��u∞�1��v∞�1� > 0� = 0 whenever �v0�1� + �v0�1� < ∞


Notation. gt�j� k� = ∫ t
0 ps�j� k�ds, t ∈ �0�∞�, j� k ∈ Zd.

The following result states that under appropriate “homogeneity” condi-
tions, coexistence of types is possible if and only if ξt is transient.

Theorem 1.2. Assume �u0�1� + �v0�1� < ∞.

(a) If supk g∞�k� k� < ∞, then coexistence of types is possible.
(b) Assume ∃ c1
2 > 0 such that ∀j ∈ Zd ∃T1
2�j� such that

�1
1� gT�j� j� ≥ c1
2 sup
k

gT�k� k� ∀T > T1
2�j�


If Pj�ξt = k for some t > 0� = 1 ∀j, k ∈ Zd, then coexistence of types is
impossible.

The result is proved in Section 3. Under our hypothesis (H0), the as-
sumption in (a) is equivalent to uniform transience of the chain. That is,
supk Pk�ξt = k for arbitrarily large t� < 1. The hypotheses of (b) simply
state that all states communicate, are recurrent and are comparable in the
sense of (1.1). We suspect these conditions are not optimal. Now (a) is easy
to prove through a first moment argument; (b) is more involved and relies
on an integral equation for ut�k� and vt�k� [the mild form of (LS)] involving
Green’s functions. The proof does not use the uniqueness of solutions to (LS)
or duality.

Corollary 1.3. Let �ξt� be simple symmetric random walk on Zd. Coexis-
tence of types is possible if d ≥ 3 and impossible if d ≤ 2.

Proof. Let �Sn� n ∈ Z+� be the discrete time simple symmetric random
walk on Zd. The holding times of �ξt� are mean one exponential variables
and so

g∞�k� k� = g∞�0�0� =
∞∑
n=0

P0�Sn = 0��

which is finite for d > 2. Theorem 1.2(a) gives the first assertion. Equation
(1.1) is trivially satisfied by translation invariance and so Theorem 1.2(b) and
the point recurrence of random walk for d ≤ 2 gives the second assertion. ✷
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Even when coexistence of types is impossible, it is not clear from the above
if extinction of one type can occur in finite time. A related question is whether
or not we may take the probability of coexistence to be one when coexistence is
possible. In a companion article [Mueller and Perkins (1997)] it will be shown
that regardless of the recurrence or transience properties of �ξt�, one may
select initial conditions so that finite-time extinction of one type occurs with
probability zero and other (nonzero) initial conditions for which this probabil-
ity is arbitrarily close to one. In particular, this shows that in the transient
case, Pu0� v0

��u∞�1��v∞�1� > 0� may be arbitrarily close to zero for certain
nonzero u0 and v0.

Finally, in any case one has �u∞�1� > 0 or �v∞�1� > 0 Pu0� v0
-a.s. for

u0 + v0 
= 0 because Theorem 2.2(d) allows one to see that ��ut�1�� �vt�1��
is the time change of a planar Brownian motion stopped when it exits the
first quadrant and hence is bounded away from �0�0� a.s.

Next we turn to the setting when u0�k� = u and v0�k� = v for all k ∈ Zd for
some u� v ≥ 0. Write Pu� v for the law of �u� v� with these initial conditions.

Theorem 1.4. For each u� v ≥ 0, Pu� v��ut� vt� ∈ ·� converges weakly on

�Mtem�2 as t → ∞ to a stationary initial distribution Pu� v��u∞� v∞� ∈ ·� for

solutions of �LS�. Moreover for each k ∈ Zd Pu� v�u∞�k�� = u and Pu� v�v∞�k�� =
v. If qj�k = q̃�j − k� for all j� k ∈ Zd, then for each k ∈ Zd, Pu� v��u∞�k + ·��
v∞�k + ·�� ∈ ·� = Pu� v��u∞� v∞� ∈ ·� [i.e., Pu� v��u∞� v∞� ∈ ·� is a stationary

random field on Zd].

The existence of an equilibrium distribution will be an easy consequence of
Mytnik’s duality relation and so the above result is proved in Section 2. This
duality relation relies on the fact that �u+ v�u− v� is self dual with respect
an appropriate class of functionals. It would appear that this self-referential
technique would not shed much light on the nature of the equilibrium found
in Theorem 1.4 but the duality describes the above equilibrium in terms of
��u∞�1�� �v∞�1�� for initial conditions with finite total mass. Therefore we
may use Theorem 1.2 to derive the following results in Section 4. Together
they state that under appropriate regularity conditions, coexistence of types
in equilibrium is possible if ξt is transient and impossible if ξt is recurrent.

Notation. If x ∈ R+, x̄� Zd → R+ is the map which is constant and equal
to x.

Theorem 1.5. Assume ξt satisfies the (recurrence) hypotheses of Theorem
1.2(b) [including (1.1)]. Let u, v ≥ 0 and assume Bt = �B1

t �B
2
t � is a planar

Brownian motion starting at �u� v� under P0
u� v. If T = inf�t� B1

tB
2
t = 0�, then

Pu� v
(�u∞� v∞� ∈ ·) = P0

u� v

(�B1
T�B

2
T� ∈ ·)


In particular, u∞ = 0 or v∞ = 0 Pu� v-a.s.
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Remark. One readily calculates that

P0
u� v�B1

T ∈ dx�B2
T = 0� = P0

v�u�B2
T ∈ dx�B1

T = 0�

= 4uvπ−1x
(
4u2v2 + �x2 + v2 −u2�2)−1

dx� x > 0


For example, apply the conformal mapping z → √
z to the Cauchy distribution

obtained as the exit distribution of Brownian motion from the upper half-
plane.

Theorem 1.6. Assume all states are transient for ξ, that is, g∞�k� k� < ∞
for all k ∈ Zd. Let u, v > 0.

(a) u∞�k� > 0 and v∞�k� > 0 ∀k ∈ Zd, Pu� v-a.s.;
(b) Cov�u∞�j�, u∞�k�� = Cov�v∞�j�, v∞�k�� = �γuv/2�g∞�j� k� and

Cov�u∞�j�, v∞�k�� = 0 ∀j� k ∈ Zd.

In Section 5 an elementary ergodic theorem is proved under the transience
hypotheses of Theorem 1.6. The pathwise behavior of �ut� vt� for large t is not
well understood in the recurrent case. Some partial results and open questions
are discussed in Section 5 when ξt is a simple symmetric random walk on Z

or Z2.
We return now to �SPDE�u0� v0

and introduce the analagous state space for
solutions. At times we adopt the notation used in the lattice case but there
should be no confusion as the context is quite different.

Notation. We write C�R� for the space of continuous real-valued functions
on the real line with the compact-open topology; Cc�R� is the subspace of func-
tions with compact support. If λ ∈ R and g ∈ C�R�, let �g�λ = supx∈R

eλ�x��g�x��.
Then Ctem = Ctem�R� = �f ∈ C�R�� �f�λ < ∞ ∀λ < 0� and we topologize
Ctem by the metric dtem�f�g� = ∑∞

n=1 2−n��f− g�−λn ∧ 1� where λn ↓ 0. Let
C2

tem = �f ∈ Ctem� f′ ∈ C and f′′ ∈ Ctem� and C+
tem = �f ∈ Ctem� f ≥ 0�. We

use these superscripts with other classes of functions [e.g., C2
c , C

+�R�] without

further explanation. Finally �tem is the space of �C+
tem�2

-valued paths on R+
with the compact-open topology. There should be no confusion with our earlier
(discrete space) definition of �tem.

If f, g ∈ C�R�, let �f�g� = ∫
R
f�x�g�x�dx whenever the integrand is inte-

grable or nonnegative.

Definition. We say that �u� v�W1�W2� is a solution of �SPDE�u0� v0
on

���� ��t�P� iff the following hold:

(i) W1, W2 are independent ��t�-adapted white noises on R+×R [see Chap-
ter 3 of Walsh (1986)];
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(ii) ��u�t� ·�� v�t� ·��� t ≥ 0� is a continuous C+
tem�R�2-valued, ��t�-adapted

process such that u�0� ·� = u0�·�, v�0� ·� = v0�·� a.s. and ∀φ ∈ C2
c :

�SMR�

�u�t�� φ� = �u0� φ� +
∫ t

0

〈
u�s�� φ

′′

2

〉
ds

+
∫ t

0

∫ (
γu�s� x�v�s� x�)1/2

φ�x�dW1�s� x��

�v�t�� φ� = �v0� φ� +
∫ t

0

〈
v�s�� φ

′′

2

〉
ds

+
∫ t

0

∫ (
γu�s� x�v�s� x�)1/2

φ�x�dW2�s� x�

∀ t ≥ 0� P-a.s.

Theorem 1.7. Let u0� v0 ∈ C+
tem.

(a) There is a solution �u� v�W1�W2� of �SPDE�u0� v0
.

(b) Any two solutions of �SPDE�u0� v0
have the same law on �tem which we

denote by Pu0� v0
.

Existence follows easily from standard arguments [e.g. Shiga (1994)] and
is outlined in the Appendix (see Theorem 6.1). Uniqueness (see Theorem 6.3)
was proved by Mytnik (1997).

Coexistence of types is shown to be impossible when u0, v0 are rapidly
decreasing at infinity [i.e., lim�x�→∞φλ�x��u0�x�+v0�x�� = 0 ∀λ > 0] (see The-
orem 6.6). The proof is similar to that of Theorem 1.2(b). As in the recurrent
lattice case, this then leads to the asymptotic behavior of the law of �ut� vt� as
t → ∞ with uniform initial conditions.

Notation. Here m denotes Lebesgue measure on R:

Mtem =
{
µ� µ a measure on

(
R���R�)� �µ�φλ� ≡

∫
φλ dµ < ∞ ∀λ < 0

}



Let d0 be a complete metric on the space of Radon measures on R inducing
the vague topology, let λn ↓ 0 and define a metric d on Mtem by

d�µ� ν� = d0�µ� ν� +
∞∑
n=1

(��µ�φ−λn� − �ν�φ−λn� � ∧1
)
2−n


Then it is easy to see that �Mtem� d� is a Polish space and µn → µ in Mtem iff
limn→∞�µn�φ� = �µ�φ� ∀φ ∈ Cexp = �φ ∈ C�R�� �φ�λ < ∞ for some λ > 0�.
Here C+

tem may be viewed as a subset of Mtem by identifying u�x� with the
measure A → ∫

A udm. Of course the induced topology is weaker than that
on C+

tem. If u� v ≥ 0 we let Pu� v denote the law of the solution to (SPDE) with
u0�x� ≡ u and v0�x� ≡ v.
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Theorem 1.8. If B, T and P0
u� v are as in Theorem 1.5, then as t → ∞�

Pu� v
(�ut� vt� ∈ ·) w→P0

u� v

(�B1
Tm�B

2
Tm� ∈ ·)

in the sense of weak convergence of probabilities on �Mtem�2.

This is proved in Section 6 along with the other results on (SPDE). In
many instances arguments here are only outlined, as they are similar to the
corresponding proofs in the lattice case. See the remark following Theorem 1.5
for an explicit description of the above law.

2. Existence, uniqueness and basic properties for the discrete
model.

Lemma 2.1. Assume ξt is a continuous time random walk on Zd with sym-
metric step distribution F�x� satisfying

∫
Z
d φλ dF < ∞ ∀λ > 0. More precisely

qjk = F�k− j� for j 
= k in Zd. Then �H0�, �H1� and �H2� hold with λ′�λ� = λ.

Proof. Let -�λ� = ∫
φλ dF. Then∑

k

(�qjk� + pt�j� k�) exp�λ�k��

≤ exp�λ�j��
(∑

k

(
F�k− j� + pt�0� k− j�) exp�λ�k− j��

)
+ exp�λ�j��

= exp�λ�j��(1 +-�λ� +P0�exp�λ�ξt���
)



Now for t ≤ T we have

P0
(
exp�λ�ξt��

) ≤
∞∑
n=0

exp�−t�tn-�λ�n/n! ≤ exp
(
T�-�λ� − 1�)


This proves (H2) with c1
1�T�λ� = 1 +-�λ� + exp�T�-�λ� − 1��. (H0) and (H1)
are obvious. ✷

Notation.

MF = MF�Zd� =
{
u� Zd → R+� ∑

k

u�k� < ∞
}
�

Mrap = Mrap�Zd� = {
u� Zd → R+� �u�φλ� < ∞ ∀λ ∈ R

}
�

Mb = Mb�Zd� =
{
u� Zd → R+� supk u�k� < ∞

}



We use Ms
tem to denote those functions u� Zd → R such that �u� ∈ Mtem and

similarly define Ms
F, Ms

rap, Ms
b. Topologize Mrap by choosing µn ↑ ∞ and using

the metric drap�u� v� = ∑∞
n=1 2−n��u− v�µn ∧ 1�. Then MF is topologized by the

l1-norm, �u − v�1 = ∑
k �u�k� − v�k�� and Mb is topologized by the l∞-norm.
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These same metrics are extended to Ms
b, M

s
F, Ms

rap� and Ms
tem. (Recall that

dtem was defined on Mtem in the previous section.)
Now �rap is the space of Mrap ×Mrap-valued paths on R+ with the compact-

open topology and �F is the same space with MF in place of Mrap.
Let Sn = Zd∩�−n�n�d for n ∈ N, Ptf�j� = ∑

k pt�j� k�f�k� is the semigroup
associated with ξt and Qf�k� = ∑

j qkjf�j� is its generator.

Theorem 2.2. (a) If u0� v0 ∈ Mtem, there is a solution �u� v�B�W� to
�LS�u0� v0

on some ���� ��t�P� such that �u� v� has sample paths in �tem a.s.
(b) Let �u� v�B�W� be any solution to �LS�u0� v0

on some ���� ��t�P�, where
u0� v0 ∈ Mtem.

(i) Then �u. � v.� ∈ �tem a.s. and ∀λ, T > 0, P�supt≤T�ut+vt�φ−λ�� < ∞.
(ii) If φ, ψ ∈ Ms

rap, then

�ut�φ� = �u0�Ptφ� +Nu
t �t�φ�� �vt�ψ� = �v0�Ptψ� +Nv

t �t�ψ��
where

Nu
s �t�φ� = ∑

k

∫ s

0
Pt−rφ�k�(γur�k�vr�k�)1/2

dBk
r� s ≤ t

and

Nv
s�t�ψ� = ∑

k

∫ s

0
Pt−rψ�k�(γur�k�vr�k�)1/2

dWk
r� s ≤ t

are orthogonal continuous square-integrable �t-martingales (the series con-
verge in L2 uniformly in s ≤ t) with square functions

�Nu�t�φ��s = γ
∫ s

0

∑
k

Pt−rφ�k�2ur�k�vk�k�dr

and

�Nv�t�ψ��s = γ
∫ s

0

∑
k

Pt−rψ�k�2ur�k�vr�k�dr


(iii) If φ�ψ� Zd → R+, then

P
(�ut�φ�) = �u0�Ptφ�� P��vt�ψ�� = �v0�Ptψ� and

P��ut�φ��vt�ψ�� = �u0�Ptφ��v0�Ptψ�

(iv) Assume φ, ψ� Zd → R satisfy �φ�j�� + �ψ�j�� ≤ ce−λ�j� ∀j ∈ Zd and

some c, λ > 0. Then

�ut�φ� = �u0� φ� +
∫ t

0
�us�Qφ�ds+Mu

t �φ��

�vt�ψ� = �v0� ψ� +
∫ t

0
�vs�Qψ�ds+Mv

t �ψ��
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where P�∫ t0�us� �Qφ�� + �vs� �Qψ��ds� < ∞, Mu
t �φ� and Mv

t �ψ� are orthogonal

square integrable ��t�-martingales such that �Mu�φ��t = ∫ t
0 γ�usvs�φ2�ds and

�Mv�ψ��t = ∫ t
0 γ�usvs�ψ2�ds.

