
The Annals of Probability
1998, Vol. 26, No. 3, 925–967

RANDOM PERTURBATIONS OF NONLINEAR OSCILLATORS

By Mark Freidlin1 and Matthias Weber2

University of Maryland and Technische Universität Dresden

Degenerate white noise perturbations of Hamiltonian systems in R2

are studied. In particular, perturbations of a nonlinear oscillator with 1
degree of freedom are considered. If the oscillator has more than one stable
equilibrium, the long time behavior of the system is defined by a diffusion
process on a graph. Inside the edges the process is defined by a standard
averaging procedure, but to define the process for all t > 0� one should
add gluing conditions at the vertices. Calculation of the gluing conditions
is based on delicate Hörmander-type estimates.

1. Introduction. Consider an oscillator with 1 degree of freedom:

Ẍt + f�Xt� = 0� X0 = x ∈ R1� Ẋ0 = y ∈ R1	(1.1)

Let f�x� be a smooth enough generic function such that

lim sup
x→−∞

f�x� < 0� lim inf
x→∞ f�x� > 0� F�x� =

∫ x
0
f�y�dy	

One can introduce the Hamiltonian H�x�y� = 1
2y

2 +F�x� of system (1.1) and
rewrite (1.1) in the Hamiltonian form

Ẋt = Yt ≡ ∂H
∂y
� Ẏt = −f�Xt� ≡ −∂H

∂x
�

X0 = x� Y0 = y	
(1.2)

The phase picture of this system is given in Figure 1c. As is known, the Hamil-
tonian functionH�x�y� is a first integral of the systemH�Xt�Yt� =H�x�y� =
const. The flow in R2 defined by system (1.2) preserves the area. The measure
on each periodic trajectory with density const./
∇H�x�y�
 (with respect to the
length element dl on the trajectory) is invariant.

Consider now random perturbations of system (1.1) by the white noise

¨̃Xεt + f�X̃εt � = √
εẆt� X̃ε0 = x� ˙̃Xε0 = y�(1.3)

where Wt is the Wiener process in R1 and ε is a small positive parameter.
One can rewrite (1.3) as a system:

˙̃Xεt = Ỹεt � ˙̃Yεt = −f�X̃εt � + √
εẆt� X̃ε0 = x� Ỹε0 = y	(1.4)
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Fig. 1.

The trajectory �X̃εt � Ỹεt � will be close to the trajectory of system (1.2) with the
same initial conditions on any finite time interval if ε is small. More precisely,

lim
ε↓0
Px�y

{
max
0≤t≤T

(
X̃εt −Xt
 + 
Ỹεt −Yt

)
> δ

}
= 0

for any δ, T > 0	 Moreover, one can write down, under certain conditions, an
asymptotic expansion X̃εt =Xt+

√
εX

�1�
t +εX�2�

t +· · · in the powers of
√
ε valid

on a finite time interval, but, as a rule, long time behavior of the perturbed
system is of interest. A typical example of such a problem is the exit problem.

Let G denote the set of points �x�y� which are inside ∂G1 and outside ∂G2,
where ∂G1 and ∂G2 are the trajectories of the nonperturbed system (compo-
nents of the level sets of H) shown in Figure 1. Suppose the system described
by (1.3) is working if �X̃εt � Ỹεt � ∈ G and is out of service for

t ≥ τ̃ε = min
{
t� �X̃εt � Ỹεt � �∈ G}	

The expected lifetime of the system Ex�yτ̃
ε is of interest [the subscript �x�y�

in the expectation sign means the initial point]. Of course, one can write down
a boundary problem for the function ũε�x�y� = Ex�yτ̃ε:

ε

2
∂2ũε

∂y2
+ y∂ũ

ε

∂x
− f�x�∂ũ

ε

∂y
= −1� �x�y� ∈ G�

ũε�x�y�∣∣�x�y�∈∂G1
= ũε�x�y�∣∣�x�y�∈∂G2

= 0�
(1.5)
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but it is not simple to solve this degenerate equation even numerically. One
can see that ũε�x�y� → ∞ as ε ↓ 0 for �x�y� ∈ G	 It follows from the results of
this paper that a nontrivial limε↓0 εũ

ε�x�y� = u�x�y� exists, and we calculate
u�x�y� explicitly.

To deal with finite time intervals, let us change the time in the process
�X̃εt � Ỹεt �: put Xεt = X̃εt/ε and Yεt = Ỹεt/ε	 The process �Xεt �Yεt � satisfies the
equations

Ẋεt = 1
ε
Yεt � Ẏεt = −1

ε
f�Xεt � + Ẇt� Xε0 = x� Yε0 = y	(1.6)

Here Wt is a Wiener process which is different from Wt in (1.3) or (1.4). The
displacement of �Xεt �Yεt � in a small but independent of ε time interval consists
of the fast motion along the deterministic trajectories with “speed” of order ε−1

and the slow motion in the direction orthogonal to the deterministic trajectory
with speed of order 1 as ε ↓ 0	 The fast component can be characterized by
the invariant density const./
∇H�x�y�
 on the corresponding nonperturbed
trajectory. The slow component, at least locally, is described by the change
of H�Xεt �Yεt �	 Let, first, the function f�x� have just one zero (see Figure 2).
This means that F�x� has one minimum, say, at x = 0� F�0� = 0� as well
as the function H�x�y� = 1

2y
2 +F�x�	 Then the value of H�x�y� defines the

deterministic trajectory in a unique way. Denote by C�z�, z ≥ 0� the level set
of H�x�y�: C�z� = ��x�y� ∈ R2� H�x�y� = z�	 Applying the Itô formula to
H�Xεt �Yεt � and taking into account that the gradient ∇H�x�y� is orthogonal
to ∇̄H�x�y� = �∂H/∂y�−∂H/∂x� = �y�−f�x��� we have

H�Xεt �Yεt � −H�x�y� =
∫ t

0

∂H

∂y
�Xεs�Yεs�dWs + 1

2

∫ t
0

∂2H

∂y2
�Xεs�Yεs�ds	(1.7)

Using the averaging procedure (with respect to the fast motion), it is easy to
check that the second term in the right-hand side of (1.7) is equivalent to

t

2

∫
C�z�

Hyy�x�y�dl

∇H�x�y�
 ·

(∫
C�z�

dl


∇H�x�y�

)−1

for 0 < ε� t� 1� H�x�y� = z	 Here dl is the length element on C�z�.
Using the self-similarity of the Wiener process, the first integral in (1.7)

can be written as

W̃∫ t
0 
Hy�Xεs�Yεs�
2 ds

with a proper Wiener process W̃t	 Using the same averaging procedure, one
can see that

∫ t
0

∣∣Hy�Xεs�Yεs�
∣∣2 ds ∼ t

∫
C�z�

H2
y�x�y�dl


∇H�x�y�
 ·
(∫
C�z�

dl


∇H�x�y�

)−1

�
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Fig. 2.

0 < ε � t � 1	 This implies that the processes Zεt = H�Xεt �Yεt � converge
weakly on any finite time interval to the process Zt governed by the operator

L = 1
2
A�z� d

2

dz2
+B�z� d

dz
�

A�z� = λ�z�−1
∫
C�z�

H2
y�x�y� dl


∇H�x�y�
 �

B�z� = λ�z�−1
∫
C�z�

Hyy�x�y�dl
2
∇H�x�y�
 �

λ�z� =
∫
C�z�

dl


∇H�x�y�
 	

The process Zt changes in R+ = �z ∈ R1� z ≥ 0�� the point z = 0 is inac-
cessible.
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Since C�z� is the level set of H�x�y��

a�z� =
∫
C�z�

H2
y�x�y�dl


∇H�x�y�
 =
∫
C�z�

(
0�Hy

) · ∇Hdl

∇H


and the last integral is the flux of the vector field �0�Hy�x�y�� through the
contour C�z�	 Then, according to the Gauss theorem,

a�z� =
∫
G�z�

div�0�Hy�x�y��dxdy =
∫
G�z�

Hyy�x�y�dxdy�

where G�z� is the domain bounded by C�z�	 Using this, one can easily derive
that

d

dz
a�z� = d

dz

∫
C�z�

H2
y�x�y�dl


∇H�x�y�
 =
∫
C�z�

Hyy�x�y�dl

∇H�x�y�
 	

Thus the operator L corresponding to the limiting process Zt can be written
in the form

Lv�z� = 1
2λ�z�

d

dz

(
a�z�dv�z�

dz

)
� z ≥ 0	(1.8)

We will see in Section 3 that explicit expressions for λ�z� and for a�z� through
the function f�x� can be given.

If, as before, τ̃ = min�t� H�X̃εt � Ỹεt � �∈ �M1�M2��� with suitable 0 < M1 <
M2� we can conclude from the weak convergence of H�Xεt �Yεt � to Zt that

lim
ε↓0
εEx�yτ̃

ε = v�H�x�y���

where v�z� is the solution of the problem

Lv�z� = −1� M1 < z < M2�

v�M1� = v�M2� = 0
(1.9)

and is equal to zero for z �∈ �M1�M2�	 Problem (1.9), of course, can be solved
explicitly.

Consider now the case of function f�x� with more than one zero. This means
that F�x� and H�x�y� have several critical points (see Figure 1). In this case,
the set of trajectories can be divided into several families. Inside each family,
H�x�y� has different values on different periodic trajectories, but the values of
H�x�y� can be the same for trajectories from different families. For example,
there are five families shown in Figure 1: trajectories inside γ3� trajectories
inside γ4� trajectories inside γ1� trajectories inside γ2 but outside γ3 ∪ γ4�
trajectories around γ1 ∪ γ2	 The families are separated by the separatrices
γ1, γ2, γ3, γ4	 Each periodic trajectory is a connected component of C�z� for
some z ∈ R	 The trajectory of the nonperturbed system, in the case of H�x�y�
with several critical points, is no longer defined by the value of H�x�y� in
a unique way. Thus the averaging procedure (along the fast motion) depends
not only on the value of H�x�y�� but also on the index of the family. In other
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words, system (1.2) has an additional first integral k�x�y� equal to the index
of the family containing the trajectory starting at �x�y�	 This new discrete
first integral k�x�y� is independent of H�x�y�	 This results in the fact that
H�Xεt �Yεt � does not converge to a Markov process. To have, in the limit, a
Markov process, one should extend the phase space by inclusion of the value
of k�x�y�	

To realize this idea, consider the set of all connected components of the level
sets of the Hamiltonian H�x�y� provided with the natural topology. This set
is homeomorphic to a graph ( (see Figure 1). Each periodic trajectory corre-
sponds to an interior point of one of the edges. The equilibrium points, where
H�x�y� has maximum or minimum, correspond to the vertices connected just
with one edge. Such vertices are called exterior. Each saddle pointO of system
(1.2), together with two [we assume that f�x� is a generic function] trajecto-
ries for which O is an attractor as t→ ±∞� corresponds to a vertex connected
with three edges (interior vertex). For example, the vertices O2 and O4 in Fig-
ure 1b are interior vertices. The equilibrium point O2 (O4) together with the
trajectories γ1 and γ2 (γ3 and γ4) corresponds to the vertex O2 ∈ ( (O4 ∈ ().

To introduce a coordinate system on (� let us index each edge of the graph
( with a number 1�2� 	 	 	 � n	 Then the value of H�x�y� on the level set com-
ponent corresponding to a point P ∈ ( together with the index i = i�P� of
the edge containing P forms a coordinate system on (	 We write O ∼ Ik if
the vertex O is an end of the edge Ik	 If O ∼ Ik1

, O ∼ Ik2
, O ∼ Ik3

and H0
is the value of H�x�y� at the equilibrium point corresponding to O� then the
coordinates �H0� k1�� �H0� k2� and �H0� k3� correspond to the same point O	
If a point �z� k� is not a vertex of (� it corresponds to a periodic trajectory
Ck�z�	 Each level set C�z� = ��x�y�� H�x�y� = z� is a union of a finite num-
ber of connected components Ck�z�	 One can define the discrete first integral
k�x�y� as the index of the edge Ik ⊂ ( containing the point corresponding to
the periodic trajectory starting at �x�y�	

Introduce a mapping Y� R2 → ( such that Y�x�y� = �H�x�y�� k�x�y�� ∈ (	
Consider processes Y�Xεt �Yεt � = �H�Xεt �Yεt �, k�Xεt �Yεt �� on (, ε > 0	 We
prove that these processes converge weakly in the space C0T�(� of continuous
functions ϕ� �0�T → ( to a diffusion process Yt on (	

A diffusion process on a graph ( with edges I1� 	 	 	 � In and vertices O1� 	 	 	 �
Om is defined by a family of second order elliptic, maybe degenerate, opera-
tors L1� 	 	 	 �Ln and by gluing conditions at the vertices [6]. The operator Lk
describes the process on Ik until it hits an end Oi of Ik	 Then the gluing con-
dition atOi defines the process. We calculate the operators L1� 	 	 	 �Ln and the
gluing conditions at the vertices for the limiting process Yt on the graph cor-
responding to the Hamiltonian H�x�y�	 The operator Lk on Ik, k = 1� 	 	 	 � n�
is defined by formula (1.8), as in the case of one critical point, but one should
replace the integration over C�z� in the definition of λ�z� and a�z� by the
integration over Ck�z�	

The gluing conditions for the limiting process are defined by the description
of the space of functions on ( belonging to the domain of definition of the
generator of the process. At an interior vertexOk� Ok ∼ Ii1� Ok ∼ Ii2 andOk ∼
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Ii3� a smooth function u�z� i� on ( belongs to the domain of the generator iff

αki1
du

dz
�z� i1�

∣∣∣∣
�z� i1�=Ok

+ αki2
du

dz
�z� i2�

∣∣∣∣
�z� i2�=Ok

= Sαki3
du

dz
�z� i3�

∣∣∣∣
�z� i3�=Ok

�

if H�Y−1�z� i�� increases when z approaches Ok for i = i1 and i = i2 and
decreases when i = i3	 To define the constants αki1� αki2 and αki3� one should
consider the set Y−1�Ok�	 This set consists of two loops γ and γ′� γ ∩ γ′ =
�Ok�	 For example, in Figure 1, loops γ1 and γ2 connected with O2� γ3 and
γ4 connected with O4	 Let γ and γ′ be the loops which are the limits of the
periodic trajectories corresponding to Ii1 and Ii2� respectively. Then

αki1 =
∫
γ

H2
y�x�y�


∇H�x�y�
 dl� αki2 =
∫
γ′

H2
y�x�y�


∇H�x�y�
 dl� αki3 = αki1 + αki2 	

No special conditions besides the boundness should be imposed at the exterior
vertices. This corresponds to the fact that the process �Xεt �Yεt � with probability
1 never hits the point corresponding to the exterior vertex. The operators Lk
and the gluing conditions define the limiting process in a unique way. The
weak convergence of Y�Xεt �Yεt � to the process Yt allows us, in particular, to
calculate limε↓0 εEx�yτ̃

