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ON THE EXCURSION RANDOM MEASURE
OF STATIONARY PROCESSES1
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The excursion random measure ζ of a stationary process is defined
on sets E ⊂ �−∞�∞� × �0�∞�, as the time which the process (suitably
normalized) spends in the set E. Particular cases thus include a multitude
of features (including sojourn times) related to high levels. It is therefore
not surprising that a single limit theorem for ζ at high levels contains a
wide variety of useful extremal and high level exceedance results for the
stationary process itself.

The theory given for the excursion random measure demonstrates, un-
der very general conditions, its asymptotic infinite divisibility with certain
stability and independence of increments properties leading to its asymp-
totic distribution (Theorem 4.1). The results are illustrated by a number
of examples including stable and Gaussian processes.

1. Introduction. Random measure theory has important applications in
the study of extremes. As usual, extremes refer to the very large and small
observations in a large sample. In this paper, however, we focus on the right
extremes since extensions to include extremes on both directions are straight-
forward. Cramér and Leadbetter (1967), Leadbetter, Lindgren and Rootzén
(1983), Resnick (1987) and Leadbetter and Rootzén (1988) illustrate the sub-
stantial benefit of proving functional limit theorems for point processes record-
ing typically either the high-level exceedance positions by a random sequence
(with discrete-time space), or high-level upcrossing positions of a random pro-
cess (with continuous-time space). To motivate the problems considered in this
paper, we now review one such approach in the discrete-time case. Let �ξj� be
a strictly stationary sequence of random variables. Define the point process
ηn by

ηn�E� = #
{
j
 (j/n�u−1

n �ξj�
) ∈ E}

for Borel sets E in �2
+�

where �2
+ 
= �−∞�∞� × �0�∞�, and un is some decreasing function on �+ 
=

�0�∞� which can typically be taken to satisfy P�ξ1 > un�τ�� ∼ τ/n as n→∞,
τ > 0. While other normalizations can be used, we feel that this particular one
leads to the simplest “self-similar” representation of the distributional limit. If
P�max1≤j≤n ξj ≤ anx+ bn�→w G�x�� then un�τ� can simply be anG−1�e−τ� +
bn. Note that the scalings of both time and space allow ηn to capture the po-
sitions as well as the magnitudes of the extremes �