(c) Let �u� v�B�W� be as in (b) but with u0� v0 ∈ Mrap. Then �u� v� ∈ �rap a.s.
and ∀λ, T > 0� P�supt≤T�ut + vt�φλ�� < ∞. Then (b)(ii) holds for φ, ψ ∈ Ms

tem

and (b)(iv) holds if φ, ψ� Zd → R satisfy �φ�j�� + �ψ�j�� ≤ ceλ�j� ∀j ∈ Zd and
some c, λ > 0.

(d) Let �u� v�B�W� be as in (b) but with u0� v0 ∈ MF. Then �u. � v.� ∈ �F

a.s. and (b)(ii), (iv) hold for φ, ψ ∈ Ms
b. In particular �ut�1� and �vt�1�

are orthogonal square integrable continuous martingales with square function
γ
∫ t

0�us� vs�ds.

We give the proof in the Appendix. Although similar in spirit to arguments
in Shiga and Shimizu (1980), the proof is necessarily different in some re-
spects because of the different state spaces and several additional specialized
properties.

Let �ut� vt� denote the coordinate mappings on �tem and for clarity we use
�ũt� ṽt� to denote the coordinate maps on �rap. Following Mytnik (1997) we
define

�Xt�Yt� = �ut + vt� ut − vt�� �X̃t� Ỹt� = �ũt + ṽt� ũt − ṽt�

State spaces for these processes are given by

E = {�x�y�� x ∈ Mtem� y ∈ Ms
tem� �y�k�� ≤ x�k� ∀k ∈ Zd

}
and

Ẽ = {�x�y� ∈ E� x ∈ Mrap
} ⊃ Ef = {�x�y� ∈ E� x has finite support

}



Define a metric dE on E by dE��x�y�� �x′� y′�� = dtem�x� x′� + dtem�y�y′� and
similarly define dẼ on Ẽ, using drap. It is easy to check that �E�dE� and
�Ẽ� dẼ� are Polish spaces.

If �φ�ψ� ∈ Ẽ, define a continuous function Fφ�ψ� E → C by

Fφ�ψ�x�y� = exp
{−�x�φ� + i�y�ψ�}


Lemma 2.3. (a) If λn ↓ 0 and Mn > 0, then K = ��x�y� ∈ E� �x�φ−λn� ≤
Mn ∀n ∈ N� is compact in E.

(b) If P and Q are laws on E such that P�Fφ�ψ� = Q�Fφ�ψ� ∀�φ�ψ� ∈ Ef,
then P = Q.

(c) Let �Pn� be probabilities on E such that ∀λ > 0 supn
∫ �x�φ−λ�dPn�x� =

Kλ < ∞ andPn�Fφ�ψ� converges as n → ∞ ∀�φ�ψ� ∈ Ef. Then �Pn� converges
weakly to a probability P∞ on E and limPn�Fφ�ψ� = P∞�Fφ�ψ� ∀ �φ�ψ� ∈ Ef.

Proof. (a) Let ��xn� yn�� be in K. We will construct a subsequence
converging to a point in K. We may assume limn→∞ xn�k� = x�k� and
limn→∞ yn�k� = y�k� exist ∀k ∈ Zd by a Cantor diagonalization argument. By
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Fatou’s lemma �x�φ−λn� ≤ Mn and so �x�y� ∈ K. If N ∈ N and 0 < λn0
< λ/2,

then

��xn − x�� φ−λ� ≤ ��xn − x��1SNφ−λ� + exp�−λN/2���xn − x��1ScNφ−λ/2�
≤ ��xn − x��1SNφ−λ� + exp�−λN/2� sup

n
�xn + x�φ−λn0

�

≤ ��xn − x��1SNφ−λ� + exp�−λN/2�2Mn0



This shows the left side approaches zero as n → ∞ and the same is true of
��yn − y�� φ−λ�. It follows that �xn� yn� → �x�y� in E.

(b) Fix N ∈ N and let

E�N� = {�x�y� ∈ R
SN
+ × RSN � �y�k�� ≤ x�k� ∀k ∈ SN

}



For �a� b� ∈ E�N�, define Fa�b�E�N� → C by Fa�b�x�y� = exp�−�a� x�+i�b� y��.
If � = �Fa�b� �a� b� ∈ E�N��, then the Stone–Weierstrass theorem shows that
the complex linear span of � is dense in the space of continuous complex-
valued functions on E�N� with limits at infinity. If P and Q are as in the state-
ment of (b), it now follows easily that they have the same finite-dimensional
distributions and therefore coincide.

(c) We first show that �Pn� is tight and hence relatively compact by Pro-
horov’s theorem. Let ε > 0, λj ↓ 0 and choose Mj ≥ ε−12jKλj

. Then Cε =
��x�y� ∈ E� �x�φ−λj� ≤ Mj ∀j ∈ N� is compact in E by (a), and

Pn�Cc
ε� ≤

∞∑
j=1

∫ �x�φ−λj�dPn�x�
Mj

≤
∞∑
j=1

Kλj
/Mj ≤ ε ∀n ∈ N�

thus proving tightness. The convergence of Pn�Fφ�ψ� for �φ�ψ� ∈ Ef and (b)
show that all limit points of �Pn� coincide and hence Pn →w P∞ for some P∞.
The last assertion is then immediate by the continuity of Fφ�ψ on E. ✷

If �ũ0� ṽ0� ∈ Mrap × Mrap, then by Theorem 2.2 the law of a solution to
(LS)ũ0� ṽ0

may be viewed as a probability on �tem or �rap. This convention is
used in the following uniqueness theorem of Mytnik (1997).

Theorem 2.4. (a) If �u0� v0� ∈ �Mtem�2, there is a unique probability Pu0� v0

on �tem so that �u� v� has law Pu0� v0
whenever �u� v�B�W� is a solution of

(LS)u0� v0
on some probability space.

(b) If �u0� v0� ∈ �Mtem�2, �ũ0� ṽ0� ∈ �Mrap�2, then [recall the definitions of

�Xt�Yt�, �X̃t� Ỹt� prior to Lemma 2.3]

Pu0� v0

(
exp�−�Xt� X̃0� + i�Yt� Ỹ0��

) = Pũ0� ṽ0

(
exp�−�X0� X̃t� + i�Y0� Ỹt��

)



Proof. (b) Let �φ̃� ψ̃� ∈ Ẽ and write F��φ̃� ψ̃�� �x�y�� for Fφ̃� ψ̃�x�y�.
Define

�2
1�
AF�φ̃� ψ̃� x� y� = F�φ̃� ψ̃� x� y�[−�x�Qφ̃� + i�y�Qψ̃�

+�γ2/4��x2 − y2� φ̃2 − ψ̃2�]
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Let Pu0� v0
(respectively, Pũ0� ṽ0

) be the law of �u� v� where �u� v�B�W� is a so-
lution of �LS�u0� v0

[respectively, �LS�ũ0� ṽ0
]. Theorem 2.2(b)(iv) and Itô’s lemma

show that [�t is the canonical right-continuous filtration on �tem]

�2
2� F
(
φ̃� ψ̃�Xt�Yt

)−F(
φ̃� ψ̃�X0�Y0

)−∫ t

0
AF�φ̃� ψ̃�Xs�Ys�ds ≡ Mt�φ̃� ψ̃�

is a continuous ��t�-martingale under Pu0� v0
. If �φ�ψ� ∈ E, Theorem 2.2(c),

Itô’s lemma and the symmetry of Q show that

�2
3� F
(
X̃t� Ỹt� φ�ψ

)−F(
X̃0� Ỹ0� φ�ψ

)−∫ t

0
AF

(
X̃s� Ỹs�φ�ψ

)
ds ≡ Nt�φ�ψ�

is a continuous ��t�-martingale under Pũ0� ṽ0
. Let

f�s� t� = Pũ0� ṽ0
× Pu0� v0

(
F�X̃s� Ỹs�Xt�Yt�

)



Then (2.2) shows that

�2
4�

f�s� t� = Pũ0� ṽ0

(
F�X̃s� Ỹs�X0�Y0�

+ Pu0� v0

(∫ t

0
AF�X̃s� Ỹs�Xr�Yr�dr

))

= Pũ0� ṽ0

(
F�X̃s� Ỹs�X0�Y0�

)

+
∫ t

0
Pũ0� ṽ0

× Pu0� v0

(
AF�X̃s� Ỹs�Xr�Yr�

)
dr


The application of Fubini’s theorem is justified because∣∣AF(
φ̃� ψ̃� x� y

)∣∣ ≤ exp
{−�x� φ̃�}[�x� �Qφ̃�� + �y� �Qψ̃�� + �γ2/4��x� φ̃�2]

≤ �x� �Qφ̃�� + �y� �Qψ̃�� + c�

and so

sup
s≤t� r≤t

Pũ0� ṽ0
× Pu0� v0

(�AF�X̃s� Ỹs�Xr�Yr��
)

≤ sup
s≤t� r≤t

2
∑
j

∑
k

Pu0� v0

(
Xr�j�)�qjk�Pũ0� ṽ0

(
X̃s�k�) + c

≤ sup
s≤t� r≤t

2
∑
j

∑
k

(
Pru0�j� +Prv0�j�)�qjk�(Psũ0�k� +Psṽ0�k�) + c

< ∞
by Theorem 2.2(b)(iii) and a repeated application of (H2), respectively. Simi-
larly, we have from (2.3),

�2
5�
f�s� t� = Pũ0� ṽ0

(
F�X̃0� Ỹ0�Xt�Yt�

)

+
∫ s

0
Pũ0� ṽ0

× Pu0� v0

(
AF�X̃r� Ỹr�Xt�Yt�

)
dr
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A standard lemma [Lemma 4.4.10 of Ethier and Kurtz (1986)] now gives

f�t�0� − f�0� t� =
∫ t

0
f1�s� t− s� − f2�s� t− s�ds = 0 by (2.4) and (2.5)�

where f1 and f2 are the derivatives of the absolutely continuous functions
f�·� t� and f�s� ·�, respectively. This proves (b) for the laws of any solutions of
(LS)u0� v0

and (LS)ũ0� ṽ0
.

(a) The above result and the existence of a solution to (LS)ũ0� ṽ0
for any

ũ0� ṽ0 ∈ Mrap (Theorem 2.2) show that the left side of (2.1) is unique for any
solution of (LS)u0� v0

(which exists by Theorem 2.2) and any �X̃0� Ỹ0� ∈ Ẽ.
Lemma 2.3(b) and the fact that �Xt�Yt� ∈ E a.s. (Theorem 2.2) show that the
law of �Xt�Yt� is unique for any t > 0 and for any solution of (LS)u0� v0

. In
fact we only need the fact that �X�Y� satisfies the martingale problem for A
defined above on D�A� = �Fφ̃� ψ̃� �φ̃� ψ̃� ∈ Ẽ�. A standard result on martingale
problems [e.g., Theorem 4.4.2 of Ethier and Kurtz (1986) and Theorem 6.2.3
of Stroock and Varadhan (1979)] shows the law of �X. �Y.� and hence �u. � v.�
is unique. Again we use Theorem 2.2 to see that this law is on �tem. ✷

Remark 2.5. (a) The above argument shows that Pu0� v0
is the unique law

on �tem which solves the martingale problem for A given by (2.1) on D�A� =
�Fφ̃� ψ̃� �φ̃� ψ̃� ∈ Ef� and initial conditions �u0� v0� ∈ �Mtem�2. We will refer to
this martingale problem as (MP)u0� v0

.
(b) Theorem 1.1 is contained in Theorems 2.2 and 2.4.

Corollary 2.6. If u0� v0 ∈ Mtem and θ > 0, then

Pθu0� θv0
�·� = Pu0� v0

�θ�u� v� ∈ ·�


Proof. Pu0� v0
�θ�u� v� ∈ ·� solves (MP)θu0� θv0

(alternatively consider
(LS)θu0� θv0

) and so this follows by the uniqueness in Remark 2.5. ✷

Notation. If f� �Mtem�2 → R is bounded and measurable, let P̄tf�u� v� =
Pu� v�f�Ut�Vt�� for �u� v� ∈ �Mtem�2 and let Cb�S� denote the space of bounded
continuous functions on a metric space S.

The Feller and strong Markov properties of solutions to �LS� are now easy
consequences of the duality result in Theorem 2.4.

Corollary 2.7. (a) P̄t� Cb��Mtem�2� → Cb��Mtem�2� ∀ t ≥ 0.
(b) Let �u� v�B�W� solve �LS�u0� v0

on some ���� ��t�P�. IfT is an a.s. finite

��t�-stopping time, then for any bounded measurable f on �Mtem�2 and any
t ≥ 0

P
(
f�uT+t� vT+t� � �T

) = P̄tf�uT� vT�� P-a.s.

Proof. (a) Let �un0 � vn0� → �u0� v0� in �Mtem�2 and let Pn (respectively,
P∞) be the distribution of �Xt�Yt� = �ut + vt� ut − vt� on E under Pun0 � v

n
0
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(respectively, Pu0� v0
�. We check the hypotheses of Lemma 2.3(c). Let λ > 0 and

choose λ̃ > 0 so that λ′�λ̃� < λ [recall (H2)]. Then

Pun0 � v
n
0

(�Xt�φ−λ�
)

= ∑
j

∑
k

(
un0�j� + vn0�j�)pt�j� k�φ−λ�k� by Theorem 2.2(b)(iii)

≤ ∑
j

∑
k

(
un0�j� + vn0�j�)c1
1�t� λ̃�φ−λ̃�j�φλ′�λ̃�−λ�k�

by (H2) and symmetry of pt

≤ c�t� λ̃� λ��un0 + vn0 � φ−λ̃�

and the latter is bounded uniformly in n because un0 + vn0 → u0 + v0 in Mtem.
It is immediate from Theorem 2.4(b) that for �φ�ψ� ∈ Ef�

lim
n→∞Pn�Fφ�ψ� = lim

n→∞ P�φ+ψ�/2� �φ−ψ�/2
(
exp

{−�un0 + vn0 � X̃t� + i�un0 − vn0 � Ỹt�
})

= P�φ+ψ�/2� �φ−ψ�/2
(
exp

{−�u0 + v0� X̃t� + i�u0 − v0� Ỹt�
})

since �X̃t� Ỹt� ∈ Ẽ a.s. by Theorem 2.2(c)

= P∞�Fφ�ψ�


Lemma 2.3(c) now shows that Pn →w P∞ on E and so P̄tf�un0 � vn0� →
P̄tf�u0� v0� for f ∈ Ct��Mtem�2�.

(b) This is a standard consequence of the uniqueness in Theorem 2.4 and
Remark 2.5. For example, see Theorem 4.4.2(c) of Ethier and Kurtz (1986).
The required measurability is clear from (a) or Theorem 4.4.6 of the same
reference. ✷

Remark 2.8. It is easy to use the previous result and standard tightness
arguments, to see that �u0� v0� → Pu0� v0

is a continuous map into the space of
probabilities on �tem with the topology of weak convergence.