ε explicitly (see Section 3).
Actually, here we study a slightly more general problem. Consider a Hamil-

tonian system with 1 degree of freedom:

Ẋt = ∂H
∂y

�Xt�Yt�� Ẏt = −∂H
∂x

�Xt�Yt�� X0 = x ∈ R1�

Y0 = y ∈ R1	

(1.10)

The Hamiltonian H�x�y� is assumed to have continuous derivatives of any
order, lim
x
+
y
→∞H�x�y� = ∞	 Moreover, assume that H�x�y� is a generic
function. This means that H�x�y� has a finite number of critical points and
all of them are nondegenerate. In addition, let any critical value be accepted
just at one critical point. Suppose the second of equation (1.10) is perturbed
by a small white noise:

˙̃Xεt = ∂H
∂y

�X̃εt � Ỹεt �� ˙̃Yεt = −∂H
∂x

�X̃εt � Ỹεt � + √
εẆt	(1.11)

After the time change Xεt = X̃εt/ε and Yεt = Ỹεt/ε� we have the following equa-
tions for Xεt and Yεt :

Ẋεt = 1
ε

∂H

∂y
�Xεt �Yεt �� Ẏεt = −1

ε

∂H

∂x
�Xεt �Yεt � + Ẇt�

Xε0 = x� Yε0 = y	
(1.12)
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Again, if H�x�y� has just one critical point (minimum), H�Xεt �Yεt � converges
as ε ↓ 0 to a diffusion process which can be calculated using the averaging
procedure. If H�x�y� has several critical points, an additional first integral
appears, and H�Xεt �Yεt � no longer converges to a Markov process. One can
consider the graph ( homeomorphic to the set of connected components of
the level sets of the Hamiltonian and introduce the mapping Y� R2 → ( in
the same way as above. We show that the processes Y�Xεt �Yεt � on ( converge
weakly to a diffusion process on ( and calculate the characteristics of the
limiting process. The result is:

Theorem 1. Let the Hamiltonian H�x
¯
�, x

¯
= �x�y� ∈ R2� be such that:

(i) H�x
¯
� ∈ C∞�R2�	

(ii) H�x
¯
� ≥ A1
x

¯

� 
∇H�x

¯
�
 ≥ A2
x

¯

 and 1H�x

¯
� ≥ A3 for sufficiently large


x
¯

� where A1, A2, and A3 are positive constants.
(iii) H�x

¯
� has a finite number of critical points x

¯1� 	 	 	 � x¯N
� at which the

Hessian is nondegenerate.
(iv) H�x

¯i
� �=H�x

¯j
�, i� j = 1� 	 	 	 �N� i �= j	

(v) Hy�x
¯
� = 0 ⇒Hyy�x

¯
� �= 0	

(vi) 0 < limx
¯
∈C�H�x

¯k
���x

¯
→x

¯k

Hx/Hy
 <∞ for any saddle point x

¯k
of H�x

¯
�	

Let �Xεt �Yεt �Pεx
¯
� be the diffusion process on R2 corresponding to the differen-

tial operator Lεf�x
¯
� = �1/2�fyy�x

¯
� + �1/ε�∇̄H�x

¯
� · ∇f�x

¯
�� where ∇̄H�x�y� =

�∂H/∂y�−∂H/∂x�	 Then the distributions of the processes Y�Xεt �Yεt � in the
space of continuous functions with values in Y�R2� with respect to Pεx

¯
con-

verge weakly as ε ↓ 0 to the probability measure PY�x
¯
�� where �y�t��Py� is the

process on the graph defined by operators Li:

Lifi�H� = 1
2
Ai�H�f′′

i �H� +Bi�H�f′
i�H��(1.13)

Ai�H� =
∫
Ci�H�H

2
y�x¯�
∇H�x

¯
�
−1 dl∫

Ci�H� 
∇H�x
¯
�
−1 dl

�(1.14)

Bi�H� =
1
2

∫
Ci�H�Hyy�x

¯
�
∇H�x

¯
�
−1 dl∫

Ci�H� 
∇H�x
¯
�
−1 dl

(1.15)

on each edge Ii� and gluing condition

∑
i� Ii∼Ok

±βkif′
i�H�x

¯k
�� = 0� βki =

∫
Cki

H2
y�x¯�
∇H�x

¯
�
−1 dl(1.16)

at each interior vertex Ok = Y�x
¯k

�	 The plus sign (+) should be taken in the
ith term of (1.16) if the coordinate H on Ii is greater than H�x

¯k
�� and the

minus sign (−) otherwise. The function �H� i� → fi�H� should be a continuous
function on ( as well as the function Lifi�H�	 Further, f′

i�H� denotes the
derivative with respect to H� and f′

i�H�x
¯k

�� = limH→H�x
¯k

�� �H� i�∈Ii f
′
i�H�	
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The oscillator (1.1) is a special case of this result when H�x�y� = 1
2y

2 +
F�x�	 The characteristics of the limiting process in this case can be calculated
more explicitly and they have a simple geometric sense.

Random perturbations of a special equation of type (1.1) describing a phase
synchronization model were briefly considered in [3]. Although there is no
mathematical description of the limiting process there, the authors mentioned
that the limiting process should be considered on a graph. The equation con-
sidered in [3] is not generic and the perturbations are a bit different from ours,
so the small noise asymptotics for the phase synchronization model does not
follow from the results of this paper. Actually, however, it can be calculated in
a similar way. We will consider that model elsewhere.

Random perturbations of Hamiltonian systems with 1 degree of freedom in
the case of several critical points were studied in [7]. Random perturbations
of the vector field �∂H/∂y�−∂H/∂x� by a nondegenerate white noise were
considered there. One can generalize the results of this paper to the case of
more general but nondegenerate perturbations.

The specificity of this paper is that just one component of the vector field is
perturbed. Such kinds of perturbations are natural in many applied problems.
The general approach in this paper is similar to the approach used in [7],
although the limiting process is different, since the perturbations are different.
The most important difference is that the perturbations now are degenerate.
This leads to new serious difficulties in the proof of the Markov property for
the limiting process. We overcome these difficulties using the Hörmander-type
estimates for degenerate equations. The auxiliary a priori bounds are proved
in the next subsection. Then we prove the weak convergence and calculate the
characteristics of the limiting process for system (1.12). In the last section, we
consider random perturbations of the oscillator (1.1).

We start with a lemma that explains the condition (v) of Theorem 1. Denote
x
¯
= �x�y�	 LetH1 andH2� H1 < H2� belong to the set of values ofH�x�y� on
Dl = ��x�y� ∈ R2� Y�x�y� ∈ Il� and denote Dl�H1�H2� = ��x�y� ∈ Dl� H1 <
H�x�y� < H2�.

Lemma 1.1. Let D = Dl�H1�H2�� −∞ < H1 < H2 < ∞	 Then the set
�x
¯

∈ D�Hy�x
¯
� = 0� consists of a finite number of mutually disjoint smooth

curves ∂1� 	 	 	 � ∂nl� each of which transversely intersects Cl�H� at exactly one
point for every H1 < H < H2	

Proof. Let Cy�0� = �x
¯

∈ R2� Hy�x¯� = 0�	 By assumption (v) of Theo-
rem 1 the set Cy�0� ∩D contains no critical point of the function Hy	 Thus,
Cy�0� ∩D consists of mutually disjoint smooth curves ∂1� 	 	 	 � ∂nl 	 For x

¯
∈ ∂i�

i ∈ �1� 	 	 	 � nl�� the vector ∇̄Hy�x¯� is not zero, and it is a tangent vector to the
curve ∂i at x

¯
	 The vector ∇H�x

¯
� is orthogonal to the curve formed by the level

set C�H�x
¯
�� at x

¯
	 Now the statement of the lemma follows from

∇̄Hy�x¯� · ∇H�x
¯
� = Hyy�x¯�Hx�x¯� �= 0

as x
¯
∈ Cy�0�� and D contains no critical point of H. ✷
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2. Proofs.

2.1. An a priori estimate. Let H0, H1 and H2� H1 < H0 < H2� belong
to Dl	 Similarly to [7], we introduce new orthogonal coordinates �h̃� θ� in
Dl�H1�H2� = ��x�y� ∈ Dl�H1 < H�x�y� < H2�. The coordinate h̃ is given by

h̃�x�y� =H�x�y� −H0	

The second coordinate θ for �x�y� ∈ Cl�H0� is defined after fixing a point
�x0� y0� ∈ Cl�H0�:

θ�x�y� =
2π

∫ �x�y�
�x0� y0� 
∇H�x�y�
dl∫

Cl�H0� 
∇H�x� y�
dl 	

The integration is taken along Cl�H0� with respect to the length dl, 0 ≤ θ <
2π	 To define θ�x�y� for any point inDl�H1�H2�, consider the family of curves
orthogonal to Cl�H�,H1 < H < H2� and put θ�x�y� = θ�x′� y′�� where �x′� y′�
is the point on Cl�H0� where the curve of the orthogonal family containing
�x�y� crosses Cl�H0�	

We observe that the equation

Lεu = 0(2.1.1)

can be written in the new coordinates as((
a1�h̃� θ�

∂

∂h̃
+ a2�h̃� θ�

∂

∂θ

)2

+ 1
ε
a3�h̃� θ�

∂

∂θ

)
u = 0�(2.1.2)

where

a1�h̃�x�y�� θ�x�y�� = 1√
2
Hy�x�y��

a2�h̃�x�y�� θ�x�y�� = 1√
2
θy�x�y��

a3�h̃�x�y�� θ�x�y�� = �Hyθx −Hxθy��x�y�	
Now we change the coordinate h̃ to �1/√ε�h̃ as follows. Define the operators
Lε1 and Lε0�

Lε1 = aε1�h� θ�
∂

∂h
+ √

ε aε2�h� θ�
∂

∂θ
�(2.1.3)

Lε0 = aε3�h� θ�
∂

∂θ
�(2.1.4)

where the coefficients are given by

aεi �h� θ� = ai�
√
ε h� θ�� i = 1�2�3	(2.1.5)

With these notations (2.1.2) becomes, after multiplication by ε�(�Lε1�2 +Lε0
)
uε = 0�(2.1.6)



RANDOM PERTURBATIONS OF OSCILLATORS 935

where uε�h� θ� = u�√ε h� θ�. Note that there exists a b̄ > 0 such that 
aε3
 > b̄
in Dl�H1�H2�	

In the following, we make use of the fact that the operator in (2.1.6) is
hypoelliptic. Following the steps in Section 22.2 of [8], we derive an estimate
as in Lemma 22.2.4 of [8]. This estimate is used to get an a priori estimate
for 
uθ�0� θ�
 for solutions u of (2.1.2). We have to ensure that the estimates of
[8] can be obtained independently of ε for small ε	

First, we state some facts about pseudodifferential operators. Let P be a
pseudodifferential operator with symbol p�h� θ� ξ�, ξ = �ξ1� ξ2�. That is,

�Pu��h� θ� = 1
�2π�2

∫
exp�i�hξ1 + θξ2��p�h� θ� ξ�û�ξ�dξ�

where û denotes the Fourier transform of u. The operator P is of order ≤ n if
for any multi-indices α = �α1� α2�� β = �β1� β2� there exists a constant Aα�β
(depending on α and β) such that∣∣�DβxDαξ p��h� θ� ξ�∣∣ ≤ Aα�β�1 + 
ξ
2��n−
α
�/2(2.1.7)

is satisfied for all h� θ� ξ1� ξ2 ∈ R	 The smallest n in (2.1.7) is called
order of P. Here D

β
x denotes �−i�∂/∂h��β1�−i�∂/∂θ��β2 and Dαξ denotes

�−i�∂/∂ξ1��α1�−i�∂/∂ξ2��α2 	 Note that for s ∈ R the norm % · %s is defined by

%u%2
s = 1

�2π�2

∫ (
1 + 
ξ
2)s
û�ξ�
2 dξ	

We frequently use the following lemma which can be found in Theo-
rems 2.2.1–2.2.3 of [9].

Lemma 2.1.1. Let P1 and P2 be of order less than or equal to n1, n2 with
symbols p1 and p2, respectively. Assume that the symbols are infinitely dif-
ferentiable with respect to the variables h, θ, ξ1, ξ2� that they have the form
pi�h� θ� ξ� = p0

i �ξ� + p1
i �h� θ� ξ�� i = 1�2� ξ = �ξ1� ξ2�� and that for a compact

set K′�

p1
i �h� θ� ξ� = 0� ξ ∈ R2� �h� θ� ∈ R2 \K′� i = 1�2	(2.1.8)

Then the following hold for s ∈ R:

(i) %Piu%s ≤ Ais�K′ %u%s+ni , i = 1�2	
(ii) The operator P1P2 is of order less than or equal to n1 + n2� has the

property (2.1.8) and

%P1P2u%s ≤ A1�2
s�K′ %u%s+n1+n2

	

(iii) P1P2 = P�n� +T�n�, n ∈N� where P�n� has symbol

∑

α
≤n−1

(
1
α!
∂
α


∂ξα
p1�h� θ� ξ�

)
Dαxp2�h� θ� ξ�
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and

%T�n�u%s ≤ A�n�
s�K′ %u%s+n1+n2−n	

(iv) The commutator �P1�P2 = P1P2 −P2P1 satisfies∥∥�P1P2 u
∥∥
s
≤ A�1�2 

s�K′ %u%s+n1+n2−1	

Here the constants Ais�K′ , A
1�2
s�K′�A

�n�
s�K′ and A

�1�2 
s�K′ depend only on s�K′ and the

estimates (2.1.7) for the operators P1 and P2.

Remark 2.1.2. If we apply a classical differential operator P to functions
u ∈ C∞

0 �K�� where K has positive distance to the boundary of a compact
set K′ ⊃ K� then we may assume that condition (2.1.8) is satisfied for P as
Pu = gPu for a function g ∈ C∞

0 �K′� with g = 1 on K. Thus, we can consider
the operator gP instead of P	

From now on, any reference to Lemma 2.1.1 is understood in the manner
that the operators under consideration satisfy the assumptions of Lemma 2.1.1
and admit estimates of the form (2.1.7) independent of ε for small ε	

Now let K′ ⊂ R2 be a compact set containing �−1�1 × �−2π�2π and let
K ⊂ �−1�1 × �−π�π be a compact set, such that K has a positive distance
to the boundary of K′	 From now on, let all ε be small enough to ensure that

H0 + √
εh ∈ �H1�H2� for all �h� θ� ∈K′	

As �∂/∂h�aεi �h� θ� = √
ε�∂/∂h̃�ai�

√
εh� θ�� we have for small ε and any multi-

index β with constants Ai�β depending only on β�


Dβxaεi �h� θ�
 ≤ εβ1/2Ai�β� i = 1�2�3� �h� θ� ∈K′	(2.1.9)

Let Es be the operator with symbol �1 + 
ξ
2�s/2 and g ∈ C∞
0 �K′� such that

g = 1 on K. We identify g with the operator of multiplication by g (having
order 0). Es and g satisfy the conditions of Lemma 2.1.1. By % · % and �·� ·� we
denote the norm and the scalar product in L2�R2�	 Define

Pε = −�Lε1�2 −Lε0
and Lε0�h� θ� ξ� = aε3�h� θ�ξ2 and Lε1�h� θ� ξ� = aε1�h� θ�ξ1 + √

εaε2�h� θ�ξ2	 Then
the principal symbol of Pε is pε2�h� θ� ξ� = Lε1�h� θ� ξ�2� and Pε = Lε1∗Lε1 +Tε
holds, where Lε1

∗ = −Lε1 − wε� Tε = −Lε0 + wεLε1 and wε is the operator of
multiplication by the function

wε = ∂

∂h
aε1 + √

ε
∂

∂θ
aε2	

Note that by (2.1.9), wε is uniformly bounded for small ε	 In what follows,
all constants are independent of ε for small ε if not otherwise stated. Let
D1 = −i�∂/∂h� and D2 = −i�∂/∂θ�	
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Lemma 2.1.3. We have

%Lε1u%2 ≤ �Pεu�u� +AK′ %u%2� u ∈ C∞
0 �K��(2.1.10)

2∑
j=1

∥∥∥∥
(
∂

∂ξj
pε2

)
�h� θ�D�u

∥∥∥∥
2

0
+

2∑
j=1

∥∥�Djpε2��h� θ�D�u∥∥2
−1

≤ A′
K′ �Pεu�u� +A′′

K′ %u%2� u ∈ C∞
0 �K��

(2.1.11)

with constants AK′ , A′
K′ and A′′

K′ depending only on K′	

Proof. The identity

�Pεu�u� = �Lε1∗Lε1u�u� + (��Tε +Tε∗�/2�u�u)
= ∥∥Lε1u∥∥2 + (��Tε +Tε∗�/2�u�u)(2.1.12)

gives (2.1.10) since the operator Tε +Tε∗ is equal to the operator of multipli-
cation by the function

w̃ε = ∂

∂θ

(
aε3 − √

ε�wεaε2�
)− ∂

∂h
�wεaε1��

which is an operator of order 0 satisfying the conditions of Lemma 2.1.1.
The symbol �∂/∂ξ1�pε2 is given by 2aε1L

ε
1	 We have∥∥2aε1L

ε
1u
∥∥2

0 = ∥∥g2aε1L
ε
1u
∥∥2

0 ≤ A1

∥∥Lε1u∥∥2
0

by Lemma 2.1.1. So the estimate for �∂/∂ξ1�pε2 follows from (2.1.10). A similar
estimate holds for �∂/∂ξ2�pε2 = 2

√
εaε2L

ε
1	 Finally, we get for j = 1�2�∥∥�Djpε2��h� θ�D�u∥∥2

−1 = ∥∥2
(�DjLε1�Lε1)�h� θ�D�u∥∥2

−1

≤ ∥∥2
(�DjLε1��h� θ�D�Lε1

)
u
∥∥2

−1

+ 2
∥∥(�DjLε1��h� θ�D�Lε1 − (�DjLε1�Lε1)�h� θ�D�)u%2

−1	

The first term is equal to

2
∥∥g(�DjLε1��h� θ�D�Lε1

)
u
∥∥2

−1 ≤ A2%Lε1u%2
0

by Lemma 2.1.1(i). Lemma 2.1.1(iii) implies that the operator in the second
term is of order 1 and that it admits a corresponding estimate. This completes
the proof of (2.1.11). ✷

Now define the operators (of order 1)

Qε1 = Lε1� Qε2 = 1
2
�Pε −Pε∗�� Qε3 = �Qε1�Qε2 �

Pεj = (
E−1�Djpε2�

)�h� θ�D�� Pεj =
(
∂

∂ξj
pε2

)
�h� θ�D�� j = 1�2	

Note that Qε2 = 1
2�Tε −Tε∗� = Tε − 1

2w̃
ε	
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Lemma 2.1.4. For δ ≤ 21−k, k = 1�2�3� we get∥∥Qεku∥∥δ−1 ≤ AK′�K
(%Pεu% + %u%)� u ∈ C∞

0 �K��
with a constant AK′�K depending on K′ and K	

Proof. For k = 1� the statement follows from Lemma 2.1.3. For k = 2� we
have to estimate∥∥Qε2u∥∥2

−1/2 = ∥∥E−1/2Q
ε
2u
∥∥2

0 = �Qε2u�E2
−1/2Q

ε
2u�

= (
Pε − 1

2�Pε +Pε∗�u�E2
−1/2Q

ε
2u
)
	

Using Lemma 2.1.1(i) we get∣∣�Pεu�E2
−1/2Q

ε
2u�
 ≤ A3%Pεu% %Qε2u%−1 = A3%Pεu% %gQε2u%−1

≤ A4%Pεu% %u%�
as E2

−1/2 is of order −1. It remains to consider

1
2

(�Pε +Pε∗�u�E2
−1/2Q

ε
2u
) = (�Lε1∗Lε1 + w̃ε/2�u�E2

−1/2Q
ε
2u
)

= (
P̃εu�E2

−1/2Q
ε
2u
)−A5

(
u�E2

−1/2Q
ε
2u
)

by (2.1.12), where P̃ε = Lε1∗Lε1 + w̃ε/2 +A5g with a constant A5 large enough
to ensure that P̃ε is a positive operator. We get∣∣�A5u�E

2
−1/2Q

ε
2u�∣∣ ≤ A6%u%2

by Lemma 2.1.1, and∣∣(P̃εu�E2
−1/2Q

ε
2u
)∣∣ = ∣∣(P̃εu�g1E

2
−1/2Q

ε
2u
)∣∣

≤ �P̃εu� u�1/2(P̃εg1E
2
−1/2Q

ε
2u�g1E

2
−1/2Q

ε
2u
)1/2

≤ 1
2

(�Pεu�u� + (
g2P

εg1E
2
−1/2Q

ε
2u�g1E

2
−1/2Q

ε
2u
))

+A5%u%2 +A5
(
g̃1E

2
−1/2Q

ε
2u�g1E

2
−1/2Q

ε
2u
)

≤ A7
(%Pεu% + %u%)2 + (

g2P
εg1E

2
−1/2Q

ε
2u�g1E

2
−1/2Q

ε
2u
)
	

Here the functions are g1 ∈ C∞
0 �K′′� and g1 = 1 on K, g2 ∈ C∞

0 �K′� and
g2 = 1 on K′′ and g̃1 = gg1g2 with a set K′′, K ⊂ K′′ ⊂ K′ such that the
boundary of K′′ has positive distance to the boundaries of K and K′. Define
Qε = g1E

2
−1/2Q

ε
2	 By Lemma 2.1.1(iii), the operator �g2P

ε�Qε has symbol

2∑
j=1

�Djqε��h� θ� ξ�g2�h� θ�
∂

∂ξj
pε2�h� θ� ξ�

−
2∑
j=1

∂

∂ξj
qε�h� θ� ξ��Djg2p

ε
2��h� θ� ξ� + rε1�
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where qε denotes the symbol ofQε and rε1 is the symbol of an operator of order
0 which can be estimated by Lemma 2.1.1(iii). By Lemma 2.1.1, the operator
�g2P

ε�Qε differs from the operator

2∑
j=1

�Djqε��h� θ�D�g2�h� θ�Pεj�h� θ�D�

−
2∑
j=1

∂

∂ξj
qε�h� θ�D��Djg2p

ε
2��h� θ�D�

only by an operator of order 0 satisfying the conditions of Lemma 2.1.1. Denote
Gεj = �Djqε��h� θ�D�g2�h� θ� and Gεj = �∂/∂ξj�qε�h� θ�D�� which are of order
0 and −1, respectively. We get

�g2P
εQεu�Qεu� = �Qεg2P

εu�Qεu� + (�g2P
ε�Qε u�Qεu)	(2.1.13)

From Lemma 2.1.1 it follows that

�Qεg2P
εu�Qεu� = (

g1E
2
−1/2Q

ε
2g2P

εu�g1E
2
−1/2Q

ε
2u
) ≤ A8%Pεu% %u%

and (�g2P
ε�g1E

2
−1/2Q

ε
2 u�g1E

2
−1/2Q

ε
2u
)

=
2∑
j=1

{(
Gεjg2P

εju�g1E
2
−1/2Q

ε
2u
)

− (
GεjDj�g2p

ε
2��h� θ�D�u�g1E

2
−1/2Q

ε
2u
)}

+ �Rε2u�g1E
2
−1/2Q

ε
2u�

≤ A9

( 2∑
j=1

%Pεj% %u% + %u%2
)

−
2∑
j=1

(
GεjDj�g2p

ε
2��h� θ�D�u�g1E

2
−1/2Q

ε
2u
)
�

where Rε2 is of order 0 and is bounded by Lemma 2.1.1. As g2 = 1 on suppu�
Dj�g2p

ε
2��·� ·�D�u = g2�Djpε2��·� ·�D�u holds. This yields∥∥GεjDj�g2p

ε
2��h� θ�D�u∥∥ = ∥∥Gεjg2E1E−1Djp

ε
2�h� θ�D�u∥∥

= ∥∥Gεjg2E1P
ε
ju
∥∥ ≤ A10

∥∥Pεju∥∥
as Gεj has order −1 and g2E1 has order 1 and both satisfy the conditions of
Lemma 2.1.1. This together with Lemma 2.1.3 completes the proof for k = 2.
For k = 3 we have to estimate∥∥[Qε1�Qε2]u∥∥2

−3/4 = ([
Qε1�Q

ε
2

]
u� Q̃εu

)
�
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where Q̃ε = E2
−3/4�Qε1�Qε2 has order 1

2 	 Observe that Qε1
∗ = −Qε1 − wε and

Qε2
∗ = −Qε2	 Hence([
Qε1�Q

ε
2

]
u� Q̃εu

) = �Qε1Qε2u�gQ̃εu�−�Qε2Qε1u�gQ̃εu�
= −�Qε2u�gQε1gQ̃εu�−�Qε2u�gwεQ̃εu�+�Qε1u�gQε2gQ̃εu�	

Using Lemma 2.1.1 and the cases k = 1 and 2� we can estimate∣∣�Qε2u�gQε1gQ̃εu�∣∣ ≤ %Qε2u%−1/2

∣∣gQε1gQ̃εu∥∥1/2

≤ A11
(%Pεu% + %u%)(∥∥gQ̃εgQε1u∥∥1/2 + ∥∥�gQε1� gQ̃ε u∥∥1/2

)
≤ A12

(%Pεu% + %u%)2�
as gQ̃εg and �gQε1� gQ̃ε are of order − 1

2 ,

∣∣(Qε2u�gwεQ̃εu)∣∣ ≤ ∥∥Qε2u∥∥−1/2

∥∥gwεQ̃εu∥∥1/2 ≤ A13
(%Pεu% + %u%)2�

as gwεQ̃ε is of order − 1
2 � and

∣∣(Qε1u�gQε2gQ̃εu)∣∣ ≤ %Qε1u%0%gQε2gQ̃εu%0 ≤ A14
(%Pεu% + %u%)2�

as %gQε2gQ̃εu%0 = %gQ̃εgQε2u%0 + %�gQε2� gQ̃ε u%0 ≤ A15�%Qε2u%−1/2 + %u%��
and gQ̃εg and �gQε2� gQ̃ε have order − 1

2 . ✷

Lemma 2.1.5. We have

%u%1/4 ≤ ÃK′
(%Pεu% + %u%)� u ∈ C∞

0 �K��(2.1.14)

with a constant ÃK′ depending on K′	

Proof. The statement follows from Lemma 2.1.4 if we show that there
exists a constant AK′ depending only on K′ such that

%u%1/4 = %E1u%−3/4 ≤ AK′

( 3∑
j=1

%Qεju%−3/4 + %u%
)
	

As

%u%2
1/4 = %u%2

−3/4 +
∥∥∥∥ ∂∂hu

∥∥∥∥
2

−3/4
+
∥∥∥∥ ∂∂θu

∥∥∥∥
2

−3/4
�

we have to show that

%Diu%−3/4 ≤ A16

( 3∑
j=1

%Qεju%−3/4 + %u%
)
� i = 1�2	
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Using (2.1.9) we can write

Qε1 = aε1
∂

∂h
+ √

εaε2
∂

∂θ
�(2.1.15)

Qε2 = √
εbε1

∂

∂h
− �aε3 + √

εbε3�
∂

∂θ
− 1

2

(
∂

∂θ
aε3

)
− √

εbε2�(2.1.16)

Qε3 =
(
aε3

(
∂

∂θ
aε1

)
+ √

εcε1

)
∂

∂h
+ √

εcε2
∂

∂θ
+ √

εcε3(2.1.17)

with functions bεi , c
ε
i , i = 1�2�3� uniformly bounded onK′ for small ε. Further,(

aε3
∂

∂θ
aε1

)
�h� θ� =

(
a3
∂

∂θ
a1

)(
h̃�x�y�� θ�x�y�)

= 1√
2

(
�Hyθx −Hxθy�

∂

∂θ
Hy

)
�x�y�

= 1√
2

(
HyHxy −HxHyy

)
�x�y�	

(2.1.18)

Note that by our assumptions the right-hand side of (2.1.18) is not equal to
0 in a neighborhood of the zeros of Hy	 So we can divide the set K′ into two
disjoint sets K1 and K2 such that there exist positive numbers δi, i = 1�2�
and a set K′

2 ⊃K2 such that


aε1
 > 2δ1 on K1�(2.1.19)


aε0
 =
∣∣∣∣
(
aε3
∂

∂θ
aε1

)∣∣∣∣ > 2δ2 on K′
2	(2.1.20)

Let ϕ ∈ C∞
0 �K′ \K2� be a function with ϕ = 1 on K \K′

2	 On the set K \K′
2

we can regard the identities (2.1.15) and (2.1.16) applied to u ∈ C∞
0 �K� as a

linear system for uh and uθ with the (unique) solution

uh = 1
Dε1

(
−(aε3 + √

εbε3
)
Qε1u+ √

εaε2Q
ε
2u

+ √
εaε2

(
1
2

(
∂

∂θ
aε3

)
+ √

εbε2

)
u

)
�

(2.1.21)

uθ = 1
Dε1

(
−√
εbε1Q

ε
1u+ aε1Qε2u+ aε1

(
1
2

(
∂

∂θ
aε3

)
+ √

εbε2

)
u

)
�(2.1.22)

where Dε1 = −aε1aε3 − √
ε�aε1bε3 + √

εaε2b
ε
1�	

Recall that there exists a constant b̄ > 0 such that


aε3�h� θ�
 ≥ b̄� �h� θ� ∈K′	(2.1.23)