Proof of Theorem 1.4. Let �φ�ψ� ∈ Ẽ. Theorem 2.2(d) implies that
�ũt�1� and �ṽt�1� are non-negative continuous martingales under
P�φ+ψ�/2� �φ−ψ�/2� ≡ P′ and hence converge P′-a.s. as t → ∞ to �ũ∞�1� and
�ṽ∞�1�, respectively, (say) by the martingale convergence theorem. Theo-
rem 2.4(b) therefore shows us that

�2
6�

lim
t→∞

Pu� v
(
Fφ�ψ�Xt�Yt�

)
= lim

t→∞
P′(exp

{−�u+ v��ũt + ṽt�1� + i�u− v��ũt − ṽt�1�})
= P′(exp

{−�u+ v���ũ∞�1� + �ṽ∞�1��
+ i�u− v���ũ∞�1� − �ṽ∞�1��})
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Theorem 2.2b(iii) implies that for λ > 0�

Pu� v
(�Xt�φ−λ�

) = �u+ v��φ−λ�1� < ∞


Lemma 2.3(c) shows that Pu� v��Xt�Yt� ∈ ·� converges weakly on E as t → ∞
and since �ut� vt� is a linear function of �Xt�Yt�, therefore Pu� v��ut� vt� ∈ ·�
also converges weakly on �Mtem�2 as t → ∞ to a limit which we denote by
Pu� v��u∞� v∞� ∈ ·�. Lemma 2.3(c) and (2.6) also imply

�2
7�
Pu� v

(
Fφ�ψ�u∞ +v∞� u∞ −v∞�) = P′(exp

{−�u+ v���ũ∞�1� + �ṽ∞�1��
+ i�u−v���ũ∞�1� − �ṽ∞�1��})


Turning next to the mean measures of u∞ and v∞, let φ ∈ Mrap and note
that

Pu� v
(�u∞ + v∞� φ�)

= − d

dλ

∣∣∣∣
λ=0

Pu� v
(
exp�−λ�u∞ + v∞� φ��)

= − d

dλ

∣∣∣∣
λ=0

Pλφ/2� λφ/2
(
exp

{−�u+ v���ũ∞�1� + �ṽ∞�1��

+ i�u− v���ũ∞�1� − �ṽ∞�1��}) by (2.7)

= − d

dλ

∣∣∣∣
λ=0

Pφ/2� φ/2
(
exp

{−�u+ v�λ��ũ∞�1� + �ṽ∞�1��

+ i�u− v�λ��ũ∞�1� − �ṽ∞�1��})
by Corollary 2.6

= Pφ/2� φ/2
(�u+ v�(�ũ∞�1� + �ṽ∞�1�))

+ i�u− v�Pφ/2� φ/2
(�ũ∞�1� − �ṽ∞�1�)

= �u+ v�Pφ/2� φ/2��ũ∞�1� + �ṽ∞�1���

(2.8)

as the imaginary part must vanish since the left side is real-valued. By
the Dubins–Schwarz theorem and Theorem 2.2(d) under Pφ/2� φ/2, ��ũt�1��
�ṽt�1�� is equal in law to B�At� where B is a planar Brownian motion starting
at 1

2��φ�1�� �φ�1�� and

At = γ
∫ t

0
�ũs� ṽs�ds ≤ T = inf�s� B1

sB
2
s = 0�


Standard estimates show that P�T > t� ≤ c�t + 1�−1 and so Tp is integrable
for 0 < p < 1. Burkholder’s inequality therefore shows that supt�ũt + ṽt�1�2p

is integrable for 0 < p < 1 and therefore ��ũt + ṽt�1�� t ≥ 0� is a uniformly
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integrable martingale. Equation (2.8) therefore allows us to conclude that

Pu� v
(�u∞ + v∞� φ�) = �u+ v� lim

t→∞
Pφ/2�φ/2

(�ũt�1� + �ṽt�1�)
= �u+ v��φ�1� by Theorem 2.2(b)(iii)

= lim
t→∞

Pu� v
(�ut + vt�φ�) by Theorem 2.2(b)(iii) again.

This and the weak convergence of �ut + vt�φ� to �u∞ + v∞� φ� imply that
��un+vn�φ�� n ∈ N� is uniformly integrable and so the same is true of �un�φ��
and �vn�φ��. This proves that

Pu� v��u∞� φ�� = lim
n→∞ Pu� v��un�φ�� = u�φ�1�


Set φ = 1�k� to conclude Pu� v�u∞�k�� = u and the same argument gives
Pu� v�v∞�k�� = v.

The fact that ν�·� = Pu� v��u∞� v∞� ∈ ·� is a stationary initial distribution
for the Markov process �ut� vt� is an easy and well-known consequence of the
above weak convergence and the Feller property [Corollary 2.7(a)]. Finally
if �qjk� is spatially homogeneous, then uniqueness to the martingale problem
(MP) (recall Remark 2.5) shows that �ut� vt� is a stationary random field under
Pu� v and so the same is true of �u∞� v∞�. ✷

As it will be useful later we record (2.7) as the following corollary.

Corollary 2.9. The equilibrium distribution for �ut� vt� constructed in
Theorem 1.4 satisfies

Pu� v
(
Fφ�ψ�u∞ + v∞� u∞ − v∞�)
= P�φ+ψ�/2� �φ−ψ�/2

(
exp

{−�u+ v���ũ∞�1� + �ṽ∞�1��
+ i�u− v���ũ∞�1� − �ṽ∞�1��})

∀�φ�ψ� ∈ Ẽ


(2.9)

Remark. Of course (2.9) in fact characterizes Pu� v��u∞� v∞� ∈ ·� [by
Lemma 2.3(b)]. Hence it codes up properties of this equilibrium distribution
in terms of the laws of ��ũ∞�1�� �ṽ∞�1�� for rapidly decreasing initial condi-
tions. In the next section we will study properties of these laws which will
allow us to decide when coexistence of types is possible for these equilibrium
laws (in Section 4). The fact that the self-dual relation (2.9) is nonetheless
very useful through its linking of finite and infinite initial conditions is
reminiscent of the situation for infinite linear systems in Chapter IX of
Liggett (1985).

3. Coexistence for integrable initial conditions. In this section we
prove Theorem 1.2. Recall from Theorem 2.2(d) that for u0� v0 ∈ MF, under
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Pu0� v0
�ut�1� and �vt�1� are orthogonal continuous L2-martingales with com-

mon square function

γAt ≡ γ
∫ t

0
�us� vs�ds


Recall also that �u∞�1� and �v∞�1� denote their respective a.s. limits as t →
∞.

Proof of Theorem 1.2(a). The mean value results from Theorem 2.2(b)(iii)
show that

Pu0� v0
�A∞� =

∫ ∞

0

∑
i

(∑
j

u0�j�ps�j� i�
)(∑

k

v0�k�ps�k� i�
)
ds

= ∑
j

∑
k

u0�j�v0�k�
∫ ∞

0
p2s�j� k�ds

≤ �u0�1��v0�1� supj� k
1
2g∞�j� k�


The strong Markov property of ξ therefore shows that

Pu0� v0
�A∞� ≤ �u0�1��v0�1� sup

k

1
2g∞�k� k� < ∞ by hypothesis.

Doob’s strong L2 inequality for martingales implies

Pu0� v0

(
sup
t

�ut�1��vt�1�
)

≤ Pu0� v0

(
sup
t

�ut�1�2 + �vt�1�2
)

≤ c
(�u0�1�2 + �v0�1�2 + Pu0� v0

�A∞�)
< ∞


Therefore �ut�1��vt�1� is an H1-martingale and in particular

�3
1� Pu0� v0

(�u∞�1��v∞�1�) = �u0�1��v0�1�

This shows that coexistence of types is possible. ✷

In the proof of Theorem 1.2(b) we work directly with a solution �u� v�B�W�
of (LS)u0� v0

defined on some ���� ��t�P�, with �u0�1��v0�1� > 0.

Proof of Theorem 1.2(b). To simplify the notation, set γ = 1. Define
pr�k� j� = 0 for r < 0,

Mu
t �j� =

∫ t

0

(
ur�j�vr�j�)1/2

dBj
r� Nu

s �t� j� = ∑
k

∫ s

0
pt−r�k� j�dMu

r �k��

and similarly define Mv
t �j� and Nv

s�t� j�. Theorem 2.2(b) shows the above
series in k converges uniformly in s ≤ t in L2 and that

�3
2� ut�j� = Ptu0�j� +Nu
t �t� j�� vt�j� = Ptv0�j� +Nv

t �t� j� a.s.

Some care is needed as N.u�t� j� is only defined up to a null set for each
t ≥ 0, and we will need some appropriate versions in what follows. Let tn�t� =
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��2nt�+ 1�2−n. Then for t fixed, an L2 calculation making repeated use of (H2)
shows that

P

(
sup
s≤tn�t�

∣∣∣∣
∑
k∈Sn

∫ s

0
ptn�t�−r�k� j�dMu

r �k� − ∑
k

∫ s

0
pt−r�k� j�dMu

r �k�
∣∣∣∣
2)

≤ c1 exp�−c2n�
and so by Borel–Cantelli a (predictable × Borel) version of �s�ω� t� → Nu

s �t� j�
[agreeing with N.u�t� j� a.s. for each t] is given by

Nu
s �t� j� =




lim
n→∞

∑
k∈Sn

∫ s

0
ptn�t�−r�k� j�dMu

r �k�� if the limit exists,

0� otherwise.

Moreover s → Nu
s �t� j� is a continuous square integrable martingale for each

�t� j�. This procedure also implicitly defines (predictable × Borel) versions of

�s�ω� t� →
∫ s

0
pt−r�k� j�dMu

r �k� for each j� k

(and similarly when u is replaced by v).

We have from (3.2), for a fixed T > 0,

AT =
∫ T

0

∑
j

(
Ptu0�j� +Nu

t �t� j�)(Ptv0�j� +Nv
t �t� j�)dt

=
∫ T

0
�Ptu0�Ptv0�dt+

∫ T

0
�Ptu0�N

v
t �t��dt+

∫ T

0
�Ptv0�N

u
t �t��dt

+
∫ T

0
�Nu

t �t��Nv
t �t��dt

≡ A
�1�
T +A

�2�
T +A

�3�
T +A

�4�
T 


One can readily check (using Theorem 2.2) that the series defining the inte-
grands of A�2� and A�3� converge in L2 uniformly in t ≤ T and the integrand
of A�4� converges in L1 uniformly in t ≤ T. Considering A

�2�
T , we have (the

limits being in L2)

A
�2�
T = lim

m→∞ lim
n→∞

∫ T

0

∑
j∈Sm

∑
k∈Sn

Ptu0�j�
∫ t

0
pt−r�k� j�dMv

r�k�dt

= lim
m→∞ lim

n→∞
∑
k∈Sn

∫ T

0

(∫ T

r

∑
j∈Sm

Ptu0�j�pt−r�k� j�dt
)
dMv

r�k�


In the last line a stochastic Fubini argument has been used [see page 116 of
Ikeda and Watanabe (1981)] and recall we have chosen a jointly measurable
version of �t�ω� → ∫ t

0 pt−r�k� j�dMv
r�k�]. It is easy to see that the above L2
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limit exists jointly in �m�n�. Therefore, we may interchange limits and take
the limit in m through the integrals to conclude

�3
3� A
�2�
T = ∑

k

∫ T

0

∫ T

r
P2t−ru0�k�dtdMv

r�k� = ∑
k

∫ T

0
hu0�r� k�dMv

r�k��

where hu0�r� k� = 1
2

∫ 2T−r
r Psu0�k�ds. Similarly we have

A
�3�
T = ∑

k

∫ T

0
hv0�r� k�dMu

r �k�


The above series converge in L2. Define A
�2�
t = ∑

k

∫ t
0 h

u0�r� k�dMv
r�k� and

similarly define A�3�
t for t ≤ T. Integrating by parts in the expression for A�4�

T

we have (the limits now being in L1)

A
�4�
T = lim

m→∞

∫ T

0

[ ∑
j∈Sm

∫ t

0
Nu

r �t� j�dNv
r�t� j� +

∫ t

0
Nv

r�t� j�dNu
r �t� j�

]
dt

= lim
m→∞ lim

n→∞

[∫ T

0

∑
j∈Sm

∑
k∈Sn

∫ t

0
Nu

r �t� j�pt−r�k� j�dMv
r�k�dt

+
∫ T

0

∑
j∈Sm

∑
k∈Sn

∫ t

0
Nv

r�t� j�pt−r�k� j�dMu
r �k�dt

]

= lim
m→∞ lim

n→∞

[ ∑
k∈Sn

∫ T

0

∑
j∈Sm

∫ T

r
Nu

r �t� j�pt−r�k� j�dtdMv
r�k�

+ ∑
k∈Sn

∫ T

0

∑
j∈Sm

∫ T

r
Nv

r�t� j�pt−r�k� j�dtdMu
r �k�

]



In the last line we again have used a stochastic Fubini theorem [the bounded-
ness condition on page 116 of Ikeda and Watanabe (1981) may be weakened
to an integrability condition and we have already addressed the measurabil-
ity requirements]. The L1-convergence in the above (or in the original sums
defining A�4�

T ) is joint in �m�n� and we may therefore interchange limits and
take the limit in m through the stochastic integral. If

gu�r� k� = ∑
j

∫ T

r
Nu

r �t� j�pt−r�k� j�dt

and gv is defined similarly, this gives

A
�4�
T = ∑

k

∫ T

0
gu�r� k�dMv

r�k� + ∑
k

∫ T

0
gv�r� k�dMu

r �k� ≡ A
�4
1�
T +A

�4
2�
T 


The sums converge in L1. Define A�4�
t , A�4
1�

t and A�4
2�
t as above but with t ≤ T

(T is fixed in the definitions of gu and gv, however).
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Our plan centers on the fact that AT converges as T → ∞ as it is the square
function of a nonnegative (and hence convergent) martingale �uT�1�. We will
show that as AT levels off, so do A�i�

T for i = 2�3�4 but that if �uT�1��vT�1�
remains bounded away from zero then A

�1�
T will continue to grow. This forces

AT to continue to grow, a contradiction. Our first step is to control A�i�
T �i ≥ 2�

in terms of AT and for this we will bound the square functions �A�i��t of the
martingales A�i�

t , t ≤ T (recall T is fixed).
Consider first A�4
1�. If r ≤ t�≤ T� is fixed then (3.2) shows that, w.p.1,

�Nu
r �t� j�� ≤ P

(
ut�j� � �r

) +Ptu0�j�
= Pur� vr

(
ut−r�j�) +Ptu0�j� Markov property—see Corollary 2.7

= Pt−rur�j� +Ptu0�j� Theorem 2.2(b)(iii)


This shows that for r�≤ T� fixed, w.p.1,

�gu�r� k�� ≤
∫ T

r
P2�t−r�ur�k� +P2t−ru0�k�dt

≤ 1
2

∫ 2T

0

∑
j

ps�k� j�(ur�j� + u0�j�)ds
≤ ((�ur�1� + �u0�1�)/2) sup

j

g2T�j� k�


If �u∗
T�1� = supr≤T�ur�1� and �g2T�∞ = supj g2T�j� j��= supj� k g2T�j� k� by

the strong Markov property of ξ), then this shows that

�3
4�
�A�4
1��T ≤ �u∗

T�1�2�g2T�2
∞AT and analogously�

�A�4
2��T ≤ �v∗
T�1�2�g2T�2

∞AT


Turning next to A�2�, and recalling the definition of hu0 in (3.3), we have,
w.p.1,

�hu0�r� k�� ≤ 1
2

∫ 2T

0

∑
j

ps�k� j�u0�j�ds ≤ 1
2�u0�1��g2T�∞

and therefore

�3
5�
�A�2��T ≤ �u0�1�2�g2T�2

∞AT and analogously,

�A�3��T ≤ �v0�1�2�g2T�2
∞AT


Let Nt denote the martingale
∑4

2 A
�i�
t , t ≤ T. The Kunita–Watanabe inequal-

ities, (3.4) and (3.5) show that for some universal c1 > 0,

�3
6� �N�T ≤ c1
(�u∗

T�1�2 + �v∗
T�1�2)�g2T�2

∞AT


Next we establish a lower bound on A
�1�
T . First choose m = m�u0� v0� such

that ∑
�k�≤m

u0�k� ≥ 1
2�u0�1� and

∑
�k�≤m

v0�k� ≥ 1
2�v0�1�
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Our recurrence hypothesis on ξ shows that we may then choose T1 =
T1�u0� v0� < ∞, a measurable function of �u0� v0�, such that

Pj

(
ξt = k for some t ≤ T1

) ≥ 1
2 ∀�j� ≤ m� �k� ≤ m(3.7)

and
c1
2

32
�u0�1��v0�1��g2T1

�∞ ≥ 2 and T1 > sup
�j�≤m

T1
2�j�
(3.8)

In (3.8) c1
2 and T1
2 are as in (1.1) and we have used the fact that
limT→∞ �g2T�∞ = ∞ by the recurrence hypothesis and supi �qii� < ∞.
We are also using the fact that �u0�1��u0�1� > 0. To complete the definition
of T1, set T1�u0� v0� = ∞ if �u0�1��v0�1� = 0. If T ≥ T1�u0� v0�, then

A
�1�
T = ∑

j

∑
k

u0�j�v0�k�1
2
g2T�j� k�

≥ 1
2

∑
�j�≤m

∑
�k�≤m

u0�j�v0�k� inf
{
g2T�j� k�� �j� ≤ m� �k� ≤ m

}

≥ 1
8

�u0�1��v0�1� inf
{
Pj�ξt hits k before T�gT�k� k�� �j� ≤ m� �k� ≤ m

}

≥ c1
2

16
�u0�1��v0�1��gT�∞ by (1.1) and (3.7)


The strong Markov property implies that g2T�k� k� ≤ 2gT�k� k� and so

�3
9� A
�1�
T ≥ c1
2

32
�u0�1��v0�1��g2T�∞ for T ≥ T1�u0� v0�


Set c2 = c1
2/32 and choose R > 0 so that

�3
10� R ≥ max
(
2��u0�1� + �v0�1��� �u0�1��v0�1�)


Let Bt denote a real-valued Brownian motion starting at x under Px. If T ≥
T1�u0� v0�, then

�3
11�

P�AT ≤ 1� ≤ P
(
c2�u0�1��v0�1��g2T�∞ +NT ≤ 1�AT ≤ 1

)
by (3.9)

≤ P
(
NT ≤ −c2�u0�1��v0�1��g2T�∞/2�AT ≤ 1�(�u∗

T�1� ∨ �v∗
T�1�) ≤ R

)
+ P

(�u∗
T�1� > R�AT ≤ 1

) + P
(�v∗

T�1� > R�AT ≤ 1
)

by (3.8)

≤ P
(
NT ≤ −c2�u0�1��v0�1��g2T�∞/2�

�N�T ≤ 2c1R
2�g2T�2

∞
)

+P�u0�1�
(
sup
s≤1

Bs > R
)

+P�v0�1�
(
sup
s≤1

Bs > R
)

by (3.6)
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The reflection principle, (3.10) and a standard Gaussian tail estimate bounds
the sum of the last two terms by

�3
12� 2P0

(
sup
s≤1

Bs > R/2
)

= 4P0�B1 > R/2� ≤ 8
R

exp�−R2/8�


The first term on the right side of (3.11) is dominated by

P0
(
inf�Bt� t ≤ 1� ≤ −c2�u0�1��v0�1�R−1�2c1�−1/2/2

)
= 1 −P0

(�B1� ≤ c2�2c1�−1/22−1�u0�1��v0�1�R−1)
by the reflection principle

≤ 1 − c3�u0�1��v0�1�R−1�

(3.13)

where in the last line we use R ≥ �u0�1��v0�1� by (3.10) and c3 > 0 is univer-
sal. Now set

R = R
(�u0�1�� �v0�1�)

= max
(
2��u0�1� + �v0�1��� �u0�1��v0�1�� (8� ln�16/c3�u0�1��v0�1���)1/2)




Use (3.12) and (3.13) in (3.11) and conclude that for T ≥ T1�u0� v0�,

�3
14�
P�AT > 1� ≥ c3�u0�1��v0�1�R−1 − 8R−1 exp�−R2/8�

≥ c3�u0�1��v0�1�(2R(�u0�1�� �v0�1�))−1

≡ q
(�u0�1�� �v0�1�)


Also define q�u�0� = q�0� v� = 0, so that the above remains valid if
�v0�1��v0�1� = 0. Note that

�3
15� inf�q�u� v�� δ ≤ u� v� = ε�δ� > 0 ∀ δ > 0


Inductively define Tn+1 = T1�uTn
� vTn

� + Tn, if Tn < ∞, and set Tn+1 = ∞
if Tn = ∞. Clearly Tn is an ��t�-stopping time and so by the strong Markov
property (Corollary 2.7),

�3
16�
P
(
A�Tn+1� −A�Tn� ≥ 1 � �Tn

)
= PuTn � vTn

(
A
(
T1�u0� v0�

) ≥ 1
)
1�Tn < ∞�

≥ q��uTn
�1�� �vTn

�1��1�Tn < ∞�

By Lévy’s conditional version of the Borel–Cantelli lemma [see 12.15 of
Williams (1991)], we have

�3
17�

{
A�Tn+1� −A�Tn� ≥ 1 i
o


}

⊃
{ ∞∑
n=1

q
(�uTn

�1�� �vTn
�1�)1�Tn < ∞� = ∞

}
a.s.
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Since A�∞� = limt→∞A�t� is a.s. finite (A is the square function of the non-
negative, and therefore convergent, martingale �ut�1�), the left side of (3.17)
is a null set and so

�3
18�
∞∑
n=1

q
(�uTn

�1�� �vTn
�1�)1�Tn < ∞� < ∞ a.s.

If Tn < ∞ for all n, then (3.18) and (3.15) imply that (omitting a null set)
lim infn→∞�uTn

�1��vTn
�1� = 0 and hence limt→∞�ut�1��vt�1� = 0 by mar-

tingale convergence. If Tn = ∞ and n is minimal, then Tn−1 < ∞ and
�uTn−1

�1��vTn−1
�1� = 0. This implies �ut�1��vt�1� = 0 ∀ t ≥ Tn−1. In either

case we have shown �u∞�1��v∞�1� = 0 a.s. and so coexistence of types is
impossible. ✷

4. The equilibrium distributions. We now use the results of Section 3
to study the equilibrium laws found in Theorem 1.4, which we continue to
denote by Pu� v��u∞� v∞� ∈ ·) for u� v ≥ 0. For ease of reference we recall from
Corollary 2.9 that

�2
9�

Pu� v
(
Fφ�ψ�u∞ + v∞� u∞ − v∞�)
= P�φ+ψ�/2��φ−ψ�/2

(
exp

{−�u+ v���ũ∞�1� + �ṽ∞�1�)
+ i�u− v���ũ∞�1� − �ṽ∞�1��})

∀�φ�ψ� ∈ Ẽ


Proof of Theorem 1.5. Choose �φ�ψ� ∈ Ẽ, let

�ũ0� ṽ0� = (�φ+ ψ�/2� �φ− ψ�/2)(∈ �Mrap�2)
and let L�u� v� denote the expressions in (2.9). If hb� c�u� v� = exp�−�u +
v�b + i�u − v�c� �b� c ∈ R� and the Laplacian, C, is applied separately to the
real and imaginary parts of hb� c then one readily checks that Chb� c = 0 if
�b� = �c�. Theorem 1.2(b) implies that ��ũ∞�1� + �ṽ∞�1�� = ��ũ∞�1� − �ṽ∞�1��
Pũ0� ṽ0

-a.s. and so we can differentiate through the expected value on the right
side of (2.9) and conclude that CL�u� v� = 0 for u� v > 0. The right side of
(2.9) also shows that L and its first order partial derivatives are bounded
and continuous on �0�∞�2. Here we have used Fatou’s lemma to see that
Pũ0�ṽ0

��ũ∞�1� + �ṽ∞�1�� ≤ �ũ0 + ṽ0�1� < ∞. The left side of (2.9) shows that

�4
1� L�u�0� = exp
{−u�φ�1� + iu�ψ�1�}�L�0� v� = exp

{−v�φ�1� − iv�ψ�1�}

A simple application of Itô’s lemma now shows that if �B.1�B.2�, P0

u� v, and T
are as in the statement of the theorem, then

L�u� v� = lim
t→∞

P0
u� v

(
L�B�T ∧ t��)

= P0
u� v

(
L
(
B�T�))

= P0
u� v

(
exp

{−(
B1
T +B2

T

)�φ�1� + i
(
B1
T −B2

T

)�ψ�1�}) by (4.1)
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Returning to (2.9), we have shown that (recall the notation Bi
T in the state-

ment of the theorem)

Pu� v
(
Fφ�ψ�u∞ + v∞� u∞ − v∞�)
= P0

u� v

(
Fφ�ψ

(
B1
T +B2

T�B
1
T −B2

T

)) ∀�φ�ψ� ∈ Ẽ


This and Lemma 2.3(b) imply the required result. ✷

Notation. Define an equivalence relation ∼ on Zd by j ∼ k iff pt�j� k� > 0
for some (or equivalently all) t > 0. Let �j� = �k� j ∼ k�.

Lemma 4.1. Let µ be a probability on �Mtem�2. For Lebesgue-a.a. t > 0�

vt�j� > 0 implies vt�k� > 0 ∀k ∈ �j�
and

ut�j� > 0 implies ut�k� > 0 ∀k ∈ �j��Pµ-a.s.

Proof. We may assume µ = δu0� v0
for �u0� v0� ∈ �Mtem�2. If L0

t is the local
time at 0 of the semimartingale vt�k� under Pµ [recall Theorem 2.2(b)(iv)],
then by Corollary 2 of Yor (1978),

L0
t = lim

ε↓0
ε−1γ

∫ t

0
1
(
0 < vs�k� ≤ ε

)
us�k�vs�k�ds

≤ lim
ε↓0

γ
∫ t

0
1
(
0 < vs�k� ≤ ε

)
us�k�ds = 0


Theorem 2(iv) of Yor (1978) now implies [again using Theorem 2.2(b)(iv) with
φ = 1�k�]

0 = L0
t −L0−

t = 2
∫ t

0
1
(
vs�k� = 0

) ∑
j 
=k

vs�j�qjk ds ∀ t > 0 a.s.

This implies Pµ-a.s. for Lebesgue-a.a. s ≥ 0, vs�j� > 0 implies vs�k� > 0
whenever qjk > 0. By Fubini’s theorem we may fix t ≥ 0 outside a Lebesgue
null set and then ω outside a Pµ-null set so that

�4
2� vt�j� > 0 implies vt�k� > 0 whenever j� k ∈ Zd satisfy qjk > 0


If vt�j� > 0 and k ∈ �j�, there is a finite number of distinct points j = j0,
j1� 
 
 
 � jn = k such that

∏n
i=1 qji−1ji

> 0 and so a repeated application of (4.2)
implies vt�k� > 0. The same argument applies to u. ✷

Proof of Theorem 1.6. (a) We claim it suffices to show

�4
3� �v∞�1�0�� > 0� Pu� v-a.s.
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Fix t > 0 outside a Lebesgue null set so that the conclusion of Lemma 4.1
holds with µ = Pu� v��u∞� v∞� ∈ ·�. The fact that µ is a stationary distribution
for �u� v� (Theorem 1.4) implies that

0 = Pµ
(�vt�1�0�� > 0� vt�k� = 0 for some k in �0�) by the choice of t

= Pu� v
(�v∞�1�0�� > 0� v∞�k� = 0 for some k in �0�)

= Pu� v
(
v∞�k� = 0 for some k in �0�) by (4.3).

The same reasoning applies to every other equivalence class and to u∞, and
so (a) would follow from (4.3).

Turning to (4.3), we may use Theorem 2.2(b)(ii) with φ = 1�0�, u0 ≡ u and
v0 ≡ v to see that for t > t0 > 0�

�4
4�

ut�0� = u+ ∑
k

∫ t−t0

0
pt−s�k�0�(γus�k�vs�k�)1/2

dBk
s

+ ∑
k∈�0�

∫ t

t−t0
pt−s�k�0�(γus�k�vs�k�)1/2

dBk
s

= u+M1�t− t0� +M2�t�

Let ε > 0. Theorem 2.2(b) shows that

�4
5�
Pu� v

(�M1�t−t0
) = γuv

∑
k

∫ t−t0

0
pt−s�k�0�2 ds

≤ γuv
∫ ∞

t0

p2r�0�0�dr
< ε4�

where the last line is valid providing we choose t0 = t0�ε� sufficiently large
[recall that g∞�0�0� < ∞]. Having fixed such a t0, note that if k ∈ �0�, then
(H1) and (H2) imply

�4
6� sup
r≤t0

pr�j� k� ≤ c1
1�t0�1�1�0��j� exp�λ′�1��k� − �j��


Let φ̃−1�k� = 1�0��k�φ−1�k� and ��t� denote the canonical right continuous
filtration on �tem. Then for t > t0,

Pu� v
(�M2�t > ε3 � �t−t0

)

= Put−t0 � vt−t0

( ∑
k∈�0�

∫ t0

0
pt0−r�k�0�2γur�k�vr�k�dr > ε3

)

≤ ε−3
∫ t0

0

∑
k∈�0�

pt0−r�k�0�2γ�ut−t0� pr�·� k���vt−t0� pr�·� k��dr

Theorem 2.2(b)(iii)(4.7)
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≤ ε−3c1
1�t0�1�2γ
∫ t0

0

∑
k∈�0�

pt0−r�k�0�

× exp�2λ′�1��k��dr�ut−t0� φ̃−1��vt−t0� φ̃−1� by (4.6)

≤ ε−3c�t0��ut−t0� φ̃−1��vt−t0� φ̃−1� by (H2)


We also have

�4
8�

Pu� v
(
vt�0� > ε � �t−t0

) = Put−t0 � vt−t0

(
vt0�0� > ε

)

≤ ε−1〈vt−t0� pt0�·�0�〉

≤ ε−1c1�1�t0�1��vt−t0� φ̃−1� by (4.6)


Let Aδ�t� = �ω� �ut−t0� φ̃−1��vt−t0� φ̃−1� < δ� �vt−t0φ̃−1� < δ�. Equations
(4.7) and (4.8) show that for t > t0�ε� and δ < δ0�ε� [for some δ0�ε� > 0
independent of the choice of t > t0�ε�], on Aδ�t� we have

�4
9�
Pu� v

(�M2�t�� > ε or vt�0� > ε � �t−t0
)

≤ ε+ Pu� v
(�M2�t�� > ε� �M2�t ≤ ε3 � �t−t0

)
≤ 2ε

by a standard martingale argument [note that working with M2�t� condition-
ally on �t−t0 poses no difficulties]. This together with (4.4) and (4.5) shows
that for t > t0�ε�, 0 < δ < δ0�ε� and ε < 1/4,

�4
10�

Pu� v
(�ut�0� − u� ≤ 2ε� vt�0� ≤ ε

)
≥ Pu� v

(�M2�t�� ≤ ε� vt�0� ≤ ε
) − Pu� v

(�M1�t− t0�� > ε
)

≥ �1 − 2ε�Pu� v
(
Aδ�t�

) − Pu� v
(�M1�t− t0�� > ε� �M1��t− t0� ≤ ε3)