This implies


Dε1�h� θ�
 ≥ b̄ δ1� �h� θ� ∈K′ \K2�(2.1.24)
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for ε small enough. Thus, the coefficients of Qεiu, i = 1�2� and u in (2.1.21)
and (2.1.22) can be understood as operators of order 0 satisfying (after multi-
plication by ϕ and g) the conditions of Lemma 2.1.1 in K′ \K2	 This gives

%ϕDju%−3/4 = %gϕDju%−3/4

≤ A17

( 2∑
j=1

%Qεju%−3/4 + %u%
)
� j = 1�2	

(2.1.25)

We can make the analogous considerations on the set K′
2 using the relations

(2.1.16) and (2.1.17) instead of (2.1.15) and (2.1.16). The resulting formulas
are similar to (2.1.21) and (2.1.22), but the determinant of the system is

Dε2 = aε0aε3 + √
ε
(√
εbε1c

ε
2 + cε1

(
aε3 − √

εbε3
)− aε0bε3

)
	

By (2.1.20) and (2.1.23) we get


Dε2�h� θ�
 ≥ b̄δ2� �h� θ� ∈K′
2�(2.1.26)

for ε small enough, so that∥∥�1 − ϕ�Dju
∥∥

−3/4 = ∥∥g�1 − ϕ�Dju
∥∥

−3/4

≤ A18

( 2∑
j=1

∥∥Qεju∥∥−3/4 + %u%
)
�

(2.1.27)

j = 1�2	 Combining the relations (2.1.25) and (2.1.27), we get the desired
result. ✷

Lemma 2.1.6. For s ∈ R we have

%u%s+1/4 +
2∑
j=1

%Pεju%s+1/8 +
2∑
j=1

%Pεju%s+1/8 ≤ As�K′�K
(%Pεu%s + %u%s

)
�

u ∈ C∞
0 �K�� with constants As�K′�K depending on s�K′ and K	

Proof. By (2.1.11) we get∥∥Pεju∥∥ ≤ A19
(%Pεu%1/2

−1/8%u%1/2
1/8 + %u%)

and the corresponding estimate for Pεj� j = 1�2	 Thus we have for every
B > 0�

2∑
j=1

(%Pεju% + %Pεju%) ≤ A20
(
B%Pεu%−1/8 +B−1%u%1/8 + %u%)	(2.1.28)

Observe that by Lemma 2.1.1,

%u%s+1/4 = %Esu%1/4 = %g1Esu%1/4 + %�Es�g1 u%1/4

≤ %g1Esu%1/4 +A21%u%s�
(2.1.29)
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s+1/8

+ ∥∥�E−1� g1 g1�Djpε2��h� θ�D�u∥∥
s+1/8

≤ ∥∥Es+1/8g1P
ε
ju
∥∥

0 +A22%u%s+1/8

≤ ∥∥g1Es+1/8g1P
ε
ju
∥∥

0 + ∥∥�Es+1/8� g1 g1P
ε
ju%0 +A22%u%s+1/8

≤ ∥∥g1P
ε
jg1Es+1/8u

∥∥
0 + %�g1Es+1/8� g1P

ε
j u%0 +A23%u%s+1/8

≤ ∥∥Pεjg1Es+1/8u
∥∥

0 +A24%u%s+1/8�

(2.1.30)

∥∥Pεju∥∥
s+1/8 ≤ %g1Es+1/8g1P

εju%0 + ∥∥�Es+1/8� g1 g1P
εju

∥∥
0

≤ ∥∥g1P
εjg1Es+1/8u

∥∥
0 + ∥∥�g1Es+1/8� g1P

εj u∥∥0

+A25%u%s+1/8

≤ ∥∥Pεjg1Es+1/8u
∥∥

0 +A26%u%s+1/8� j = 1�2	

(2.1.31)

Let the functions g1 and g2 be as in the proof of Lemma 2.1.4. The rela-
tions (2.1.14) and (2.1.28) hold for any K ⊂ K′ having positive distance to
the boundary of K′ (with constants depending on K). So we may replace the
function u in these relations by g1Esu, s ∈ R	 We need that for t > 0�

∥∥Pεg1Es+tu
∥∥

−t ≤ ∥∥Pεu∥∥
s
+A27

( 2∑
j=1

∥∥Pεju∥∥s + %u%s
)
	(2.1.32)

This can be shown as follows: First note that∥∥Pεg1Es+tu
∥∥

−t = ∥∥E−tg2P
εg1Es+tu

∥∥
0�

E−tg2P
εg1Es+t = E−tEs+tg2P

εg1 +E−t�g2P
εg1�Es+t �

and E−tEs+tg2P
εg1u = EsP

εu	 Let pε denote the symbol of the operator
g2P

εg1	 By Lemma 2.1.1(iii), the operator �g2P
εg1�Es+t has symbol

−
2∑
j=1

∂

∂ξj
�1 + 
ξ
2��s+t�/2�Djpε��h� θ� ξ� + rε1

= i�s+ t�
2∑
j=1

ξj
(
1 + 
ξ
2)�s+t−1�/2�1 + 
ξ
2�−1/2�iDjpε��h� θ� ξ� + rε1�

where rε1 is the symbol of an operator of order s + t	 Thus, the operator
E−t�g2P

εg1�Es+t differs from the operator

i�s+ t�
2∑
j=1

g1DjEs−1g2P
ε
j

only by an operator of order s having an uniform estimate for small ε and by
an operator which maps the functions u ∈ C∞

0 �K� to 0. This proves (2.1.32).
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Using formula (2.1.14) for the function g1Esu and formula (2.1.32) for t = 0�
we get from formula (2.1.29) that

%u%s+1/4 ≤ %g1Esu%1/4 +A28%u%s
≤ A29

(%Pεg1Esu% + %g1Esu%)+A28%u%s

≤ A29%Pεu%s +A30

( 2∑
j=1

%Pεju%s + %u%s
)

≤ A31

(
%Pεu%s +

2∑
j=1

%Pεju%s + %u%s+1/8

)
	

(2.1.33)

Using formula (2.1.28) for g1Es+1/8u and formula (2.1.32) for t = 1
8 � we get

from (2.1.30) and (2.1.31),

2∑
j=1

%Pεju%s+1/8 +
2∑
j=1

%Pεju%s+1/8

≤
2∑
j=1

∥∥Pεjg1Es+1/8u
∥∥

0 +
2∑
j=1

∥∥Pεjg1Es+1/8u
∥∥

0 +A32%u%s+1/8

≤ A33
(
B
∥∥Pεg1Es+1/8u

∥∥
−1/8 + 1

B

∥∥g1Es+1/8u
∥∥

1/8 + ∥∥g1Es+1/8u
∥∥)

+A32%u%s+1/8

≤ A33B

(
%Pεu%s +A34

( 2∑
j=1

%Pεju%s + %u%s
))

+A35
1
B

%u%s+1/4

+A36%u%s+1/8	

(2.1.34)

Combining (2.1.33) and (2.1.34), we get for sufficiently large B,

%u%s+1/4 +
2∑
j=1

%Pεju%s+1/8 +
2∑
j=1

%Pεju%s+1/8

≤ A37

(
%Pεu%s +

2∑
j=1

%Pεju%s +
2∑
j=1

%Pεju%s + %u%s+1/8

)
	

From this inequality, the statement of the lemma can be obtained by the same
arguments as in the proof of the corresponding Lemma 22.2.4 of [8]. ✷

Next we derive from Lemma 2.1.6 an a priori estimate for solutions
of (2.1.6).

Lemma 2.1.7. Let the set K′′ ⊂ K′ be such that aε1 �= 0 in K′′ for small ε
(ε = 0 included) and let K ⊂K′′ have positive distance to the boundary of K′′	
Let ϕ, ϕ̃ ∈ C∞

0 �K′′� with ϕ = 1 on K and ϕ̃ = 1 on suppϕ	 Then for any t ∈ R
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there exists a constant A�K′′�K� t� ϕ� depending on K′′, K, ϕ and t such that
for any solution uε ∈ C∞ of

Pεuε = 0�(2.1.35)

we have

%ϕuε%t ≤ A�K′′�K� t� ϕ�%ϕ̃uε%	(2.1.36)

Proof. It is sufficient to show the statement for t ∈N	 Let n = 8�t+1�+1	
We introduce a sequence of compact sets

K =K0 ⊂K1 ⊂ · · · ⊂Kn = suppϕ�

such that Ki has positive distance to the boundary of Ki+1� i = 1� 	 	 	 � n− 1�
and a sequence of functions ϕi ∈ C∞

0 �Ki�� with ϕ1 = ϕ and ϕi = 1 on Ki−1�
i = 1� 	 	 	 � n	 Then Lemma 2.1.6 implies

%ϕiuε%s+1/8 + ∥∥Pε1�ϕiuε�
∥∥
s+1/8 ≤ As�K′′�K

(%Pε�ϕiuε�%s + %ϕiuε%s
)
	(2.1.37)

It follows from (2.1.35) that

Pε�ϕiuε� = �Pεϕi�uε + 2�Lε1ϕi��Lε1uε�
= �Pεϕi�ϕi+1u

ε + 2�Lε1ϕi��Lε1ϕi+1u
ε�	

(2.1.38)

Note that Pε1 = 2aε1L
ε
1	 By (2.1.5), the assumption aε1 �= 0 on K′′ implies that


aε1
 > δ > 0 on K′′ for some δ independent of ε	 We get from (2.1.37) and
(2.1.38) that

%ϕuε%t ≤ At−1/8�K′′�K

(∥∥�Pεϕ1�ϕ2u
ε
∥∥
t−1/8 +

∥∥∥∥2
Lε1ϕ1

aε1
aε1 L

ε
1�ϕ2u

ε�
∥∥∥∥
t−1/8

+ ∥∥ϕ1ϕ2u
ε
∥∥
t−1/8

)
	

(2.1.39)

The factors Pεϕ1, Lε1ϕ1/a
ε
1 and ϕ1 can be regarded as operators of order

0 satisfying the conditions of Lemma 2.1.1. Thus there exists a constant
A1�K′′�K� t� ϕ1� such that

%ϕ1u
ε%t ≤ A1�K′′�K� t� ϕ1�

(%ϕ2u
ε%t−1/8 + ∥∥2 aε1L

ε
1�ϕ2u

ε�%t−1/8
)

= A1�K′′�K� t� ϕ1�
(%ϕ2u

ε%t−1/8 + ∥∥Pε1�ϕ2u
ε�∥∥

t−1/8

)
	

(2.1.40)



946 M. FREIDLIN AND M. WEBER

Applying (2.1.37) again, we get, using (2.1.38) and the same arguments as
above,

%ϕuε%t ≤ A1�K′′�K� t� ϕ1�At−2/8�K′′�K
(%Pε�ϕ2u

ε�%t−2/8 + %ϕ2u
ε%t−2/8

)
= Ã2�K′′�K� t� ϕ1�

× (%Pε�ϕ2u
ε�%t−2/8 + %ϕ2u

ε%t−2/8
)

≤ Ã2�K′′�K� t� ϕ1�
(∥∥�Pεϕ2�ϕ3u

ε
∥∥
t−2/8+

∥∥∥∥2
Lε1ϕ2

aε1
aε1L

ε
1�ϕ3u

ε�
∥∥∥∥
t−2/8

+ %ϕ2ϕ3u
ε%t−2/8

)
≤ A2�K′′�K� t� ϕ1� ϕ2�

(∥∥ϕ3u
ε
∥∥
t−2/8 + ∥∥Pε1�ϕ3u

ε�∥∥
t−2/8

)
	

(2.1.41)

Continuing in this way, we finally obtain

%ϕuε%t ≤ An−1�K′′�K� t� ϕ1� ϕ2� 	 	 	 � ϕn−1�
(
%ϕnuε%−1 + %ϕ̃Pε1�ϕnuε�%−1

)
≤ A�K′′�K� t� ϕ�%ϕ̃uε%0

by Lemma 2.1.1, as the operator ϕ̃Pε1 has order 1. ✷

Lemma 2.1.8. Let ũε be a solution of the differential equation (2.1.2) for
0 < ε < ε0 and let S ⊂ �0�2π be a compact interval such that a1�0� θ� �= 0 for

θ ∈ S	 Let K̃ be an arbitrary neighborhood of the set ��0� θ�� θ ∈ S� such that

H0 + h̃ ∈ �H1�H2� for all �h̃� θ� ∈ K̃ and assume that there exists a constant

A1�K̃� such that 
ũε�h� θ�
 ≤ A1�K̃� for all �h� θ� ∈ K̃ and ε < ε0	 Then there

exist an ε1 > 0 and a constant A2�K̃� independent of ε such that∣∣∣∣ ∂∂θũε�0� θ�
∣∣∣∣ ≤ A2�K̃�

for all 0 < ε < ε1 and θ ∈ S	

Proof. Let ε1 be such that for 0 < ε < ε1 we have 
h̃
 < ε−1/2 if �h̃� θ� ∈ K̃�
and the functions uε defined by uε�h� θ� = ũε�ε1/2h� θ� satisfy the conditions
of Lemma 2.1.7. There exist compact sets K� K′′� �0� × S ⊂ K ⊂ K′′� such
that:

(i) each of these sets has positive distance to the boundary of the larger
one.

(ii) aε1 �= 0 on K′′.
(iii) �√εh� θ� ∈ K̃ if �h� θ� ∈K′′.

By Lemma 2.1.7 we get, for t = 3�

%ϕuε%3 ≤ A�K′′�K�3� ϕ�%ϕ̃uε%
≤ A3�K̃� sup

K′′

uε
 ≤ A3�K̃� sup

K̃


ũε
 ≤ A3�K̃�A1�K̃�
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with suitable functions ϕ and ϕ̃ and a constant A3�K̃� depending only on K̃
(and on the sets K and K′′ and the function ϕ chosen for K̃).

By Sobolev’s lemma (see, e.g., [1]), this implies that there exists a constant
A2�K̃� such that ∣∣∣∣ ∂∂θuε�h� θ�

∣∣∣∣ ≤ A2�K̃�� �h� θ� ∈K	

As �∂/∂θ�uε�0� θ� = �∂/∂θ�ũε�0� θ�� we get the statement of the lemma. ✷

2.2. The Markov property. Let G be a domain in R2 bounded by compo-
nents of the level sets of H�x�y� and let τ = τε be the exit time of the process
�Xεt �Yεt � from this domain. Using the a priori estimate obtained in the last
subsection, we show in this subsection that the probability that �Xετ�Yετ� be-
longs to a certain connected component of the boundary of G depends for ε ↓ 0
only on the valueH�x0� y0� at the initial point �x0� y0�	We will use this result
to prove the form of the gluing conditions for the limiting process on the graph
in the next subsection. Therefore, we need this result especially for domains
G containing a saddle point of H�x�y�	 Actually, the result of this subsection
implies the Markov property of the limiting process.

Let x
¯
= �x�y� and let X

¯
ε
t = �Xεt �Yεt � and X̃

¯
ε

t = �X̃εt � Ỹεt � be the solutions of
the systems (1.12) and (1.11), respectively. Further, let X

¯ t
�x
¯
� = �Xt�x¯��Yt�x¯��be the solution of the deterministic system (1.10) with the initial point x

¯
=

�x�y�	 Itô’s formula applied to f�H�X
¯
ε
t ��� with a smooth function f, gives

f
(
H�X

¯
ε
t �
) = f�H�X

¯
ε
0 �� +

∫ t
0
f′�H�X

¯
ε
s ��Hy�X¯

ε
s �dWs

+
∫ t

0

1
2

(
f′′�H�X

¯
ε
s ��H2

y�X¯
ε
s � + f′�H�X

¯
ε
s ��Hyy�X¯

ε
s �
)
ds�

(2.2.1)

Eεx
¯
f�H�X

¯
ε
τ �� = f�H�x

¯
�� +Eεx

¯

∫ τ
0

1
2

(
f′′�H�X

¯
ε
s ��H2

y�X¯
ε
s �

+ f′�H�X
¯
ε
s ��Hyy�X¯

ε
s �
)
ds�

(2.2.2)

for the time τ to exit any bounded region.

Lemma 2.2.1. For k ∈N there exists an A�k� ≥ 0 such that for T > 0�

Pεx
¯

{
sup

0<t<T

∣∣X̃
¯

ε

t − X
¯ t

�x
¯
�∣∣ ≥ η} ≤ A�k��e2LT − 1�k ε

k

η2k
�

where L is the Lipschitz constant of the function ∇̄H and η is an arbitrary
positive number.

This lemma is the analogue of Lemma 4.2 in [7] and can be proved by the
same arguments.
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For ε > 0 we consider the (fast) dynamical system

Ẋ
¯
ε

t �x¯� = 1
ε
∇̄H(X

¯
ε
t �x¯�

)
� X

¯
ε
0 �x

¯
� = x

¯
	(2.2.3)

Corollary 2.2.2. With the notations of Lemma 2.2.1, we have

Pεx
¯

{
sup

0<t<εT

∣∣X
¯
ε
t − X

¯
ε
t �x¯�

∣∣ ≥ η} ≤ A�k�(e2LT − 1
)k εk
η2k
	

Let µ denote the Lebesgue measure.

Lemma 2.2.3. Let D = Dl�H1�H2�� H1 ≥ −∞, H2 ≤ ∞� G ⊂ D and
T = supx

¯
∈Dmin�t > 0� X

¯ t
�x
¯
� = x

¯
�	 Assume that for η > 0 the set

Gη = {
z
¯
∈ D such that there exist x

¯
∈ Ḡ and s ∈ �−η�η� with z

¯
= X

¯ s
�x
¯
�}

has the property

µ
{
t ∈ �0�T�� X

¯ t
�x
¯
� ∈ Gη

} ≤ T/B
for some B ≥ 4 and for all x

¯
∈ D	 Then for any T0 > 0�

Pεx
¯

{
µ�t ∈ �0�T0�� X

¯
ε
t ∈ G� ≥ 2T0/B

} → 0 if ε ↓ 0�

uniformly for all x
¯
∈ D.

Proof. By Corollary 2.2.2 there exists an A38 > 0 such that

Pεx
¯

{
sup

0≤t≤εT

∣∣X
¯
ε
t − X

¯
ε
t �x¯�

∣∣ ≥ η̃} ≤ A38
ε2

η̃4
(2.2.4)

for all x
¯
∈ D, η̃ > 0	 Define

Nε =
[
T0

εT

]
� TεG = µ{t ∈ �0�T0�� X

¯
ε
t ∈ G} =

∫ T0

0
χG�X

¯
ε
t �dt�

where �t , t ∈ R� denotes the largest integer less than t and χG is the indicator
function of the set G	 Observe that

TεG ≤
Nε∑
n=0

∫ �n+1�εT

nεT
χG�X

¯
ε
t �dt	

By the Markov property and (2.2.4), we get, for small ε and a suitable constant
Ã > 0 depending on G and on the speed ∇̄H�x

¯
� of X

¯ t
�x
¯
��

Pεx
¯

{
TεG ≤ 2T0

B

}
≥ Pεx

¯

{Nε∑
n=0

∫ �n+1�εT

nεT
χG�X

¯
ε
t �dt ≤ 2T0

B

}

≥ Pεx
¯

{∫ �n+1�εT

nεT
χG�X

¯
ε
t �dt ≤ 2T0

B�Nε + 1� � n = 0� 	 	 	 �Nε

}
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≥
(

inf
z
¯
∈G
Pεz

¯

{∫ εT
0
χG�X

¯
ε
t �dt ≤ εT

B

})Nε+1

≥
(

1 − sup
z
¯
∈G
Pεz

¯

{
sup

0≤t≤εT

∣∣X
¯
ε
t − X

¯
ε
t �z¯�

∣∣ ≥ Ãη})Nε+1

≥
(

1 − A38

Ã4

ε2

η4

)T0/εT+1

	

Obviously, the right-hand side of this estimate tends to 1 if ε tends to 0	 ✷

Lemma 2.2.4. Let D = Dl�H1�H2�, 
Hj
 < ∞� j = 1�2� and τε =
inf�t� X

¯
ε
t �∈ D�	 Then for x

¯
∈ D (and small ε) there exists an A39 such that

Eεx
¯
τε < A39	

Proof. Let H̃1 < H1 and H̃2 > H2 such that D ⊂ D̃ = Dl�H̃1� H̃2�	
Choose functions c1, c2 ∈ C∞�R2� such that c1�x¯� =Hy�x¯� and c2�x¯� =Hyy�x¯�
if x

¯
∈ D� and such that for an open set G ⊂ D̃ there exist positive numbers δ1

and δ2 such that

c2
1�x¯� ≥ δ1� x

¯
∈ R2 \G�(2.2.5)

c2
1�x¯� ≤ δ1� x

¯
∈ G�(2.2.6)


c2�x¯�
 < δ2� x
¯
∈ D�(2.2.7)

and such that the conditions of Lemma 2.2.3 are satisfied for D̃ and G with
suitable numbers η and B (see also Lemma 1.1). For x

¯
∈ D� consider the

process Zεt defined by

Zεt =H�x
¯
� +

∫ t
0
c1�X¯

ε
s �dWs + 1

2

∫ t
0
c2�X¯

ε
s �ds	(2.2.8)

One can find a Wiener process W̃t such that (see, e.g., [5], page 51)∫ t
0
c1�X¯

ε
s �dWs = W̃∫ t

0 c
2
1�X¯

ε

s�ds	(2.2.9)

Note that the processes Zεt andH�X
¯
ε
t � coincide until τε by formula (2.2.1), and

Pεx
¯
�τε < 1� ≥ Pεx

¯

{
sup

0≤t≤1
Zεt > H2

}
� x

¯
∈ D	

Let A40 =H2 −H1 + δ2	 By (2.2.8), (2.2.9) and Lemma 2.2.3, we get for x
¯
∈ D

and small ε�

Pεx
¯
�τε < 1� ≥ Pεx

¯

{
sup

0≤t≤1

{
H�x

¯
� +

∫ t
0
c1�X¯

ε
s �dWs + 1

2

∫ t
0
c2�X¯

ε
s �ds

}
≥H2

}

≥ Pεx
¯

{
sup

0≤t≤1

∫ t
0
c1�X¯

ε
s �dWs ≥ A40

}
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≥ Pεx
¯

{
sup

0≤t≤1
W̃∫ t

0 c
2
1�X¯

ε

s �ds ≥ A40

∣∣∣∣TεG < 2
B

}
Pεx

¯

{
TεG <

2
B

}

≥ 1
2
Pεx

¯

{
sup

0≤t≤δ1�1−2/B�
W̃t ≥ A40

∣∣∣∣TεG < 2
B

}

≥ 1
2
Pεx

¯

{
W̃δ1�1−2/B� ≥ A40

}− 1
2
Pεx

¯

{
TεG ≥ 2

B

}
≥ α

for some α > 0 independent of ε for small ε	 By the strong Markov property
we get

Pεx
¯

{
τε < n+ 1

∣∣ τε ≥ n} ≥ α� n ∈N� x
¯
∈ D	

Thus Pεx
¯
�τε > n� ≤ �1/α�Pεx

¯
�τε ∈ �n�n+ 1 � implies Eεx

¯
τε < 1/α	 ✷

As we are concerned only with the behavior of the processes until they
leave a bounded domain in Dl� we can change the function H outside a large
enough subset of Dl so that H becomes bounded, especially so that H is
constant there. The distribution of X

¯
ε
τε is the same as the distribution of X̃

¯
ε

τ̃ε �

where τ̃ε = inf�t� X̃
¯
ε

t �∈ D�. So we consider the (slow) process X̃
¯
ε

t .
As in the beginning of Section 2.1, we introduce coordinates �h� θ� with

the only difference that now h̃�x
¯
� = H�x

¯
� − H2 or h̃�x

¯
� = H�x

¯
� − H1 so

that the points with coordinates �0� θ� correspond to the boundary Cl�H2�
or Cl�H1�� respectively. For brevity we restrict the considerations to the case
of the boundary Cl�H2�� this means h̃�x

¯
� =H�x

¯
�−H2	 It is easy to check that

Lemmas 2.2.8 and 2.2.9 below hold also if H2 is replaced by H1	

With the coordinates �h� θ� the generator of the process X̃
¯
ε

t can be written

L̃εu = aε12uhh + aε3uθ + εaε22uθθ + εbε4uθ + √
ε2aε1a

ε
2uθh + √

εbε5uh�(2.2.10)

where

bε4

(
1√
ε
h�x�y�� θ�x�y�

)
= 1

2
θyy�x�y��

bε5

(
1√
ε
h�x�y�� θ�x�y�

)
= 1

2
Hyy�x�y�

are functions bounded on compact sets.
Thus the process H

¯
ε
t = �h�X̃

¯
ε

t �� θ�X̃¯
ε

t �� solves the equation

dH
¯
ε
t = b

¯
ε�H

¯
ε
t �dt+ σ¯

ε�H
¯
ε
t �dW

¯ t
(2.2.11)

with

b
¯
ε�h� θ� = b

¯
0�θ� + √

εb
¯

0�ε�h� θ�

=
(

0

b2�θ�

)
+ √

ε

(
bε5�h� θ�

bε3�h� θ� + √
εbε4�h� θ�

)
�
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σ
¯
ε�h� θ� = σ

¯
0�θ� + √

εσ
¯

0�ε�h� θ�

=
(
b0�θ� 0

0 0

)
+ √

ε
√

2

(
bε1�h� θ� 0

aε2�h� θ� 0

)
�

where by Taylor’s expansion

aε1�h� θ� = 1√
2
b0�θ� + √

ε bε1�h� θ�� aε3�h� θ� = b2�θ� + √
ε bε3�h� θ��

b0�θ� = √
2aε1�0� θ�� b2�θ� = aε3�0� θ� and bε1� b

ε
2 are uniformly bounded on

compact sets for small ε	 Define the process H
¯

0
t = �H0

t � H
0
t � by

dH
¯

0
t = b

¯
0�H

¯
0
t �dt+ σ¯

0�H
¯

0
t �dW

¯ t
(2.2.12)

with the same Wiener process W
¯ t

as in (2.2.11).

Lemma 2.2.5. There exists a bounded function A�t� such that for any T >
0� η > 0� ε > 0� x

¯
∈ D�

Pεx
¯

{
sup

0≤t≤T

H
¯
ε
t − H

¯
0
t 
 > η

}
≤ A�T� ε

η2
	(2.2.13)

The proof is standard (compare, e.g., Lemma 2.1.2 in [5]).
Define for h1, h2 ∈ �−∞�∞ � h1 < h2�

τ0�h1� h2� = inf
{
t� H0

t �∈ �h1� h2�
}
	

Lemma 2.2.6. We have for h > 0 and B ⊂ �0�2π �

Ph� θ
{
H0
τ0�0�∞� ∈ B} =

∫
B
fh� θ�η�dη

with a bounded function fh�θ	

Proof. Let h0 > 0	 The process H
¯

0
t corresponds to the operator

1
2
b2

0
∂2

∂h2
+ b2

∂

∂θ

For any δ > 0 there exists h1 > h0 such that

Ph0� θ

{
H0
τ0�0�h2� = h2

}
< δ

for all h2 ≥ h1	 Thus∣∣Ph0� θ

{
H0
τ0�0�∞� ∈ B}−Ph0� θ

{
H
¯

0
τ0�0� h1� ∈ �0� ×B}∣∣ < δ	(2.2.14)

Let θθt be the bounded solution (modulo 2π) of the initial value problem

1
2b

2
0�θt�θ̇t = b2�θt�� θ0 = θ
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(where θ̇θt is unbounded at the zeros of b0). The solution of this problem satis-
fies the equation

t = A41 +
∫ θθt

0

b2
0�ξ�

2b2�ξ�
dξ�(2.2.15)

with a suitable constant A41	
Let H

¯
1
t = �H1

t � θ
θ
t � with a Wiener process H1

t 	 Note that

Ph0� θ

{
H0
τ0�0�∞� ∈ B} = Ph0� θ

{
θθτ1�0�∞� ∈ B} = Eh0� θ

χB
(
θθτ1�0�∞�

)
as each of them solves the boundary value problem

1
2b

2
0�θ�uhh�h� θ� + b2�θ�uθ�h� θ� = 0� u�0� θ� = χB�θ�	

We consider now this boundary value problem with boundary conditions

u�0� θ� = ϕ�θ�� u�h1� θ� = 0� u�h� θ� = u�h� θ+ 2π��
with a periodic function ϕ� ϕ�θ� = ϕ�θ+2π�	 Evidently the solution uh1 of this
problem,

uh1�h� θ� = Eh�θϕ̃
(
H
¯

0
τ0�0� h1�

)
�

[with a function ϕ̃ such that ϕ̃�0� θ� = ϕ�θ�� ϕ̃�h1� θ� = 0], can be represented

uh1�h� θ� =
∫ ∞

0
ϕ�θθt �f�h1� h� t�dt�

where

f�h1� h� dt� = P{τ�−h�h1 − h� ∈ dt� Wτ�−h�h1−h� = −h}
and τ�a� b� = inf�t > 0�Wt �∈ �a� b��	 The explicit formulas are known for this
probability (see, e.g., [2]). Let T0 = inf�t > 0� θθt = θ� be the period of θθt 	 As
f�h1� h� t� tends to f�h� t��

f�h� t� = P{τ�−∞� h� ∈ dt}�
if h1 → ∞� we get for u�h� θ� = Eh�θϕ�θθτ0�0�∞�� by (2.2.14) (using the substi-

tution η = θθt ),

u�h� θ� =
∫ ∞

0
ϕ�θθt �f�h� t�dt =

∞∑
k=0

∫ T0

t=0
ϕ�θθt �f�h� t+ kT0�dt

=
∞∑
k=0

∫ 2π+θ

η=θ
ϕ�η�f(h�gθ�η� + kT0

) b2
0�η�

2b2�η� dη

=
∫ θ+2π

θ
ϕ�η�

∞∑
k=0

f
(
h�gθ�η� + kT0

) b2
0�η�

2b2�η� dη�

(2.2.16)

where

gθ�η� =
∫ η
θ

b2
0�ξ�

2b2�ξ�
dξ	
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Thus the function in the integral at the right-hand side of (2.2.16) is the
density fh�θ:

�2	2	17� fh�θ�η� =
∞∑
k=0

f�h�gθ�η� + kT0�
b2

0�η�
2b2�η� 	 ✷

Lemma 2.2.7. For any δ > 0 there exists h0 > 0 such that for any interval
S = �γ1� γ2� ⊂ �0�2π �

sup
θ1� θ2∈�0�2π 

∣∣∣ Ph0� θ1

{
H
¯

0
τ0�0�∞� ∈ �0� ×S}

−Ph0� θ2

{
H
¯

0
τ0�0�∞� ∈ �0� ×S}∣∣∣ < δ	

(2.2.18)

Proof. By (2.2.16) we have

Ph�θ1

{
H
¯

0
τ0�0�∞� ∈ �0� ×S}−Ph�θ2

{
H
¯

0
τ0�0�∞� ∈ �0� ×S}

=
∫ ∞

0

(
χS�θθ1

t � − χS�θθ2
t �)f�h� t�dt	

This can be written ∫ ∞

0
�g�t� − g�t− γ��f�h� t�dt�

with a function g� 0 ≤ g ≤ 1� and a suitable constant γ� 0 ≤ γ ≤ T0� where
T0 = inf�t > 0� θθt = θ� is the period of θθt 	 The function f�

f�h� t� = 1√
2π

h

t3/2
exp

(
−h

2

2t

)

(see, e.g., [5]), for fixed h is a unimodular function with maximum at t = h2/3
and

f

(
h�
h2

3

)
= 3

√
3√

2π

1
h2
e−3/2	

Thus the function in the above integral tends to zero uniformly on intervals
of finite length as h→ ∞	 So it is sufficient to show that the expressions

∫ h2/3

γ

(
f�h� t� − f�h� t− γ�)dt�(2.2.19)

∫ ∞

h2/3+γ

(
f�h� t� − f�h� t− γ�)dt(2.2.20)

tend to 0 if h→ ∞	 Note that∫ z
0
f�h� t�dt = 1 − erf

(
h√
2z

)
where erf�z� = 2√

π

∫ z
0

exp�−s2�ds	
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So we get for the expression (2.2.19),

erf
(

3√
2

h√
3h2 − 9γ

)
− erf

(√
3
2

)
+ 1 − erf

(
h√
2γ

)
�

which tends to 0 if h → ∞	 The same holds for the expression (2.2.20), as it
is equal to

erf
(

3√
2

h√
3h2 + 9γ

)
− erf

(√
3
2

)
	 ✷

Lemma 2.2.8. Let D = Dl�H1�H2� and H1 < H0 < H2	 For any interval
S = �γ1� γ2� ⊂ �0�2π and any δ > 0, there exists an ε0 > 0 such that

sup
x
¯1�x¯2∈Cl�H0�

∣∣∣ Px
¯1

{
H�X

¯
ε
τε�D�� =H2� θ�X¯

ε
τε�D�� ∈ S}

−Px
¯2

{
H�X

¯
ε
τε�D�� =H2� θ�X¯

ε
τε�D�� ∈ S}∣∣∣ < δ

(2.2.21)

for all ε < ε0	

Proof. We may assume without loss of generality that δ < 1	 Let δ0 =
δ/25	 As will be shown in the next subsection, the processes Zεt =H�X

¯
ε
t � and

X
¯
ε
0 = x

¯
∈ Dl�H1�H2�� stopped at the moment when they first leave �H1�H2��

converge weakly on any time interval �0�T0 as ε → 0 to a nondegenerate
diffusion process, the same for all x

¯
∈ Dl�H1�H2�	 Using this we can find

ε1 > 0 and d0 > 0 such that

Px
¯3

{
H�X

¯
ε
τε�D�� =H2

}
< δ0 for all x

¯3 ∈ Dl�H1�H1 + d0�� ε < ε1�(2.2.22)

and ∣∣Px
¯1

{
H�X

¯
ε
τε�Dl�H1+d�H2−d��� =Hj ± d}

−Px
¯2

{
H�X

¯
ε
τε�Dl�H1+d�H2−d��� =Hj ± d}∣∣ < δ0

(2.2.23)

for all x
¯1, x

¯2 ∈ Ci�H0�, ε < ε1 and d < d0� j = 1�2� where + is taken if j = 1
and − is taken if j = 2	

(i) Let h0 be large enough such that by Lemma 2.2.7,

sup
θ1� θ2∈�0�2π 

∣∣Ph0� θ1

{
H
¯

0
τ0�0�∞� ∈ �0

}×B}−Ph0� θ2

{
H
¯

0
τ0�0�∞� ∈ �0� ×B}∣∣ < δ0

for all intervals B ⊂ �0�2π 	
(ii) Let η < �γ2 − γ1�/4 be small enough such that by Lemma 2.2.6,

sup
θ∈�0�2π 

Ph0� θ

{
H
¯

0
τ0�0�∞� ∈ �0� ×Bi

}
< δ0�

where Bi = �γi − η� γi + η 	
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(iii) Let T > 0 be large enough such that

P
{

sup
0≤t≤T

Wt < h0 + 1
}
< δ0	

Fix d < d0 and let ε0 < ε1 be small enough such that h0 < d ε0
−1/2 and

(iv) by Lemma 2.2.5,

sup
θ∈�0�2π 

Ph0� θ

{
sup

0≤t≤T

∣∣H
¯
ε
t − H

¯
0
t

∣∣ > η} < δ0 for 0 < ε ≤ ε0

and
(v) sup

θ∈�0�2π 
Ph0� θ

{
H0
τ0�−1� �H2−H1�/

√
ε� �= −1

}
< δ0� 0 < ε < ε0	

Define Dε = �0� �H2 −H1�/
√
ε�	 For all B ⊂ �0�2π we have

Ph0� θ

{
H
¯

0
τ0�Dε� ∈ �0� ×B} = Ph0� θ

{
H
¯

0
τ0�0�∞� ∈ �0� ×B�H0

τ0�Dε� = 0
}
	

So we get by (v),

Ph0� θ

{
H
¯

0
τ0�Dε� ∈ �0� ×B}−Ph0� θ

{
H
¯

0
τ0�0�∞� ∈ �0� ×B} ≤ δ0	(2.2.24)

Let Dd = Dl�H1 + d�H2 − d� and H
¯
�X

¯
ε
t � = �H�X

¯
ε
t �� θ�X¯

ε
t ��	 Using the strong

Markov property we get, by (2.2.22) and (2.2.23),∣∣∣Px
¯1

{
H
¯
�X

¯
ε
τε�D�� ∈ �H2� ×S}−Px

¯2

{
H
¯
�X

¯
ε
τε�D�� ∈ �H2� ×S}∣∣∣

=
∣∣∣Px

¯1

{
H
¯
�X

¯
ε
τε�D�� ∈ �H2� ×S∣∣H(X

¯
ε
τε�Dd�

) =H2 − d}
× (
Px

¯1

{
H�X

¯
ε
τε�Dd�� =H2 − d}−Px

¯2

{
H�X

¯
ε
τε�Dd�� =H2 − d})

+ (
Px

¯1

{
H
¯
�X

¯
ε
τε�D�� ∈ �H2� ×S∣∣H�X

¯
ε
τε�Dd�� =H2 − d}

−Px
¯2

{
H
¯
�X

¯
ε
τε�D�� ∈ �H2� ×S∣∣H�X

¯
ε
τε�Dd�� =H2 − d})

×Px
¯2

{
H�X

¯
ε
τε�Dd�� =H2 − d}

+Px
¯1

{
H
¯
�X

¯
ε
τε�D�� ∈ �H2� ×S∣∣H�X

¯
ε
τε�Dd�� =H1 + d}(2.2.25)

×Px
¯1

{
H�X

¯
ε
τε�Dd�� =H1 + d}

−Px
¯2

{
H
¯
�X

¯
ε
τε�D�� ∈ �H2� ×S∣∣H�X

¯
ε
τε�Dd�� =H1 + d}

×Px
¯2

{
H�X

¯
ε
τε�Dd�� =H1 + d}∣∣∣

≤ δ0 +
∣∣∣Px

¯1

{
H
¯
�X

¯
ε
τε�D�� ∈ �H2� ×S∣∣H�X

¯
ε
τε�Dd�� =H2 − d}

−Px
¯2

{
H
¯
�X

¯
ε
τε�D�� ∈ �H2� ×S∣∣H�X

¯
ε
τε�Dd�� =H2 − d}∣∣∣

+ sup
x
¯
∈Cl�H1+d�

Px
¯

{
H
¯
�X

¯
ε
τε�D�� ∈ �H2� ×S}

≤ 2δ0 + sup
x
¯3�x¯4∈Cl�H2−d�

∣∣∣Px
¯3

{
H
¯
�X

¯
ε
τε�D�� ∈ �H2� ×S}

−Px
¯4

{
H
¯
�X

¯
ε
τε�D�� ∈ �H2� ×S}∣∣∣	
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Using the strong Markov property and the fact that the distributions of X
¯
ε
τ

and X̃
¯
ε

τ are the same if τ is the time of first exit from a bounded domain,
we can bound from above the supremum in the right-hand side of the above
estimate by

sup
θ1� θ2∈�0�2π 

∣∣∣Ph0� θ1

{
H
¯
ε
τε�Dε� ∈ �0� ×S}−Ph0� θ2

{
H
¯
ε
τε�Dε� ∈ �0� ×S}∣∣∣

as h0 < dε
−1/2	 We get by (2.2.24) and (i),∣∣∣Ph0� θ1

{
H
¯
ε
τε�Dε� ∈ �0� ×S}−Ph0� θ2

{
H
¯
ε
τε�Dε� ∈ �0� ×S}∣∣∣

≤ 2 sup
θ∈�0�2π 

∣∣∣Ph0� θ

{
H
¯
ε
τε�Dε� ∈ �0� ×S}−Ph0� θ

{
H
¯

0
τ0�Dε� ∈ �0� ×Sη

}∣∣∣
+ sup
θ1� θ2∈�0�2π 

∣∣∣Ph0� θ1

{
H
¯

0
τ0�Dε� ∈ �0� ×Sη

}−Ph0� θ2

{
H
¯

0
τ0�Dε� ∈ �0� ×Sη

}∣∣∣
≤ 2 sup

θ∈�0�2π 

∣∣∣Ph0� θ

{
H
¯
ε
τε�Dε� ∈ �0� ×S}−Ph0� θ

{
H
¯

0
τ0�Dε� ∈ �0� ×Sη

}∣∣∣+ 3δ0�

where Sη = �γ1 + η� γ2 − η 	 Let S̃η = �γ1 − η� γ2 + η 	 Now∣∣∣Ph0� θ

{
H
¯
ε
τε�Dε� ∈ �0� ×S}−Ph0� θ

{
H
¯

0
τ0�Dε� ∈ �0� ×Sη

}∣∣∣
≤ Ph0� θ

{
H
¯
ε
τε�Dε� ∈ �0� ×S�H

¯
0
τ0�Dε� �∈ �0� ×Sη

}
+Ph0� θ

{
H
¯
ε
τε�Dε� �∈ �0� ×S�H

¯
0
τ0�Dε� ∈ �0� ×Sη

}
≤ Ph0� θ

{
H
¯
ε
τε�Dε� ∈ �0� ×S�H

¯
0
τ0�Dε� �∈ �0� × S̃η

}
+Ph0� θ

{
H
¯

0
τ0�Dε� ∈ �0� × �S̃η \Sη�

}
+Ph0� θ

{
H0
τ0�−1� ε−1/2�H2−H1�� �= −1

}
+Ph0� θ

{
sup

0≤t≤τ0�−1�∞�

∣∣H
¯
ε
t − H

¯
0
t

∣∣ > η∣∣∣H0
τ0�−1� ε−1/2�H2−H1�� = −1

}
	

By (ii) this is not greater than

2δ0 + 2Ph0� θ

{
sup

0≤t≤τ0�−1�∞�

∣∣H
¯
ε
t − H

¯
0
t

∣∣ > η∣∣∣H0
τ0�−1� ε−1/2�H2−H1�� = −1

}
+ 2Ph0� θ

{
H0
τ0�−1� ε−1/2�H2−H1�� �= −1

}
�

and by (iii), (iv) and (v) this can be estimated by

4δ0 + 3Ph0�θ

{
sup

0≤t≤τ0�−1�∞�

∣∣H
¯
ε
t − H

¯
0
t

∣∣ > η� τ0�−1�∞� < T
}

+ 3Ph0� θ

{
τ0�−1�∞� > T} ≤ 10δ0	

Combining these estimates, we get the statement of the lemma. ✷
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Lemma 2.2.9. Let D = Dl�H1�H2� and H1 < H0 < H2	 For any θ0 ∈
�0�2π and δ > 0 there exists an open interval S containing θ0 such that

Pεx
¯

{
H�X

¯
ε
τε�D�� =H2� θ�X¯

ε
τε�D�� ∈ S} < δ

for all x
¯
∈ Cl�H0� and small ε	

As the exit distribution of the process H
¯

0
t has a bounded density by

Lemma 2.2.7, the statement can be proved by similar arguments as used in
the proof of Lemma 2.2.8.