− Pu� v
(�M1�t−t0 > ε3)

≥ 1
2Pu� v

(
Aδ�t�

) − 2ε�

by a standard martingale inequality and (4.5). If M�u� = ∑
k

∫ u
0 pt−s�k�0� ·

�γus�k�vs�k��1/2 dBk
s and N�u� = ∑

k

∫ u
0 pt−s�k�0��γus�k�vs�k��1/2 dWk

s

[L2 convergent by Theorem 2.2(b)] �u ≤ t�, then �M�u��N�u�� may be
written as B�τu� where B is a planar Brownian motion starting at the origin,

τu = ∑
k

∫ u

0
pt−s�k�0�2γus�k�vs�k�ds� u ≤ t�

and we may have enlarged the probability space to fill out the Brownian
path B. Inverting (4.10) and using Theorem 2.2(b)(ii) with φ = ψ = 1�0� we
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have for t > t0�ε� and 0 < δ < δ0�ε�,

Pu� v
(
Aδ�t�

) ≤ 2Pu� v
(�ut�0� − u� ≤ 2ε� vt�0� ≤ ε

) + 4ε

≤ 2Pu� v
(�B�τt� + �0� v�� ≤ 3ε

) + 4ε

≤ 2Pu� v
(�B�s� + �0� v� �≤ 3ε for some s ≤ T

) + 2Pu� v�τt > T� + 4ε

≤ 2Pu� v
(�B�s� + �0� v�� ≤ 3ε for some s ≤ T

)

+ �1/T�γuv
∫ ∞

0
pr�0�0�dr+ 4ε


If η > 0 is fixed we may first fix T large enough and then ε sufficiently small
so that for δ < δ0�ε� and t > t0�ε�, Pu� v�Aδ�t�� < η. For δ > 0 fixed as above,
since

(�ut−t0� φ̃−1�� �vt−t0� φ̃−1�
) w→(�u∞� φ̃−1�� �v∞� φ̃−1�

)
as t → ∞

by Theorem 1.4, we have

Pu� v
(�v∞� φ̃−1� = 0

) ≤ lim inf
t→∞

Pu� v
(
Aδ�t�

) ≤ η


This gives (4.3) and the proof of (a) is complete.
(b) If δk�j� = 1�j = k�, Corollaries 2.9 and 2.6 show that for θ > 0 and

k ∈ Zd,

Pu� v
(
exp

(−θ(u∞�k� + v∞�k�)))
= P�θ/2�δk� �θ/2�δk

(
exp

{−�u+ v���ũ∞�1� + �ṽ∞�1�)
+ i�u− v���ũ∞�1� − �ṽ∞�1��})

= Pδk� δk

(
exp

{−�u+ v��θ/2���ũ∞�1� + �ṽ∞�1��
+ i�u− v��θ/2���ũ∞�1� − �ṽ∞�1��})


Differentiate both sides twice with respect to θ and let θ ↓ 0 to see that

Pu� v
((
u∞�k� + v∞�k�)2)

= Pδk� δk

(��u+ v�2/4���ũ∞�1� + �ṽ∞�1��2 − (�u− v�2/4
)

× ��ũ∞�1� − �ṽ∞�1��2)
− i

(�u2 − v2�/2)Pδk� δk(�ũ∞�1�2 − �ṽ∞�1�2)

This shows that Pδk� δk��ũ∞�1�2 − �ṽ∞�1�2� = 0 and allows us to simplify the
right side to give

�4
11� Pu� v
((
u∞�k� + v∞�k�)2) = �u2 + v2�Pδk� δk

(�ũ∞�1��ṽ∞�1�)
+ uvPδk� δk

(�ũ∞�1�2 + �ṽ∞�1�2)
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Recall from Theorem 2.2(d) that under Pδk� δk , �ũt�1� is a continuous martin-
gale such that

Pδk� δk

(�ũt�1�2
) = 1 + γ

∫ t

0

∑
j

ps�k� j�2 ds

= 1 + γ
∫ t

0
p2s�k� k�ds ↑ 1 + γ

2
g∞�k� k� as t → ∞


Hence it is also L2-bounded and as supt��ũt�1�2 + �ṽt�1�2� is integrable by
Doob’s maximal inequality, the obvious uniform integrability allows us to de-
duce from (4.11) that

�4
12�

Pu� v
((
u∞�k� + v∞�k�)2)

= lim
t→∞

�u2 + v2�Pδk� δk��ũt�1��ṽt�1�� + uvPδk� δk��ũt�1�2 + �ṽt�1�2�

= lim
t→∞

�u2 + v2� + 2uv
(

1 + γ
∫ t

0
p2s�k� k�ds

)

by the above and Theorem 2.2(b)(iii)

= �u+ v�2 + γuvg∞�k� k�


Theorem 2.2(b)(ii) and (iii) imply

lim
t→∞

Pu� v
((
ut�k� + vt�k�)2) = lim

t→∞
u2 + v2 + 2γuv

∫ t

0

∑
j

pt−r�j� k�2 dr+ 2uv

= �u+ v�2 + γuvg∞�k� k�
= Pu� v

((
u∞�k� + v∞�k�)2) by (4.12)


This together with the weak convergence of ut�k� + vt�k� to u∞�k� + v∞�k�
shows that ��un�k� + vn�k��2� n ∈ N� is uniformly integrable for each k. This
implies that

Pu� v
(
u∞�j�u∞�k�) = lim

n→∞ Pu� v
(
un�j�un�k�)

= u2 + lim
n→∞

∫ n

0
γuv

∑
l

pn−r�l� j�pn−r�l� k�dr

Theorem 2.2.(b)(ii)

= u2 + γuv

2
g∞�j� k�


Similarly we get Pu� v�u∞�j�v∞�k�� = uv and Pu� v�v∞�j�v∞�k�� = v2 +
�γuv/2�g∞�j� k�. ✷
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5. Some ergodic theorems and open problems. If ξ is transient [and
so �ut� vt� exhibits coexistence of types in equilibrium], it is easy to establish
ergodicity under Pu� v by a second moment calculation as we now show. Let
IT�K� = T−1

∫ T
0 us�k�ds, and JT�k� = T−1

∫ T
0 vs�k�ds for k ∈ Zd, T > 0. A

simple application of the Markov property and Theorem 2.2(b)(ii), (iii) shows
that

�5
1� Pu� v
(
us�k�ut�k�) = u2 + �γuv/2�

∫ t+s

�t−s�
pr�k� k�dr� k ∈ Zd� s� t ≥ 0


We work with respect to Pu� v throughout this section.

Proposition 5.1. Assume g∞�k� k� < ∞ for all k ∈ Zd.

(a) As T → ∞, IT�k� →L2
u and JT�k� →L2

v for all k ∈ Zd.

(b) If for some η > 0, h�k�T� = ∫∞
T pr�k� k�dr ≤ cT−η, then

lim
T→∞

IT�k� = u and lim
T→∞

JT�k� = v� Pu� v-a.s.

Proof. From (5.1) we obtain

�5
2�
Pu� v

(
IT�k�2

) = T−2
∫ T

0

∫ T

0
Pu� v

(
us�k�ut�k�)dsdt

= u2 + γuv�2T2�−1
∫ T

0

∫ T

0

∫ t+s

�t−s�
pr�k� k�drdsdt


Therefore, if h�k�T� is defined as in (b),

�5
3�

Pu� v
(�IT�k� − u�2

) ≤ γuvT−2
∫ T

0

∫ t

0
h�k� �t− s��dsdt

≤ γuvT−2
∫ T

0

∫ t

�t−√
T�+

g∞�k� k�dsdt

+ γuvT−2
∫ T

0

∫ �t−√
T�+

0
h�k�

√
T�dsdt

≤ γuvg∞�k� k�T−1/2 + γuvh�k�T1/2�

Let T → ∞ in the above to prove (a).

For (b) note that the hypothesis implies the right side of (5.3) is summable in
n if we set T = nρ and ρ is sufficiently large. The Borel–Cantelli lemma shows
that limn→∞ Inρ�k� = u a.s., and an easy interpolation argument completes the
proof for IT. The same derivation is valid for JT. ✷

Remark 5.2. The hypotheses of both (a) and (b) are satisfied when ξ is a
simple symmetric random walk on Zd and d ≥ 3. In this case the local central
limit for the discrete time random walk [e.g., Lawler (1991), page 14] gives

�5
4� lim
t→∞

td/2pt�k� k� = �d/2π�d/2 ∀k ∈ Zd ∀d ∈ N�

and so the hypothesis of (b) holds for d ≥ 3 with η = �d/2� − 1.
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The long-term dynamics of �ut� vt� in the recurrent case appear to be quite
interesting but we have more questions than answers. To illustrate the prob-
lems, we focus on the case when ξ is simple symmetric random walk on Zd

and d ≤ 2.

Proposition 5.3. Let ξ be simple symmetric random walk on Zd and u�
v > 0.

(a) If d = 1 limT→∞ Pu� v�IT�k�2� = limT→∞ Pu� v�JT�k�2� = ∞ ∀k ∈ Z.

(b) If d = 2 limT→∞ Pu� v�IT�k�2� = u2 + γuv�ln 2�π−1 and limT→∞ Pu� v

�JT�k�2� = v2 + γuv�ln 2�π−1 ∀k ∈ Z2.

Proof. (b) Equation (5.4) and an easy estimate (using the calculation be-
low) allows us to use (5.2) to conclude

lim
T→∞

Pu� v
(
IT�k�2) = u2 + lim

T→∞
γuvT−2

∫ T

0

∫ t

0

(∫ t+s

t−s

(
π�r+ 1�)−1

dr

)
dsdt

= u2 + lim
T→∞

γuv�πT2�−1
∫ T

0

∫ t

0
ln�1 + t+ s�

− ln�1 + t− s�dsdt

= u2 + lim
T→∞

γuv�πT2�−1
∫ T

0
2t ln

(
1 + 2t
1 + t

)

+ ln�1 + 2t� − 2 ln�1 + t�dt

= u2 + lim
T→∞

γuv�πT2�−1
∫ T

0
2t ln

(
1 + 2t
1 + t

)
dt

= u2 + γuv�ln 2�π−1


(a) Use the bound [from (5.4)] pr�k� k� ≥ c�r+1�−1/2 and argue as above. ✷

Remark 5.4. Consider the d = 2 case. In spite of (b) above, IT�k� does
not converge in L2 as T → ∞. To see this we can use (5.1) and (5.4) to see
that if T1 = T1�T2� increases sufficiently quickly with T2 (we certainly need
T1 ) T2), then

lim
T2→∞

Pu� v
(
IT1

�k�IT2
�k�) = u2�

that is, IT1
and IT2

are asymptotically uncorrelated. We omit this calculation.
It then follows from Proposition 5.3(b) that

lim
T2→∞

Pu� v
((
IT1�T2��k� − IT2

�k�)2) = lim
T2→∞

Pu� v
(
IT1�T2��k�2 + IT2

�k�2)

− 2Pu� v
(
IT1�T2��k�IT2

�k�)
= 2γuv�ln 2�π−1 > 0�

and so �IT�k�� is not Cauchy in L2 as T → ∞.
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Recall (Theorem 1.5) that under Pu� v, �ut�k�� vt�k�� →w �B1
T�B

2
T� as t → ∞,

where T = inf�t� B1
tB

2
t = 0� and �B1�B2� is a planar Brownian motion start-

ing at �u� v�. We suspect that �1/T� ∫ T0 us�k�ds fails to converge because long
stretches of time where k is in a large block dominated by the “u population”
are followed by even longer stretches of time where k is in a larger block domi-
nated by the v population [and the ut�k� values are negligible] and so on. This
picture of “alternating types” at a fixed site is consistent with the following
simple result.

Proposition 5.5. Assume ξ is simple symmetric random walk on Z2 and
u� v > 0. Under Pu� v, ut�k� and vt�k� do not converge in probability as t → ∞
∀k ∈ Zd.

Proof. We may set k = 0. The fact that a.s. convergence fails is a simple
consequence of Fatou’s lemma, Proposition 5.3(b) and the fact that

�5
5� Pu� v
(
u∞�0�2) = P0

u� v

(�B1
T�2) = Pu� v�T� = ∞


For convergence in probability, the argument is only slightly more involved.
Suppose that ut�0� converges in probability to u∞�0� under Pu� v. Recall

from Theorem 1.4 that

�5
6� Pu� v
(
u∞�0�) = u


We claim there is a sequence tk → ∞ such that

�5
7� lim inf
k→∞

Itk�0� ≥ u∞�0� a.s.

To see this, first note that for each M in N, �u∞�0� − ut�0��1�ut�0� ≤
M� ≤ u∞�0� + M and so by dominated convergence [use (5.6)] we have
limt→∞ Pu� v��u∞�0� − ut�0��1�ut�0� ≤ M�� = 0 and therefore

lim
T→∞

Pu� v

(
T−1

∫ T

0
�u∞�0� − ut�0��1(ut�0� ≤ M

)
dt

)
= 0 for each M ∈ N


As we have

lim
T→∞

Pu� v

(
T−1

∫ T

0
1
(�u∞�0� − ut�0�� > 1

)
dt

)
= 0�

if Mk ↑ ∞ �Mk ∈ N�, we may choose tk ↑ ∞ such that for a.a. ω,

�5
8� lim
k→∞

t−1
k

∫ tk

0
1
(�u∞�0� − ut�0�� > 1

)

+ �u∞�0� − ut�0��1(ut�0� ≤ Mk

)
dt = 0
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Fix ω so that (5.8) is valid. Then

lim inf
k→∞

Itk�0� ≥ lim inf
k→∞

t−1
k

∫ tk

0
ut�0�1�ut�0� ≤ Mk�dt

= lim inf
k→∞

(
t−1
k

∫ tk

0

(
ut�0� − u∞�0�)1(ut�0� ≤ Mk

)
dt

+ u∞�0�t−1
k

∫ tk

0
1
(
ut�0� ≤ Mk

)
dt

)

= u∞�0� − u∞�0� lim sup
k→∞

t−1
k

∫ tk

0
1�ut�0� >Mk�dt by (5.8)

≥ u∞�0� − u∞�0� lim sup
k→∞

(
1
(
u∞�0� >Mk − 1

)

+ t−1
k

∫ tk

0
1
(�u∞�0� − ut�0�� >)dt

)

= u∞�0� by (5.8) again.

This proves (5.7). Fatou’s lemma now shows that

lim inf
k→∞

Pu� v
(
Itk�0�2) ≥ Pu� v

(
u∞�0�2) = ∞ by (5.5)


This contradicts Proposition 5.3(b) and so convergence in probability must
fail. ✷

We conjecture that in the setting of Proposition 5.5,

�ut�0�� t ≥ T� = �vt�0�� t ≥ T� = �0�∞� ∀T > 0 a.s.

The description of the large time dynamics when d = 1 remains completely
unresolved.

Note added in proof : Cox and Klenke have recently proved this conjecture
for d ≤ 2. More generally they show, under the recurrence hypotheses of
Theorem 1.5, the dominant type at 0 switches infinitely often as t → ∞.