As mentioned above, it is easy to check that the statements of Lemmas 2.2.8
and 2.2.9 are also valid if H2 is replaced by H1	

Now we are able to prove a lemma which corresponds to the first part of
the proof of Lemma 3.5 in [7]. Actually it gives the Markov property of the
limiting process on the graph. Consider a vertexOk	Without loss of generality
we suppose that the segments meeting at Ok are I1� I2 and I3� the region D3
being the one adjoining the whole curve Ck	 Suppose for definiteness that
H�x

¯
� > H�x

¯k
� in D3	 Let γ > 0 be a small number, Dk�±γ� be the connected

component of �x
¯
� H�Ok� − γ < H�x

¯
� < H�Ok� + γ� and τεk�±γ� = inf�t > 0:

X
¯
ε
t �∈ Dk�±γ�� and Ckj�γ� = �x

¯
∈ Dj� H�x

¯
� =H�Ok� ± γ�	

Lemma 2.2.10. For any δ > 0 and 0 < γ′ < γ there exists ε0 > 0 such that
for i, j = 1�2�3� 0 < ε < ε0�

sup
x
¯1�x¯2∈Cki�γ′�

∣∣∣Pεx
¯1

{
X
¯
ε
τεk�±γ� ∈ Ckj�γ�

}−Pεx
¯2

{
X
¯
ε
τεk�±γ� ∈ Ckj�γ�

}∣∣∣ < δ	
Proof. Let C′′

ki = Cki�γ′/2� ∪Cki��γ + γ′�/2�	 By the strong Markov prop-
erty, we get, for x

¯1� x¯2 ∈ Cki�γ′��∣∣∣Pεx
¯1

{
X
¯
ε
τεk�±γ� ∈ Ckj�γ�

}−Pεx
¯2

{
X
¯
ε
τεk�±γ� ∈ Ckj�γ�

}∣∣∣
=
∣∣∣∫
C′′
ki

gε�ξ�(pε�x
¯1� dξ� − pε�x

¯2� dξ�
)∣∣∣�(2.2.26)

where gε�ξ� = Px
¯
iε�X

¯
ε
τεk�±γ� ∈ Ckj�γ�� and pε�x

¯
�B� = Pεx

¯
�X

¯
ε
τε�D′′

ki� ∈ B�	 Here
B ⊂ C′′

ki and D′′
ki is the set containing the points between the two curves

forming the set C′′
ki	

Let x
¯

0
1� 	 	 	 � x¯

0
n1

denote all zeros of the function Hy in the set C′′
ki (see

Lemma 1.1). By Lemma 2.2.9 there exist open subsets S̃0
1� 	 	 	 � S̃

0
n1

of C′′
ki such

that x
¯

0
i ∈ S̃0

i and

n1∑
l=1

Pεx
¯

{
X
¯
ε
τε�D′′

ki� ∈ S̃0
l

}
< δ/6(2.2.27)

for all x
¯
∈ Cki�γ′� and small ε	
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Further, the function gε solves the equationLεgε = 0	 Thus by Lemma 2.1.8
there exists an A42 > 0 such that


gε�ξ1� − gε�ξ2�
 ≤ A42
ξ1 − ξ2
 for all ξ1� ξ2 ∈ C′′
ki

∖ n1⋃
l=1

S̃0
l 	

This implies the existence of a partition S̃1� 	 	 	 � S̃n2
of the set C

′′
ki\

⋃n1
l=1 S̃

0
l

such that with points z
¯l

∈ S̃l for small ε,∣∣gε�z
¯l

� − gε�ξ�∣∣ < δ/6� ξ ∈ S̃l	(2.2.28)

As 0 ≤ gε ≤ 1� the right-hand side of (2.2.26) is not greater than
n1∑
l=1

∫
S̃0
l

(
pε�x

¯1� dξ� + pε�x
¯2� dξ�

)+
n2∑
l=1

∣∣∣∣
∫
S̃l

(
pε�x

¯1� dξ� − pε�x
¯2� dξ�

)∣∣∣∣
+
n2∑
l=1

{∫
S̃l

∣∣gε�z
¯l

� − gε�ξ�∣∣pε�x
¯1� dξ� +

∫
S̃l

∣∣gε�z
¯l

� − gε�ξ�∣∣pε�x
¯2� dξ�

}
	

We can find ε0 > 0 such that for 0 < ε < ε0� the first term of this sum is less
than δ/3 by (2.2.27), the third term is less than δ/3 by (2.2.28) and the second
term is less than δ/3 by Lemma 2.2.8. ✷

From the considerations of the last two subsections, especially from the
proof of Lemma 2.2.10, we can deduce a result for a boundary value problem
with the operator �1/ε�∇̄H · ∇ + �∂2/∂y2�:

Corollary 2.2.11. Let H�x
¯
� satisfy the conditions of Theorem 1 and let G

be a bounded domain in R2 containing a trajectory Cl�H0� of the dynamical
system (1.10) for some l and a noncritical value H0	 Then, for any A43 and
δ > 0� there exists an ε0 > 0� such that for any measurable function f with
ess sup
f
 < A43 and any 0 < ε < ε0� the solution uε of the boundary value
problem,

1
ε
∇̄H · ∇uε + uεyy = 0� uε
∂G = f�

has the property

sup
x
¯1�x¯2∈Cl�H0�

∣∣uε�x
¯1� − uε�x

¯2�
∣∣ < δ	

2.3. Proof of Theorem 1. Theorem 2.2 in [7] that deals with the case of
nondegenerate perturbation is proved using some results numbered Lemmas
3.1–3.5. The proofs of Lemmas 3.1–3.4 in [7] use a further series of results
denoted Lemmas 4.1–4.10. All those can be used for the situation here after
suitable changes and alterations in the proofs are made. Lemma 3.5 in [7] also
holds here, but the first part of the proof changes essentially due to the fact
that the perturbation of the Hamiltonian system is degenerate. This affects
especially the proof of the Markov property of the limiting process on the
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graph. Here the results of the previous subsections replace Lemmas 5.1–5.5
in [7]. With modifications of Lemmas 3.1–3.5 and 4.1–4.10 in [7] that are
discussed in this subsection, the proof of Theorem 1 is analogous to the proof
of Theorem 2.2 in [7].

We start with the lemmas of Section 4 in [7]. Lemma 4.1 can be replaced
by Lemma 2.2.4 of the present paper and Lemma 4.2 can be replaced by
Lemma 2.2.1. Lemmas 4.3 and 4.4 and the resulting discussion of Particular
Cases 1, 2, and 3 hold also in the case considered here and the proofs are the
same. The statements of Lemmas 4.5–4.8 in [7] are also true for the processes
considered in the present paper. The probability that a one-dimensional dif-
fusion with positive (negative) drift leaves an interval at the left (right) end
increases if the diffusion coefficient increases. By using this fact, the proof of
Lemma 4.5 for the degenerate case is analogous to the proof in [7]. To extend
the proof of Lemma 4.6 in [7] for the situation here we additionally have to
make use of assumption (vi) of Theorem 1 to make sure that the coefficient
denoted by a11 in [7] does not disappear. The rest of the proof is analogous.

The proof of Lemma 4.7 for the situation here is very similar to that in [7].
We replace 1H by Hyy and ∇H by �0�Hy�∗	 The only difficulty is that we
cannot estimate H2

y from below by a positive constant as 
∇H
2 is estimated
in [7]. This estimate has been used in [7] to get an estimate

Pεx

{∫ τk
σk


∇H�X
¯
ε
s �
2 ds ≥ A44 ε/2 or σk < τ

ε ≤ τk
∣∣∣∣X¯ εs � s ≤ σk

}
≥ 1 − α�ε�

with A44 > 0 sufficiently small and α�ε� → 0 for ε → 0� τk� τε and σk are
Markov times. To get a corresponding estimate for 
∇H�X

¯
ε
s �
2 replaced by

H2
y�X¯

ε
s � we divide the set of all trajectories into those for which supσk≤s≤τk 
X

¯
ε
s −

X
¯
ε
s �X¯

ε
σk

�
 < η [cf. (2.2.3)] and into the complement of this set where η is suffi-
ciently small. On the first set we get an estimate as above because the relative
amount of time which the process X

¯
ε
t spends near the zeros of Hy is “small.”

The arguments are the same as in the proof of Lemma 2.2.4 (see also Lem-
mas 1.1 and 2.2.3). The probability of the second set tends to 0 for ε→ 0	

The statement of Lemma 4	7′ in [7] holds for the situation here with 1H�x
¯k

�
replaced by Hyy�x¯k�. Note that assumption (v) of Theorem 1 guarantees that
Hyy�x¯k� �= 0	 The statement of Lemma 4.8 in [7] holds in the degenerate
case with the same proof. The statement of Lemma 4.9 in [7] holds also in
the situation here with the operators Li from (1.13), (1.14) and (1.15). The
proof is the same as in [7] after replacing 1H by Hyy and ∇H by �0�Hy�∗	
Lemma 4.10 in [7] contains some misprints, so we will give it here again for
our situation.

Lemma 2.3.1. Let us consider the first time τε = τεi �H1�H2� of leaving the
region Di�H1�H2�	 Let g be a continuous function on �H1�H2 and let ϕ be a
function defined only at the points H1�H2	 Then

lim
ε→0

Eεx
¯

[
ϕ�H�X

¯
ε
τε�� +

∫ τε
0
g�H�X

¯
ε
t ��dt

]
= f�H�x

¯
��
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uniformly in x
¯
∈ Di�H1�H2�� where

f�H� = ui�H2� − ui�H�
ui�H2� − ui�H1�

[
ϕ�H1� +

∫ H
H1

(
ui�h� − ui�H1�

)
g�h�dvi�h�

]

+ ui�H� − ui�H1�
ui�H2� − ui�H1�

[
ϕ�H2� +

∫ H2

H

(
ui�H2� − ui�h�

)
g�h�dvi�h�

]
	

Here ui and dvi are the scale function and the speed measure of the dif-
fusion process governed by the operator Li	 In general, there are no explicit
formulas for ui and vi in this setting, but they are not needed in the proof,
which can be copied from [7].

Now we are able to discuss Lemmas 3.1–3.5 in [7]. Lemma 3.1 can be used
in the same form. In the proof of Lemma 3.2 the same changes have to be
made as indicated above for the proof of Lemma 4.9. Lemma 3.3 holds also
in the situation here and is a consequence of the corresponding Lemma 4.9
in this situation, too. Also the corresponding statement of Lemma 3.4 is true
here and can be proved as in [7].

Thus we have the form of the operators governing the limiting diffusion
in the interior of the edges of the graph and we can discuss the question of
accessibility of the boundaries of the edges for these diffusions. Let Ok ∼ Ii be
an interior vertex of the graph corresponding to a saddle point x

¯k
ofH�x

¯
�	 The

coefficients Ai�H� and Bi�H� in (1.13) [see (1.14) and (1.15)] have finite limits
if H tends to Hk =H�x

¯k
�	 We have 0 < A45 <

∫
Ci�H�H

2
y
∇H
−1 dl < A46 <∞

for H close to Hk = H�x
¯k

�� but λi�H� = ∫
Ci�H� 
∇H
−1 dl tends to infinity as

H→ Hk	 If Si�H� denotes the area of the domain in R2 bounded by Ci�H��
then S′

i�H� = λi�H�	 Thus, the integral
∫Hk

H0
λi�H�dH is finite for �H0� i� ∈ Ii	

This implies that

ui�Hk� =
∫ Hk

H0

exp
{
−
∫ z
H0

2Bi�u�Ai�u�du
}
dz

and

vi�Hk� =
∫ Hk

H0

Ai�z�−1 exp
{∫ z
H0

2Bi�u�/Ai�u�du
}
dz

are finite. Thus, the vertex Ok is accessible for all points of Ii ∼ Ok [4], and a
gluing condition should be imposed for each interior vertex of the graph.

IfOk corresponds to an extremal point x
¯k

of the HamiltonianH�x
¯
�� and Ii ∼

Ok� then nearOk the drift coefficient Bi�H� is bounded, always has the sign to
drive the diffusion away from the vertex and 
Bi�H�
 > A47 > 0. The diffusion
coefficient Ai�H� can be estimated Ai�H� < A48
H −H�x

¯k
�
� A48 > 0	 The

inaccessibility of the exterior vertex follows now from the respective property
of the diffusion governed by the operator L̄if�H� = A48
H −H�x

¯k
�
f′′�H� ±

A47f
′�H� with the sign so that the drift drives the diffusion away from the

vertex.
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Now we show that the statement of Lemma 3.5 in [7] holds also in the
degenerate case. The proof starts as the corresponding proof in [7]. Formula
(5.19) in [7] is already proved for the situation here by Lemma 2.2.10. Then,
as in [7], we use the fact that the invariant measure µ for the processes X

¯
ε
t

(the Lebesgue measure) can be written as an integral with respect to the
invariant measure of the embedded Markov chain. As in [7], let Hk1

�Hk2
be

the limits between which the coordinateH on the edge Ij of the graph changes
[ifH�Ij� = �Hk1

�∞�� introduce a new vertex with coordinates �Hk2
� j�� where

Hk2
is an arbitrary number greater than Hk1

]. For small δ > 0, Ij ∼ Ok� the
set Ckj�δ� = �x

¯
∈ Dj� H�x

¯
� = Hk1

+ δ� if H�Ok� = Hk1
� and Ckj�δ� = �x

¯
∈

Dj� H�x
¯
� = Hk2

− δ� if H�Ok� = Hk2
	 Let C�δ� = ⋃

k� j Ckj�δ�	 By the same
arguments as in [7] we get formula (5.23) in [7]:∫

R2
g�H�x

¯
��χDj�x¯� µ�dx

¯
�

=
∫
⋃
k� Ij∼Ok Ckj�δ�

νε�dx
¯
�Eεx

¯

∫ τ1

0
g
(
H�X

¯
ε
t �
)
χDj�X¯

ε
t �dt

(2.3.1)

for continuous functions g being different from zero only in �Hk1
+δ�Hk2

−δ�
and a Markov time τ1 and measures νε with the respective properties as in
[7]. Let dṽj denote the speed measure of the limiting diffusion on the graph
obtained in [7] (denoted there by dvj) and let dvj and uj be the speed measure
and the scale function, respectively, of the limiting diffusion here. It follows
from the well-known formulas for uj and vj that u′

j and v′
j exist and are

positive and continuous, and that

u′
j�H�v′

j�H� = 2
Aj

=
2
∫
Cj�H� 
∇H�x

¯
�
−1 dl∫

Cj�H�H
2
y�x¯�
∇H�x

¯
�
−1 dl

	(2.3.2)

Using Lemma 2.3.1 and the fact that ṽj�H� can be taken to be equal to the
area enclosed by Cj�H� (see [7]), the identity (2.3.1) can be written as

∫ Hk2
−δ

Hk1
+δ
g�h�dṽj�h�

=
∫ Hk2

−δ

Hk1
+δ
g�h� ṽ

′
j�h�
v′
j�h�

dvj�h�

= νε�Ck1j
�δ��

[
uj�Hk1

+ δ� − uj�Hk1
+ δ′�

uj�Hk2
− δ′� − uj�Hk1

+ δ′�

×
∫ Hk2

−δ

Hk1
+δ

(
uj�Hk2

− δ′� − uj�h�
)
g�h�dvj�h� + o�1�

]

+ νε�Ck2j
�δ��

[
uj�Hk2

− δ′� − uj�Hk2
− δ�

uj�Hk2
− δ′� − uj�Hk1

+ δ′�

×
∫ Hk2

−δ

Hk1
+δ

(
uj�h� − uj�Hk1

+ δ′�)g�h�dvj�h� + o�1�
]
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Thus

ṽ′
j�h�
v′
j�h�

= νε�Ck1j
�δ�� uj�Hk1

+ δ� − uj�Hk1
+ δ′�

uj�Hk2
− δ′� − uj�Hk1

+ δ′�
× (
uj�Hk2

− δ′� − uj�h�
)

+ νε�Ck2j
�δ�� uj�Hk2

− δ′� − uj�Hk2
− δ�

uj�Hk2
− δ′� − uj�Hk1

+ δ′�
× (
uj�h� − uj�Hk1

+ δ′�)+ o�1�

(2.3.3)

for dvj-almost all h ∈ �Hk1
+δ�Hk2

−δ� and, as v′
j is strictly positive and all the

functions are continuous, the formula (2.3.3) holds for all h ∈ �Hk1
+δ�Hk2

−δ 	
If we take h =Hk1

+ δ and h =Hk2
− δ we get a linear system for νε�Ck1

�δ��
and νε�Ck2

�δ�� from which we can easily deduce that

∣∣∣∣νε�Ckl�δ�� − ṽ′
j�Hkl

�
v′
j�Hkl

�u′
j�Hkl

�
1

δ− δ′

∣∣∣∣ < κ

δ− δ′ � l = 1�2�

for some κ > 0	 As �ṽ′
j/v

′
j u

′
j� = 1

2

∫
H2
y 
∇H
−1 dl� we get the desired result

by the same arguments as used at the end of the proof of Lemma 3.5 in [7].