6. A stochastic partial differential equation. We now study solutions
�u� v� of �SPDE�u0� v0

. Here are some additional state spaces for the solu-
tions, which augment the spaces introduced in Section 1. Recall that �f�λ =
supx �f�x�eλ�x��. Let

Crap = {
f ∈ C�R�� �f�λ < ∞ ∀λ > 0

}
topologized by the metric

drap�f�g� =
∞∑
n=1

(�f− g�µn ∧ 1
)
2−n where µn ↑ ∞


Here �rap is the space of �C+
rap�2-valued paths with the compact-open topol-

ogy.
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Then �Pt� t ≥ 0� denotes the Brownian semigroup on the bounded measur-
able functions on R and pt�x� is the Brownian transition density

Cint = {
f ∈ C�R�� ��f��1� < ∞}

�

Cb =
{
f ∈ C�R�� sup

x
�f�x�� < ∞

}
�

Cp = {
f ∈ C�R�� �f�p < ∞}

� p ∈ R


Theorem 6.1. (a) If u0, v0 ∈ C+
tem, there is a solution to �SPDE�u0� v0

, de-

fined on some ���� ��t�P�.
(b) Let �u� v�W1�W2� be any solution to �SPDE�u0� v0

on some ���� ��t�P�
for a given �u0� v0� ∈ �C+

tem�2
.

(i) If φ ∈ Crap, then ∀t > 0�

�ut�φ� = �u0�Ptφ� +
∫ t

0

∫
Pt−sφ�x�(γu�s� x�v�s� x�)1/2

dW1�s� x�

and

�vt�φ� = �v0�Ptφ� +
∫ t

0

∫
Pt−sφ�x�(γu�s� x�v�s� x�)1/2

dW2�s� x� a.s.�

where both stochastic integrals are square integrable.
(ii) u�t� x� = Ptu0�x� + ∫ t

0

∫
pt−s�y− x��γu�s� y�v�s� y��1/2 dW1�s� y��

v�t� x� = Ptv0�x� +
∫ t

0

∫
pt−s�y− x�(γu�s� y�v�s� y�)1/2

dW2�s� y�

a.s. for each �t� x� ∈ R+ × R�

where both stochastic integrals are square integrable.
(iii) For all s� t ∈ R+, x�y ∈ R, λ, q > 0,

P
(
u�t� x�) = Ptu0�x�� P

(
v�t� x�) = Ptv0�x��

P
(
u�s� x�v�t� y�) = Psu0�x�Ptv0�y�

and

�6
1� sup
r≤t

P

(∫ (
ur�x�q + vr�x�q)e−λ�x� dx

)
< ∞


If φ�ψ� R → R+ are measurable, then for all s� t ∈ R+,

P
(�ut�φ�) = �u0�Ptφ�� P

(�vt�ψ�) = �v0�Ptψ�
and

P
(�us�φ��vt�ψ�) = �u0�Psφ��v0�Ptψ�


(iv) If φ�ψ ∈ C2
rap, then

�ut�φ� = �u0� φ� +
∫ t

0
�us�φ′′/2�ds

+
∫ t

0

∫
φ�x�(γu�s� x�v�s� x�)1/2

dW1�s� x�
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and

�vt�ψ� = �v0� ψ� +
∫ t

0
�vs�ψ′′/2�ds

+
∫ t

0

∫
ψ�x�(γu�s� x�v�s� x�)1/2

dW2�s� x��

where the stochastic integrals are orthogonal square integrable continuous
��t�-martingales and the Lebesgue integrals are of integrable total variation.

(c) Let �u� v�W1�W2� be as in (b) but with �u0� v0� ∈ �C+
rap�2. Then �u. � v.� ∈

�rap a.s. and

�6
2� sup
r≤T

P

(∫ (
u�r� x�q + v�r� x�q)eλ�x� dx

)
< ∞ ∀q�T� λ > 0


Moreover, (b)(i) holds for φ ∈ Ctem and (b)(iv) is valid for φ�ψ ∈ C2
tem.

(d) Let �u� v�W1�W2� be as in (b) but with �u0� v0� ∈ �C+
int�2. Then �ut� vt� ∈

�C+
int�2 ∀ t ≥ 0 a.s., (b)(i) holds for φ ∈ Cb and (b)(iv) holds for φ�ψ ∈ C2

b.
In particular, �ut�1� and �vt�1� are orthogonal square integrable continuous
��t�-martingales.

The proof is presented in the Appendix. Many of the ideas in Shiga (1994)
are easily modified to the present context.

As for the discrete setting in Section 2, we introduce state spaces for our
anticipated self-dual processes.

Notation. F = ��X�Y� ∈ C+
tem ×Ctem� �Y� ≤ X on R�.

F̃ = {�X�Y� ∈ F� X ∈ C+
rap

}
⊃ Fc = {�X�Y� ∈ F� X has compact support

}



Metrize F by dF��X�Y�� �X′�Y′�� = dtem�X�X′� + dtem�Y�Y′� and similarly
metrize F̃ using drap. If �φ�ψ� ∈ F̃, define Gφ�ψ� F → C by Gφ�ψ�X�Y� =
exp�−�X�φ� + i�Y�ψ��.

It is easy to check that �F�dF� and �F̃� dF̃� are Polish spaces.

Lemma 6.2. If P and Q are probabilities on F such that
∫
Gφ�ψ dP =∫

Gφ�ψ dQ ∀�φ�ψ� ∈ Fc, then P = Q.

Proof. If � = �Gφ�ψ� �φ�ψ� ∈ Fc� and � is the complex linear span of
� , then � is a complex algebra containing the constants and closed under
complex conjugation. A monotone class theorem [e.g., I.21, I.22 of Dellacherie
and Meyer (1978)] reduces the problem to showing that σ�� � (the minimal
σ-field making functions in � measurable) is the Borel σ-field of F. For this it
suffices to fix rational numbers s and t and show that �X�Y� → �X�s��Y�t�� is



MUTUALLY CATALYTIC BRANCHING 1123

σ�� �-measurable. Let �Kε�·�� ε ∈ �0�1�� be a continuous approximate identity
(as ε ↓ 0� with compact support. Then

(
X�s��Y�t�) = lim

ε↓0

(�X�Kε�· − s� +Kε�· − t��� �Y�Kε�· − t��)

− (�X�Kε�· − t��� �Y�0�)
and �Kε�· − s� +Kε�· − t��Kε�· − t�� and �Kε�· − t��0� are in Fc. The result
follows easily. ✷

Just as in the discrete setting we let �ut� vt� and �ũt� ṽt� denote the coordi-
nate variables on �tem and �rap, respectively (as well as arbitrary solutions of
SPDE), and define

�Xt�Yt� = �ut + vt� ut − vt� ∈ F and �X̃t� Ỹt� = �ũt + ṽt� ũt − ṽt� ∈ F̃


If �u0� v0� ∈ �C+
rap�2, Theorem 6.1 allows us to view the law of a solution to

�SPDE�u0� v0
as a probability on �tem or �rap.

Theorem 6.3 [Mytnik (1997). (a) If �u0� v0� ∈ �C+
tem�2, there is a unique

probability Pu0� v0
on �tem so that �u� v� has law Pu0� v0

whenever �u� v�W1�W2�
is a solution to �SPDE�u0� v0

on some ���� ��t�P�.
(b) If �u0� v0� ∈ �C+

tem�2 and �ũ0� ṽ0� ∈ �C+
rap�2, then

Pu0� v0

(
exp�−�Xt� X̃0� + i�Yt� Ỹ0��

) = Pũ0� ṽ0

(
exp�−�X0� X̃t� + i�Y0� Ỹt��

)



Remark. The argument is very close to the proof of Theorem 2.4. Clearly
(b) implies the uniqueness in (a) by Lemma 6.2. Part (b) is established by a
duality argument. The latter differs slightly from that given in Theorem 2.4
because test functions for Xt (or X̃s) should be smooth and X̃s (or Xt) is not.
One may use the heat semigroup Pε to smooth these functions and then let
ε ↓ 0.

If G� �C+
tem�2 → R is bounded and measurable, let P̄tG�u0� v0� =

Pu0� v0
�G�ut� vt�� denote the semigroup associated with solutions of (SPDE). To

prove the Feller property of �P̄t� we will use the following slight modification
of Lemma 6.3(ii) of Shiga (1994).

Lemma 6.4. Let �Pn� n ∈ N� be a sequence of probabilities on Ctem. Suppose
∀λ > 0� there are C, p > 0 and α > 1 such that

sup
n
Pn

(�u�x� − u�x′��2p) ≤ Ceλ�x��x− x′�α for all �x− x′� ≤ 1

and

sup
n
Pn

(�u�0��) ≤ C


Then �Pn� is tight.
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Corollary 6.5. (a) P̄t� Cb��C+
tem�2� → Cb��C+

tem�2� for each t ≥ 0.
(b) Let �u� v�W1�W2� solve �SPDE�u0� v0

on some ���� ��t�P� and let T be

an a.s. finite ��t�-stopping time. For any bounded measurable f on �C+
tem�2�

P
(
f�uT+t� vT+t� � �T

) = P̄tf�uT� vT�� P-a.s. for all t ≥ 0


Proof. (a) Let �un0 � vn0� → �u0� v0� in �C+
tem�2, t > 0 and set Pn�A� =

Pun0 � v
n
0
��ut� vt� ∈ A�. We must show the weak convergence of Pn to

Pu0� v0
��ut� vt� ∈ A�. Theorem 6.3(b) implies that for �φ�ψ� ∈ F̃�

lim
n→∞ Pun0 � v

n
0

(
Gφ�ψ�ut + vt� ut − vt�

) = Pu0� v0

(
Gφ�ψ�ut + vt� ut − vt�

)

and, as this class of functions is a determining class on �C+
tem�2 by Lemma 6.2,

it suffices to prove that �Pn� is tight. For this it suffices to show �Pn�u ∈ ·��
is tight on C+

tem and here we use Lemma 6.4. The last condition of Lemma 6.4
holds by Theorem 6.1(b)(iii). The first condition is implicit in the derivation
of Theorem 6.1(a) but this time we sketch the details. By Theorem 6.1(b)(ii),
an easy estimate on �Ptu0�x� − Ptu0�x′�� and the Burkholder–Davis–Gundy
inequality, this reduces to showing that for λ > 0 there are C, p ≥ 1 and α > 1
so that

�6
3�
sup
n

Pun0 � v
n
0

((∫ t

0

∫ (
pt−s�y− x� − pt−s�y− x′�)2

γu�s� y�v�s� y�dyds
)p)

≤ Ceλ�x��x− x′�α for �x− x′� ≤ 1


By Jensen’s inequality, the left side of (6.2) is bounded by (let λ′ = 3
4λ)

γp sup
n

Pun0 � v
n
0

(∫ t

0

∫ (
pt−s�y− x� − pt−s�y− x′�)2(

u�s� y�2p + v�s� y�2p)dyds
)

×
(∫ t

0

∫ (
pt−s�y− x� − pt−s�y− x′�)2

dyds

)p−1

≤ C sup
n

[
Pun0 � v

n
0

(∫ t

0

∫ (
u�s� y�8p + v�s� y�8p) exp�−4λ′�y��dyds

)]1/4

(6.4)

×
[∫ t

0

∫
exp

(
4
3
λ�y′�

)(
pt−s�y− x� − pt−s�y− x′�)8/3

dyds

]3/4

× �x− x′�p−1


The last line used Lemma 6.2 of Shiga (1994) to bound the last term on the
left side by C�x− x′�p−1 and used Hölder’s inequality on the first term. Using
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Lemma 6.2 of Shiga (1994) again, for �x− x′� ≤ 1 we get∫ t

0

∫
exp�4/3λ′�y��∣∣pt−s�y− x� + pt−s�y− x′�∣∣8/3 dyds
≤

∫ t

0
�t− s�−5/6

∫
exp�λ�y��(pt−s�y− x� + pt−s�y− x′�)dyds

≤ C exp�λ�x��

A Gronwall argument [see (6.16) of Shiga (1994)], as in the derivation of (6.1),
shows that the first factor on the right side of (6.4) is finite. Using these
estimates in (6.4), we see that (6.3) holds with α = p − 1 and taking p > 2,
we are done.

(b) This is a consequence of Theorem 6.3, whose proof actually shows
the uniqueness of the analogous martingale problem (as for Theorem 2.4),
and standard arguments [see Theorems 4.4.2 and 4.4.6 of Ethier and Kurtz
(1986)]. ✷

As in the lattice case, the duality relation in Theorem 6.3(b) reduces the
longtime behaviour of �ut� vt� with constant initial conditions to the long-time
behavior of ��ut�1�� �vt�1�� with rapidly decreasing initial conditions.

Theorem 6.6. Let u0� v0 ∈ C+
rap. Then limt→∞�ut�1� ≡ �u∞�1� and

limt→∞�vt�1� = �v∞�1� exist Pu0� v0
-a.s. and �u∞�1��v∞�1� = 0� Pu0� v0

-a.s.

Proof. The existence of the a.s. limits follows from Theorem 6.1(d) and
the martingale convergence theorem. The proof of the last assertion (no coex-
istence) proceeds as for the recurrent lattice case and so we only sketch the
parts which are different from the proof of Theorem 1.2(b).

Set γ = 1 to simplify the notation. Let At = ∫ t
0�us� vs�ds. As in the proof of

Theorem 1.2(b), we use Theorem 6.1(b)(ii) to write

�6
5� AT = A
�1�
T +NT�

where A
�1�
T = ∫ T

0 �Ptu0�Ptv0�dt and �Nt� t ≤ T� is a continuous martingale
satisfying

�6
6� �N�T ≤ c
(�u∗

T�1�2 + �v∗
T�1�2)g2T�0�2AT


Here �u∗
T�1� = supt≤T�ut�1�, similarly for �v∗

T�1�, and g2T�x� = ∫ 2T
0 ps�x�ds.

As in the discrete case, some care is needed in the derivation of these for-
mulas. A two-parameter stochastic Fubini theorem is required [Theorem 2.6
of Walsh (1986) may be used]. To verify the integrability hypothesis of this
Fubini theorem, one needs to use (6.2) for appropriate q and λ = 0.

If M = M�u0� v0� is chosen sufficiently large so that �u0�1�−M/2�M/2�� ≥
1
2�u0�1� and similarly for v0, then an application of Chapman–Kolmogorov
leads to

A
�1�
T =

∫ ∫
g2T�y−w�u0�y�v0�w�dydw ≥ g2T�M� 1

4�u0�1��v0�1�




1126 D. A. DAWSON AND E. A. PERKINS

If T >M2,

g2T�M� ≥ e−1/2
∫ 2T

T
�2πt�−1/2 dt

≥ e−1/2
[
g2T�0� − 1√

2
g2T�0�

]
= c0g2T�0��

and so for a universal constant c1 > 0, we have

�6
7� A
�1�
T ≥ c1g2T�0��u0�1��v0�1� for T >M�u0� v0�2


The proof now proceeds exactly as that of Theorem 1.2(b), using (6.6), (6.7)
and the fact that limt→∞ gt�0� = ∞, in place of (3.6), (3.9) and (3.8). ✷

We recall the notation introduced prior to Theorem 1.8. If �φ�ψ� ∈ F̃ define
Hφ�ψ� �Mtem�2 → C by Hφ�ψ�µ� ν� = exp�−�µ+ν�φ�+i�µ−ν�ψ��. Recall also
we may consider C+

tem as a subset of Mtem and so Hφ�ψ is defined on �C+
tem�2

by the above.

Lemma 6.7. Let �Pn� be a sequence of probabilities on �Mtem�2. If

�6
8� sup
n

∫
�µ+ ν�φ−λ�dPn�µ� ν� < ∞ ∀λ > 0

and for each �φ�ψ� in Fc, limn→∞Pn�Hφ�ψ� exists and is finite, then

Pn →w P∞ in �Mtem�2 and limn→∞Pn�Hφ�ψ� = P∞�Hφ�ψ� ∀ �φ�ψ� ∈ Fc.

Proof. It is straightforward to show that (6.8) implies �Pn� n ∈ N� is
relatively compact in the weak topology. An argument similar to, but simpler
than, the proof of Lemma 6.1 shows that �Hφ�ψ� �φ�ψ� ∈ Fc� is a determining
class on �Mtem�2. The result follows. ✷

Proof of Theorem 1.8. We apply the previous lemma. Theorem 6.1(b)(iii)
shows that if λ > 0, then

sup
t

Pu� v
(�ut + vt�φ−λ�

) = sup
t

�u+ v�
∫
Ptφ−λ�x�dx

= �u+ v�
∫
φ−λ�x�dx < ∞


Let �φ�ψ� ∈ Fc. Apply Theorem 6.3(b) with �ũ0� ṽ0� = �φ + ψ�φ − ψ�/2 to
see that

lim
t→∞

Pu� v
(
Hφ�ψ�ut� vt�

)
= lim

t→∞
Pũ0� ṽ0

�exp�−�u+ v��1� ũt + ṽt� + i�u− v��1� ũt − ṽt���
= Pũ0� ṽ0

�exp�−�u+ v��1� ũ∞ + ṽ∞� + i�u− v��1� ũ∞ − ṽ∞���

In the last line �1, ũ∞ ± ṽ∞� = limt→∞�1, ũt ± ṽt� exist a.s. by the martin-
gale convergence theorem [recall Theorem 6.1(d)]. The previous lemma now
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establishes the weak convergence of Pu� v��ut� vt� ∈ ·� in �Mtem�2 as t → ∞.
The identification of the weak limit now proceeds just as in the proof of The-
orem 1.5. Theorem 6.6 is used in place of Theorem 1.2(b). ✷

APPENDIX

Proofs of Theorems 2.2 and 6.1.

Proof of Theorem 2.2.(a). Skorokhod’s Peano existence theorem shows
that on some ���� ��t�P� there are independent ��t�-Brownian motions
�Bk�Wk� k ∈ Sn� and solutions �unt �k�� vnt �k�� k ∈ Zd� t ≥ 0� of

�LS�n

unt �k� = u0�k�� vnt �k� = v0�k� for k ∈ Sc
n� t ≥ 0�

unt �k� = u0�k� +
∫ t

0
unsQ�k�ds

+
∫ t

0
γ�uns �k�vns �k��1/2 dBk

s � k ∈ Sn� t ≥ 0�

vnt �k� = v0�k� +
∫ t

0
vnsQ�k�ds

+
∫ t

0
γ�uns �k�vns �k��1/2 dWk

s � k ∈ Sn� t ≥ 0


Note that by writing

unsQ�k� = ∑
j∈Sn

uns �j�qjk + ∑
j∈Scn

u0�j�qjk

we see that (LS)n is a finite dimensional s.d.e. Then (H1), (H2) and the fact that
u0� v0 ∈ Mtem show the infinite series in the above is absolutely convergent.

We claim that unt �k� ≥ 0 and vnt �k� ≥ 0 ∀k ∈ Zd, ∀ t ≥ 0 a.s. Note that the
local time at 0 of u.n�k� is

L0
t = lim

ε↓0

∫ t

0
1
(
0 < uns �k� ≤ ε

)
γ�uns �k�� �vns �k��dsε−1

≤ lim
ε↓0

∫ t

0
1
(
0 < uns �k� ≤ ε

)�vns �k��ds = 0


Tanaka’s formula implies that
∑
k∈Sn

unt �k�− = Mt +
∫ t

0
a�s�ds�

where M is a continuous local martingale and

a�s� = ∑
k∈Sn

uns �k�−qkk − ∑
k∈Sn

∑
j∈Sn� j
=k

1
(
uns �k� < 0

)
uns �j�qjk

− ∑
k∈Sn

1
(
uns �k� < 0

)( ∑
j∈Scn

u0�j�qjk
)

≤ ∑
k∈Sn

∑
j∈Sn

uns �j�−qjk ≤ 0
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The last inequality is clear because for each j in Sn,
∑

k∈Sn qjk ≤ ∑
k qjk =

0. The previous inequality is seen by considering the cases uns �k� < 0 and
uns �k� ≥ 0 separately. This shows

∑
k∈Sn u

n
t �k�− is a nonnegative supermartin-

gale starting at zero and hence is identically zero a.s. The same argument is
valid for vnt . This proves the nonnegativity claim.

Let TN
n = inf�t� �unt + vnt �1Sn� > N�. Clearly TN

n ↑ ∞ as N → ∞ for each
n. If φs�j� = pt−s�j� k� for s ≤ t (t, k fixed), then φs ∈ Mrap [by (H2)] and
φ̇s�j� = −Qφs�j� [by (H0)] is bounded and continuous. Using (LS)n and Itô’s
lemma, we have for s ≤ t�

�uns �φs� = �u0�1Scnφs� + �u0�1Snφ0�

+
∫ s

0
�unrQ�1Snφr� + �unr �1Snφ̇r�dr

+ ∑
j∈Sn

∫ s

0
φr�j�(γunr �j�vnr �j�)1/2

dBj
r

= �u0�1Scn�φs −φ0�� + �u0� φ0�

+
∫ s

0
�unr �Q1Snφr − 1SnQφr�dr+Nn�u

s �φ��

where Nn�u
s �φ� is defined to be the sum of the stochastic integrals in the

previous line. Write

�unr �Q1Snφr − 1SnQφr� = βn�r� − αn�r��
where

βn�r� = ∑
j/∈Sn

∑
j′∈Sn

unr �j�qjj′φr�j′� = ∑
j/∈Sn

∑
j′∈Sn

u0�j�qjj′φr�j′� ≥ 0

and

αn�r� = ∑
j∈Sn

∑
j′ /∈Sn

unr �j�qjj′φr�j′� ≥ 0


If t′N = t ∧TN
n , we therefore have

�A
1�
�unt′N�φt′N

� = �u0� pt�·� k�� +N
n�u
t′N

�φ� + �u0�1Scn�φt′N
−φ0��

+
∫ t′N

0
βn�r� − αn�r�dr


By (H1) and (H2), for any λ′ > 0 and λ̄ > 0 such that λ′�2λ̄� ≤ λ′,

�A
2�

sup
s≤t

�u0�1Scnφs� ≤ cλ̄ sup
s≤t

∑
j∈Scn

exp�λ̄�j��ps�j� k�

≤ cλ̄ exp�−λ̄n� sup
s≤t

∑
j∈Scn

exp�2λ̄�j��ps�j� k�

≤ c�t� λ� exp�−λ̄n� exp�λ′�k���
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for some c�t� λ̄� which is increasing in t. We will implicitly assume all constants
increase with t in this argument. Similarly for any λ′ > 0 and λ̄ > 0 such that
λ′�λ′�2λ̄�� ≤ λ′� we have

�A
3�

sup
r≤t

βn�r� ≤ cλ̄ sup
s≤t

∑
j/∈Sn

∑
j′∈Sn

exp�λ�j��qjj′ps�j′� k�

≤ exp�−λ̄n�cλ̄ sup
s≤t

∑
j/∈Sn

∑
j′∈Sn

exp�2λ̄�j��qjj′ps�j′� k�

≤ c�t� λ� λ′� exp�−λn� exp�λ′�k�� by (H2) and (H1)


Use Fatou’s lemma, (A.2) and (A.3), while taking means in (A.1), to see that

�A
4�

P
(
unt �k�) ≤ �u0� pt�·� k�� + 2c�t� k� exp�−λn� exp�λ′�k��

+ tc�t� λ� λ′� exp�−λn� exp�λ′�k��
≤ Ptu0�k� + c�t� λ� λ′� exp�−λn� exp�λ′�k��

for any λ′ > 0 and λ > 0 sufficiently small.

First bound �unt′N�φt′N
� by the right side of (A.1) without the

∫ t′N
0 -α�r�dr term,

use (A.2) and (A.3), and then use the analogous bounds for vn and Fatou’s
lemma to conclude that for λ′ > 0, and λ > 0 (sufficiently small, depending
on λ′),

�A
5�

P
(
unt �k�vnt �k′�) ≤ lim inf

N→∞
P
(
unt′N

(
pt−t′N�·� k�)vnt′N

(
pt−t′N�·� k′�))

≤ (�u0� pt�·� k�� + 2c�t� λ̄� exp�−λn� exp�λ′�k��
+ tc�t� λ� λ′� exp�−λn� exp�λ′�k��)

× (�v0� pt�·� k′�� + 2c̃�t� λ� exp�−λn� exp�λ′�k′��
+ tc̃�t� λ� λ′� exp�−λn� exp�λ′�k′��)

≤ Ptu0�k�Ptv0�k′� + c�t� λ� λ′�
× exp�−λn� exp�λ′��k� + �k′��� by (H2)


Use (A.4) and (A.5) in (LS)n to see that for λ, T > 0, if λ′ > 0 is chosen to be
sufficiently small, then for λ = λ�λ′� sufficiently small,

P

(
sup
t≤T

�unt �φ−λ�
)

≤ �u0� φ−λ� + ∑
k∈Sn

∑
j

∫ T

0
P
(
uns �j�)�qjk� exp�−λ�k��ds

+ cP

[(∫ T

0

∑
k∈Sn

exp�−2λ�k��γuns �k�vns �k�ds
)1/2]

≤ �u0� φ−λ� + ∑
k

∑
j

∫ T

0

(
Psu0�j� + c�T�λ� λ′� exp�−λn�

× exp�λ′�j��)�qjk� exp�−λ�k��ds



1130 D. A. DAWSON AND E. A. PERKINS

+ c

[∫ T

0

∑
k

exp�−2λ�k��γ(Psu0�k�Psv0�k�

+ c�T�λ� λ′� exp�−λn+ λ′�k�2�)ds
]1/2

≤ �u0� φ−λ� + c�T�λ� < ∞�

where we have used the choice of λ′ and (H2) in the last line. Hence by sym-
metry we have

�A
6� sup
n

P

(
sup
t≤T

�unt + vnt �φ−λ�
)
< ∞ ∀λ�T > 0


Now let � = �C�R+�R+�2 × C�R+�R�2�Z
d

with its Borel σ-field � and
canonical right-continuous filtration ��t�. Standard weak convergence argu-
ments and (A.6) will now show that ��u.n�k�� v.n�k��B.k�W.k�� k ∈ Zd� is a
tight sequence in � and any weak limit point ��u.�k�� v.�k��Bk�Wk�� k ∈ Zd�
(with law P) will be a solution of (LS)u0� v0

on ���� ��t�P�. For example,
to show tightness of the stochastic integrals in the definition of unt �k� [in
(LS)n] one may work with the predictable square functions, use exponential
bounds on the increments of a continuous martingale in terms of the incre-
ments of the square function (use Dubins–Schwarz) and utilize the fact that
sups≤t uns �k�vns �k� is bounded in probability uniformly in n for each t > 0 and
k in Zd [by (A.6)]. The tightness of the drifts in the definition of unt �k� is
clear from (A.6); (A.6) also shows that ut�·� and vt�·� are Mtem-valued. The
continuity in Mtem will follow from (b)(i) below.

Another approach to the construction of solutions to (LS) is to use the finite-
dimensional approach of Shiga and Shimizu (1980) (see the proof of their
Theorem 2.1). This again uses (A.6) and (A.5).

(b)(i) Let �u� v� be a solution to (LS)u0� v0
where u0� v0 ∈ Mtem. Define unt by

unt �k� = u0�k� +
∫ t

0

∑
j∈Sn

us�j�qjk ds

+
∫ t

0

(
γus�k�vs�k�)1/2

dBk
s � t ≥ 0� k ∈ Zd


Note that limn→∞ unt �k� = ut�k�. If φn
s �j� = 1Sn�j�pt−s�j� k� for s ≤ t (t, k

fixed) then a simple calculation [similar to, but simpler than, that of (A.1)]
shows that for s ≤ t,

�A
7�

�uns �φn
s � = �u0� φ

n
0� +Nn�u

s �φ� −
∫ s

0

∑
j∈Sn

∑
j′ /∈Sn

ur�j�qjj′pt−r�j′� k�dr

≤ �u0� φ
n
0� +Nn�u

s �φ��

Nn�u
s �φ� = ∑

j∈Sn

∫ s

0

(
γur�j�vs�j�)1/2

pt−r�j� k�dBj
r
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As in (a), Fatou’s lemma and a stopping argument leads to

�A
8�
P
(
ut�k�) ≤ lim inf

n→∞ P
(
unt �k�) ≤ Ptu0�k� and similarly

P
(
vt�k�) ≤ Ptv0�k�

and

�A
9� P
(
ut�k�vt�k′�) ≤ lim inf

n→∞ P
(
unt �k�vnt �k�) ≤ Ptu0�k�Ptv0�k�


Argue as in the derivation of (A.6) [now using (A.8) and (A.9)] to see that for
any λ�T > 0�

P

(
sup
t≤T

�ut + vt�φ−λ�
)

= lim
n→∞ P

(
sup
t≤T

�ut + vt�1Snφ−λ�
)
< ∞


The same reasoning shows that

lim
n→∞ P

(
sup
t≤T

�ut + vt�1Scnφ−λ�
)

= 0 ∀λ�T > 0


It follows that �ut�φ−λ� is a.s. continuous in t since it is the uniform limit of
�ut�1Snφ−λ�, t ∈ �0�T� as n → ∞ a.s. This shows that �u. � v.� ∈ �tem a.s.

(ii) Let φ ∈ Ms
rap, fix t > 0 and let φn�s� k� = ISn�k�Pt−sφ�k� for s ≤ t.

If Nu
s �φn� is defined as Nu

s �t�φ� in the statement of the Theorem 2.2(b)(ii),
but with k summed over Sn, then Itô’s lemma gives

�A
10� �ut�φn�t�� = �u0� φn�0�� +
∫ t

0
�us� φ̇n�s��

+ �usQ�φn�s��ds+Nu
t �φn�


Note that

P

(∫ t

0
��us� φ̇n�s�� + �usQ�φn�s���ds

)

= P

(∫ t

0

∣∣∣∣−
∑
j∈Sn

∑
k∈Scn

us�j�qjkPt−sφ�k�

+ ∑
j∈Scn

∑
k∈Sn

us�j�qjkPt−sφ�k�
∣∣∣∣ds

)

→ 0 as n → ∞�

where in the last line we have used (A.8) and (H2) and argued as in the
derivation of (A.3). Equation (A.9) shows that Nu

t �φn� is a square integrable
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martingale and also shows that for n > m and λ′ > 0�

P
(�Nu�φn� −Nu�φm��t

) ≤ P

(∫ t

0

∑
k∈Sn−Sm

γPt−sφ�k�2Psu0�k�Psv0�k�ds
)

≤ c�t� λ′�
∫ t

0

∑
k∈Sn−Sm

Pt−sφ�k�2 exp�2λ′�k��ds

≤ c�t� λ′��φ�∞
∫ t

0

∑
k∈Sn−Sm

Pt−sφ�k� exp�2λ′�k��ds

→ 0 as n�m → ∞ by (H2)


The above bounds allow us to prove (ii) by letting n → ∞ in (A.10), using a
similar argument for �vt�ψ�, and noting that the orthogonality of the martin-
gales is obvious.

(iii) This is immediate from (ii) and a monotone class argument.
(iv) For φ as in the statement of (iv), if φn�j� = ISn�j�φ�j�� we may

write

�ut�φn� = �u0� φn� +
∫ t

0
�usQ�φn�ds

+ ∑
k∈Sn

φ�k�
∫ t

0

√
γusvs�k�dBk

s 


One now may easily prove (iv) by letting n → ∞ and using the moments
obtained in (iii) and (H2) to see that the martingale term converges in L2 and
the drift term converges in L1.