3. The case of Hamiltonian H�x� y� � 1
2y2 � F�x�. Equation (1.1) de-

scribes a nonlinear oscillator with 1 degree of freedom. Assume that the func-
tion f�x� is in C∞�R1�, lim inf 
x
→∞ f�x�sgn�x� > 0� and let f�x� have just
a finite number of simple zeros, so that f�x� and f′�x� are not equal to zero
simultaneously. Moreover, assume, for brevity, that all the local maxima of
F�x� = ∫ x

0 f�y�dy are different. Let H�x�y� be the Hamilton function of the
oscillator H�x�y� = 1

2y
2 + F�x�	 Denote by ( the graph corresponding to

H�x�y�	 Let ( consist of n edges I1� I2� 	 	 	 � In andm vertices O1�O2� 	 	 	 �Om	
Denote by Ck�z� the component of C�z� = ��x�y��H�x�y� = z� corresponding
to Ik	 Of course, Ck�z� is empty for some z and k	 Let Sk�z� be the area of
the domain Gk�z� ⊂ R2 bounded by Ck�z� if the point �z� k� ∈ ( is not an end
of Ik	 If �z� k� is an end of Ik� put Sk�z� = limz′→z� �z′�k�∈Ik Sk�z′�	 The function
Sk�z� is a function on the graph (	 It is smooth inside the edges and can have
discontinuities at the vertices.

Let Y� R2 → ( be, as before, the mapping such that Y�x�y� = �z� k��
where z = H�x�y�� k = k�x�y� is the index of the edge Ik containing the
point corresponding to the level set component containing �x�y� ∈ R2	

The function H�x�y� = 1
2y

2 + F�x� satisfies the conditions of Theorem 1.
Thus the processes Y�Xεt �Yεt �� where �Xεt �Yεt � is defined by (1.6), converge to
a diffusion process Yt on ( governed by the operators

Lkvk�z� = 1
2λk�z�

d

dz

(
ak�z�

dvk�z�
dz

)
� z ∈ �Ik��
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inside the edges and by the gluing conditions at the vertices. IfOi is an interior
vertex and Ik1

∼ Oi� Ik2
∼ Oi� Ik3

∼ Oi� the gluing condition

αik1

dvk1
�z�

dz

∣∣∣∣
�z� k1�=Oi

+ αik2

dvk2
�z�

dz

∣∣∣∣
�z� k2�=Oi

= αik3

dvk3
�z�

dz

∣∣∣∣
�z� k3�=Oi

(3.1)

should be imposed if the value of H�x�y� is less than H�Y−1�Oi�� for Ik1
� Ik2

and greater than H�Y−1�Oi�� for Ik3
	 The constants αikj are defined as

αikj =
∫
Ckj �Y−1�Oi��

H2
y�x�y�


∇H�x�y�
 dl�

Ckj�Y−1�Oi�� is the limit of Ckj�z′� as �z′� kj� → Oi� j = 1�2�3	 The function
vk�z� should be continuous on (	

In the case under consideration, one can give more explicit formulas for the
coefficients of the operators and of the gluing conditions. Each set Ck�z� is con-
nected with two neighboring roots αk�z� and βk�z� of the equation F�x� = z �

Ck�z� = {�x�y� ∈ R2� αk�z� ≤ x ≤ βk�z�� y = ±
√

2�z−F�x��}	
Then the coefficients ak�z�� λk�z� have the form

ak�z� =
∫
Ck�z�

H2
y�x�y�dl


∇H�x�y�


= 2
∫ βk�z�
αk�z�

√
2�z−F�x��dx = Sk�z��

λk�z� =
∫
Ck�z�

dl


∇H�x�y�
 = 2
∫ βk�z�
αk�z�

dx√
2�z−F�x�� = d

dz
Sk�z�	

We used here that 
∇H�x�y�
 = √
f2�x� + 2�z−F�x��� H2

y = 2�z−F�x���

dl = 
∇H�x�y�


Hy�x�y�


dx for �x�y� ∈ Ck�z�	

Actually, the equality λk�z� = S′
k�z� is true for any HamiltonianH�x�y�	 Thus

the operators Lk can be written as

Lkvk�z� = 1
2S′

k�z�
d

dz

(
Sk�z�

dvk�z�
dz

)
� �z� k� ∈ Ik�(3.2)

where Sk�z� is the area of the domain bounded by Ck�z�	
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The coefficients of the gluing conditions (3.1) can be expressed through the
areas of the corresponding domains as well:

αikj = Skj�z�� �z� kj� = Oi� j = 1�2�3	

We have the following result.

Theorem 2. Assume that f�x� satisfies the conditions formulated in the be-
ginning of this section. Let Sk�z� be the area of the domain bounded by Ck�z�
[for the critical values z = H�x�y�� the area is defined as the corresponding
limit]. Then the processes Y�Xεt �Yεt �� where �Xεt �Yεt � is defined by (1.6), con-
verge weakly in the space of continuous functions ϕ� �0�T → (� for any T > 0�
to the diffusion process on ( governed by the operators (3.2) inside the edges
and by the gluing conditions (3.1) with αikj = Skj�zi� at each interior vertex

Oi = �zi� k1� = �zi� k2� = �zi� k3�	
Using this result, one can calculate the main terms of the asymptotics for

many interesting characteristics of the process �X̃εt � Ỹεt � as ε ↓ 0	 Consider, for
example, the asymptotics of the expectation of the exit time from a domain
G ⊂ R2: u�x�y� = limε↓0 εEx�yτ̃

ε� τ̃ε = min�t� �X̃εt � Ỹεt � �∈ G�	 If the trajectory
of the nonperturbed system, starting in �x�y� ∈ G, leaves G in a finite time,
then u�x�y� = 0	 Therefore just the domains bounded by the nonperturbed
trajectories are of interest. Let G be bounded by the nonsingular trajectories
Ck1

�z1�� 	 	 	 � Ckl�zl�� �ki� zi� is the point of ( corresponding to Cki�zi�	 In the
example shown in Figure 1, Ck1

�z1� = ∂G1 and Ck2
�z2� = ∂G2	

Lemma 3.1. Let (̂ be the domain in ( bounded by the points �zi� ki��
i ∈ �1� 	 	 	 � l�� τ = min�t� Yt �∈ (̂� and vk�z� = Ez�kτ� �z� k� ∈ (̂	 Then

limε↓0 εEx�yτ̃
ε = vk�z�� where Y�x�y� = �z� k� ∈ (̂	

Proof. Let zl = max�z1� 	 	 	 � zl� and G∗ be the domain in R2 bounded
by Ckl�zl�� τ̂ε = min�t� �Xεt �Yεt � �∈ G∗�	 It is clear that Pεx�y�τε ≤ τ̂ε� = 1�
�x�y� ∈ G∗� where τε = ετ̃ε = min�t� �Xεt �Yεt � �∈ G�	 Applying the Itô formula
to H�Xεt �Yεt �� we have

H�Xετ̂ε�Yετ̂ε� −H�x�y� =
∫ τ̂ε

0
Hy�Xεs�Yεs�dWs + 1

2

∫ τ̂ε
0
Hyy ds	

Taking into account that Hyy ≡ 1� we conclude that

εEεx�yτ̃
ε = Eεx�yτε ≤ Eεx�yτ̂ε ≤ z− min

�x�y�∈G∗
H�x�y� <∞	

Since the last bound holds uniformly for all �x�y� ∈ G∗� we derive, using the
Markov property, that all the moments of τε are bounded uniformly in ε > 0�
�x�y� ∈ G	 In particular, Eεx�y�τε�2 ≤ B <∞	

Let χτε≤T be the indicator function of �τε ≤ T�	 For any T > 0� we have

0 ≤ Eεx�yτε −Eεx�yτεχτε≤T = Eεx�yτεχτε>T

≤
√
Eεx�y�τε�2 Pεx�y�τε < T� ≤ B

T
	

(3.3)
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Now, one can consider τεχτε≤T as a functional on the trajectories of the
process Yεt = Y�Xεt �Yεt � on (	 These processes converge weakly in C0T to the
process Yt on ( as ε ↓ 0	 The functional τεχτε≤T is not continuous in C0T� but
the set where it is discontinuous has probability zero for the limiting process
Yt� since the diffusion coefficient of Yt at the boundary of (̂ is not zero. Thus
we can conclude from the weak convergence that

lim
ε↓0
Eεx�yτ

εχτε≤T = EY�x�y�τχτ≤T	

This equality together with (3.3) implies the statement of the lemma. ✷

The function vk�z� = Ez�kτ� as it follows from the theory of Markov pro-
cesses, is the solution of the boundary problem

Lkvk�z� = −1� �z� k� ∈ (̂� �z� k� is not a vertex,

vki�zi� = 0� i = 1� 	 	 	 � l	
(3.4)

One should add the gluing conditions at the interior vertices and the continuity
on (̂	

Problem (3.4) can be solved, in a sense, explicitly. Equations (3.4) are lin-
ear, and the general solution is the sum of a solution of the nonhomogeneous
problem (satisfying the gluing condition, of course) and the general solution
of the equations with zero in the right-hand side. It is clear that the function
vk�z� ≡ −2z satisfies the nonhomogeneous equations. The solutions of the
homogeneous equations (satisfying the gluing conditions) can be constructed
in the following way. Single out one of the boundary points of (̂� say �zl� kl�	
Consider the edges of (̂ which contain a boundary point different from �zl� kl�
(these are the edges Ik1

� 	 	 	 � Ikl−1
) and write a constant cj on each Ikj	 Write

zero on any edge of (̂ which has an exterior vertex and no boundary points,
besides, maybe, the point �zl� kl�	 Now, define constants cj for the rest of the
edges of (̂ so that if a vertex O = �H0� ν� is the common point of Iν1

� Iν2
� Iν3

and the coordinate z on Iν1
and Iν2

is smaller thanH0 (thus, z is greater than
H0 on Iν3

), then cν3
= cν1

+cν2
	 This condition allows us to extend the sequence

c1� 	 	 	 � cl−1 to all the edges included in (̂ in a unique way.
For any point �z� k� ∈ (̂� there exists a unique path leading from �z� k� to

�zl� kl�	 Let C�t� = cj and S�t� = Skj�z� if t = �z� kj� ∈ (	 Put

wc0� c1� 			� cl−1�z� k� =
∫ �zl� kl�

�z� k�
C�t�dt
S�t� + c0	

It is easy to see that the function wc0� c1� 			� cl−1�z� k� on ( satisfies the equations
Lkw

c0� c1� 			� cl−1�z� k� = 0� if �z� k� is not a vertex, and satisfies the gluing con-
ditions at the vertices. Choose the constants c0� c1� 	 	 	 � cl−1 from the boundary
conditions at the points �zi� ki�:

wc0� c1� 			� cl�zi� ki� = 2zi� i = 1� 	 	 	 � l	(3.5)
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This is a system of linear algebraic equations with respect to c0� 	 	 	 � cl	 One
can check that system (3.5) defines the constants c0� 	 	 	 � cl in a unique way.
Then the function

vk�z� = −2z+wc0� c1� 			� cl−1�z� k�
is the solution of the problem (3.4) and

u�x�y� = lim
ε↓0
εEεx�yτ̃

ε = vk�x�y�� 1
2y

2 +F�x���

k�x�y� is the index of the edge containing the point Y�x�y�	
Let, for example, the function f�x� and the domainG be as in Figure 1. Then

(̂ consists of edges Ĩ1 = �∂1�O2�� Ĩ2 = �O2� ∂2�� I3 = �O2�O4�� I4 = �O3�O4��
I5 = �O5�O4�� ∂1 = Y�∂G1�� ∂2 = Y�∂G2�	 We prescribe 0 to I4� I5 and
prescribe c1 to Ĩ1	 The rule of extension of these constants to the other edges
gives us c3 = 0� c1 = c2	 Let H1 and H2 be the values of H�x�y� on ∂G1 and
∂G2, respectively, and let H�O2� be the value of H�x�y� at O2	 The constants
c1, c0 satisfy the equations

v1�H1� = c0 − 2H1 = 0�

v2�H2� = −2H2 + c0 + c1

∫ �H1�1�

�H2�2�
dt

S�t� = 0	

Solving this system, we have

c0 = 2H1� c1 = 2�H2 −H1�
(∫ �H1�1�

�H2�2�
dt

S�t�
)−1

�

and thus

u�x�y� = −2H�x�y� + 2H1

+ 2�H2 −H1�
(∫ �H1�1�

�H2�2�
dt

S�t�
)−1 ∫ �H1�1�

�H�x�y�� k�x�y��
dt

S�t� �

�H�x�y�� k�x�y�� ∈ Ĩ1 ∪ Ĩ2�
u�x�y� = u�O2� + 2H�O2� − 2H�x�y�� Y�x�y� ∈ I3 ∪ I4 ∪ I5	
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