(c) Let u0� v0 ∈ Mrap. If λ > 0 we may use (b)(iv) with φ = 1Snφλ to see that

P

(
sup
t≤T

�ut�1Scnφλ�
)

≤ �u0�1Scnφλ�

+ cP

(( ∑
k∈Scn

∫ T

0
γus�k�vs�k�φλ�k�2 ds

)1/2)

+
∫ T

0

∑
k∈Scn

∑
j

P
(
us�j��qjk�φλ�k�)ds

≤ �u0�1Scnφλ�

+ c
∑
k∈Scn

(∫ T

0
γPsu0�k�Psv0�k�φλ�k�2 ds

)1/2

+
∫ T

0

∑
k∈Scn

∑
j

Psu0�j��qjk�φλ�k�ds

→ 0 as n → ∞
by an easy argument using (H2). From this it is easy to see that �ut� vt� ∈ �rap
a.s. and P�supt≤T�ut + vt�φλ�� < ∞. It is also clear from the above that if
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�φ� + �ψ� ≤ cφλ for some c� λ > 0, then we may apply (b)(iv) to 1Snφ and 1Snψ
and let n → ∞ to get (iv) for φ and ψ. The derivation of (b)(ii) for φ, ψ in
Ms

tem is similar.
(d) Let u0� v0 ∈ MF. Use the bounds

∑
k

Psu0�k�Psv0�k� = ∑
i

∑
j

u0�i�p2s�i� j�v0�j� ≤ �u0�1��v0�1� < ∞

and
∑
k

∑
j

Psu0�j��qjk� ≤ 2�q�∞
∑
j

Psu0�j�
(

recall
∑
k

�qjk� = 2�qjj�
)

= 2�q�∞�u0�1� < ∞�

and argue as in (c) with λ = 0 to see that P�supt≤T�ut�1�� < ∞, �u. � v.� ∈ �F

a.s., and (b)(iv) holds for φ�ψ ∈ Ms
b. The derivation of (b)(ii) for φ�ψ ∈ Ms

b is
now also clear. Since Q1 = 0, the last assertion is immediate from the above
extension of (b)(iv) with φ = ψ ≡ 1. ✷

We next turn to the proof of Theorem 6.1, the corresponding result for the
stochastic p.d.e. We need to work with super-Brownian motions with initial
condition u0�x�dx where u0 ∈ C+

tem and as we don’t know of a proper reference,
a terse outline of the theory is presented. If σ � R → R+ is bounded and
measurable, s0 ≥ 0, u0 ∈ C+

tem and Ẇ is a white noise on R+ × R, Theorem 2.5
of Shiga (1994) establishes the existence of a continuous C+

tem-valued solution,
u, of

�SP�
∂u

∂t
�t� x� = 1

2
∂2u

∂x2
�t� x� + (

σ�x�u�t� x�)1/2
Ẇ� t ≥ s0�

u�s0� x� = u0�x�

(The methods in Shiga’s paper easily accommodate a variable σ .) A precise
formulation of a solution to (SP) on ���� ��t�P� is given by the obvious ana-
logue of that for �SPDE�u0� v0

. If µ is a measure and φ is a real-valued func-
tion, µ�φ� denotes the integral

∫
φdµ. We now set s0 = 0 for convenience. The

measure-valued process Xt�dx� = u�t� x�dx clearly satisfies the martingale
problem

�MP�u0� σ

∀φ ∈ C2
rap� Mt�φ� = Xt�φ� − �u0� φ� −

∫ t

0
Xs�φ′′/2�ds

is a continuous ��t�-local martingale with

�M�φ��t =
∫ t

0
Xs�σ2φ2�ds


We need only check the extension from C2
c to C2

rap. For this, suppose more
generally that φ ∈ C2

λ for some λ > 0 and let hN be a smooth function with
support in �−N�N� which equals one on �−N+1�N−1�. A simple application
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of the fundamental theorem of calculus shows that �φ′�λ ≤ λ−1�φ′′�λ < ∞. This
allows us to use (MP)u0� σ

with φN = hNφ in place of φ and let N → ∞ to
derive (MP)u0�σ

for φ.
Let Mtem denote the space of measures, µ, on R such that µ�φ−λ� < ∞

∀λ > 0 and topologize Mtem so that µn → µ in Mtem iff limn→∞ µn�φ� = µ�φ�
∀φ ∈ Cc�R� ∪ �φ−λ� λ > 0�. One readily defines a metric ρ on Mtem so
that �Mtem� ρ� is Polish. In (MP)u0� σ

we will implicitly assume that X. is
an ��t�-adapted continuous Mtem-valued process. As in Chapter 2 of Walsh
(1986), the martingale measure M in (MP)u0� σ

extends to integrands which
are � �� .� × �-measurable �� �� .� is the predictable σ-field on R+ × � and
� is the Borel σ-field on R] and satisfy

∫ T
0 Xs�σ2φ2

s�ds < ∞ ∀T > 0 a.s.
Then Mt�φ� = ∫ t

0

∫
φ�s� x�ω�dM�s� x� is still a continuous ��t�-local mar-

tingale with square function
∫ t

0 Xs�σ2φ2
s�ds
 Now (MP)u0� σ

extends in the
obvious way to those functions φ� R+ × R → R such that t → φ�t� ·� and
t → �∂φ/∂t + 1

2�∂2φ/∂x2���t� ·� are continuous Cλ-valued functions on �0�T�,
where λ > 0 is fixed. For example, one may use Proposition 1.3.3 of Ethier and
Kurtz (1986) and the generator of space-time Brownian motion to bootstrap
up from �φ�s� x� = φ1�s�φ2�x�� φ1 ∈ C1��0�T��� φ2 ∈ C2

λ�. If φ ∈ C
2�+
λ , let

Utφ�x� denote the unique solution of

∂Us

∂s
= 1

2
∂2

∂x2
Us − σ2

2
U2
s � U0 = φ


Now Pt is a strongly continuous semigroup on Cλ [Lemma 6.2 of Shiga (1994)]
and so t → Utφ is a continuous C+

λ -valued map. Let φ�s� x� = UT−sφ�x� in
(the extended) (MP)u0� σ

(valid because ∂φs/∂s+ 1
2φxx = σ2φ2

s/2� and use Itô’s
lemma as in the usual uniqueness proof for superprocesses to see that

P
(
exp�−XT�φ��) = exp

(−�u0�UTφ�)

This gives the uniqueness in law of solutions to (MP)u0� σ

and therefore the
uniqueness in law [on C�R+�C

+
tem�] of solutions to (SP). Let Qs0� u0� σ

denote
the law on C�R+�C

+
tem� of the unique (in law) solution of (SP).

Proof of Theorem 6.1. (a) Let ���� ��t� be �tem with its Borel σ-field
and canonical right-continuous filtration. The coordinate variables on �tem
will be denoted by �ut� vt� and � �s� t� = σ��ur� vr�� s ≤ r ≤ t�. Let u�n��t� x� =
u��tn�/n� x� ∧ n and similarly define v�n��t� x�. Here Qn is the unique law on
���� � such that for all i in Z+ and A in � �i/n� �i+ 1�/n�,

Qn
(�u� v� ∈ A � �i/n

) = Q
i/n�ui/n� γv

�n�
i/n

× Q
i/n� vi/n� γu

�n�
i/n

�A�

Hence given �i/n, on �i/n� �i+1�/n�, �u.� v.� evolves like a pair of independent

super-Brownian motions with branching rates γv�n�
i/n and γu�n�

i/n, respectively. It
follows easily from (MP)u0� σ

that

�ME�
Qn

(�ut�φ�) = �u0�Ptφ��
Qn

(�vt�ψ�) = �v0�Ptψ� for φ�ψ ∈ Crap�
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and that if φ, ψ ∈ C2
rap, then

M1
t �φ� = �ut�φ� − �u0� φ� −

∫ t

0
�us�φ′′/2�ds

and

M2
t �ψ� = �vt�ψ� − �v0� ψ� −

∫ t

0
�vs�ψ′′/2�ds

are orthogonal continuous ��t�-local martingales such that

�M1�φ��t =
∫ t

0
�γv�n�

s us�φ
2�ds and �M2�ψ��t =

∫ t

0
�γu�n�

s vs� ψ
2�ds


Denote the above martingale problem by (MP)n. As for superprocesses, M1
t �φ�

and M2
t �ψ� extend to orthogonal martingale measures and to the usual class

of predictable integrands, and (MP)n extends to time dependent coefficients
including φ�s� y� = pt+ε−s�y−x� ≡ pt+ε−s�y�x�, s ≤ t, for ε > 0. This leads to

�A
11� �ut�pε�·� x�� = Pt+εu0�x� +
∫ t

0

∫
pε+t−s�y�x�dM1�s� y�� Qn-a.s.�

and Fatou’s lemma shows that

�A
12�
Qn

(
u�t� x�) ≤ Ptu0�x��Qn

(
v�t� x�) ≤ Ptv0�x��

Qn
(
u�s� x�v�t� y�) ≤ Psu0�x�Ptv0�y�


To check that we may let ε ↓ 0 in the stochastic integral in (A.11), note that
for λ > 0�

Qn

(∫ t

0

∫ (
pε+t−s�y�x� − pt−s�y�x�)2

v
�n�
s �y�us�y�dyds

)

≤
∫ t

0

∫ (
pε+t−s�y�x� − pt−s�y�x�)2

P�sn�/nv0�y�Psu0�y�dyds by (A.12)

≤
(∫ t

0

∫ (
pε+t−s�y�x� − pt−s�y�x�)2

dyds

)1/2

c�t� λ�

×
(∫ t

0

∫ (
pε+t−s�y�x�2 + pt−s�y�x�2) exp�λ�y��dyds

)1/2

by the Cauchy–Schwarz and Lemma 6.2(ii) of Shiga (1994)

≤ c�t� λ�ε1/4
(∫ t

0
�ε+ t− s�−1/2 + �t− s�−1/2 ds

)1/2

× exp�λ�x�/2� by Lemma 6.2 of Shiga (1994)

≤ c�t� λ�ε1/4 exp�λ�x�/2�

Therefore, letting ε ↓ 0 in (A.11) gives

�A
13� u�t� x� = Ptu0�x� +
∫ t

0

∫
pt−s�y�x�dM1�s� y�� Qn-a.s.
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The Gronwall argument in Shiga (1994) (Section 6) [which relies on (A.13)
and its counterpart for v�t� x�] is now readily modified to prove

�A
14� sup
n

sup
s≤t

∫
exp�−λ�x��Qn

(
u�s� x�q + v�s� x�q)dx < ∞ ∀λ� q� t > 0


Now proceed as in Section 6 of Shiga (1994) to see that �Qn� is tight on �tem
[the truncation in the definition of u�n� and v�n� poses no difficulties]. Let
P be any limit point of �Qn�. Standard arguments, using (MP)n and (A.14)
show that for φ, ψ ∈ C2

rap, M1
t �φ� and M2

t �ψ� [defined in (MP)n] are square
integrable continuous ��t�-martingales under P such that

�M1�φ��t =
∫ t

0
�γusvs�φ2�ds� �M2�ψ��t =

∫ t

0
�γusvs�ψ2�ds

and

�M1�φ��M2�ψ��t = 0


By enlarging the probability space to include independent white noises W̄1
and W̄2, one may easily define mutually independent white noises �W1�W2�
in terms of �M1�M2� W̄1� W̄2� so that �u� v�W1�W2� solves �SPDE�u0� v0

. This
proves (a).

(b) Let �u� v�W1�W2� be a solution to �SPDE�u0� v0
on ���� ��t�P�. The

representation in (iv) for φ, ψ ∈ C2
rap (or even C2

λ for some λ > 0) follows
from the corresponding result for φ, ψ in Cc by approximating by hNφ and
hNψ, as for (MP)u0� σ

. Note that the fact that ut and vt are C+
tem-valued is

used here. The integrability assertions in (iv) will be immediate from (iii).
As in our discussion for superprocesses we may extend the semimartingale
decomposition in (iv) in the obvious manner to φ� R+ × R → R such that
s → φ�s� ·� and s → �∂φ/∂s��s� ·� + 1

2�∂2/∂x2�φ�s� ·� are continuous Cλ-valued
maps on �0� t� for fixed λ, t > 0. If φ ∈ C2

rap, these conditions are satisfied by
φ�s� x� = Pt−sφ�x� and lead to the representation in (i). If φ ∈ Crap, then we
have the representation in (i) for Pεφ ∈ C2

rap and by taking ε ↓ 0 we get this
representation for φ [the square functions of the martingale term converge in
probability because sups≤t �Psφ�λ < ∞ and �u. � v.� ∈ �tem a.s.].

To prove (ii), fix ε > 0, x ∈ R and use (i) with φ�y� = pε�x − y�. Now let
ε ↓ 0 and use Fatou’s lemma (both with respect to ε and an appropriate family
of stopping times to handle the stochastic integrals) to see that

P
(
u�t� x�) ≤ Ptu0�x�� P

(
v�t� x�) ≤ Ptv0�x��

P
(
u�t� x�v�t� x′�) ≤ Ptu0�x�Ptv0�x′�


The representations in (ii) are now obtained by letting ε ↓ 0 in the above
representation, as in the derivation of (A.13) and the square integrability of
the stochastic integrals is also immediate from this argument. The first three
equalities in (iii) are immediate from (ii) and the last three follow by Fubini’s
theorem. Finally (6.1) may be proved by a Gronwall argument using (ii) as in
Section 6 of Shiga (1994).
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(c) Let �u� v� be as above but with u0, v0 ∈ C+
rap. Let φ, ψ ∈ C2

tem, hN be as
in the derivation of (MP)u0� σ

and set �φN�ψN� = �hNφ�hNψ�. Apply (b)(iv) to
�φN�ψN� and let N → ∞ to see that it remains valid for �φ�ψ�. The first set
of moments in (b)(iii) show that the stochastic integral terms converge in L2

uniformly in t ≤ T and the drifts converge in total variation in L1. Note that
in fact (iv) holds if φ, ψ ∈ C2

λ for some λ > 0. As in (b), but with C−λ in place
of Cλ, (b)(i) now follows for φ in Ctem.

To prove (6.2) we modify the proof of Theorem 2.4 in Shiga (1994). By the
above argument we see that t → ∫ �coshλx�u�t� x�dx is continuous for all
λ ∈ R. Since �u. � v.� ∈ �tem, this shows that for T, λ, q > 0�

sup
t≤T

∫
φλ�x�u�t� x�q dx

≤ c�T�q�ω� sup
t≤T

∫
exp��λ+ q− 1��x��u�t� x�dx

≤ 2c�T�q�ω� sup
t≤T

∫
cosh

(�λ+ q− 1�x)u�t� x�dx < ∞ a.s.

Therefore,

Tk = inf
{
t�

∫
exp�λ�x��(u�t� x�q + v�t� x�q)dx > k

}
↑ ∞ a.s. as k → ∞


Shiga’s Gronwall argument is now easily modified to show that

sup
k

sup
r≤T

P

(∫
exp�λ�x��(u�r� x�q + v�r� x�q)dx1�r ≤ Tk�

)
< ∞ ∀q� λ�T > 0


Fatou’s lemma now gives (6.2). Arguing as in the proof of Theorem 2.4 of Shiga
(1994) [using a suitably modified version of Lemma 6.3(iii) of that paper], one
easily shows that �u.� v.� ∈ �rap a.s.

(d) If u0� v0 ∈ C+
int, the validity of (b)(i) and (iv) for φ, ψ as in the statement

of the theorem follows as in (c) (use Cb in place of Cλ). Set φ = ψ = 1 to get
the last assertion which implies �ut� vt� ∈ �C+

int�2 ∀t ≥ 0 a.s. ✷
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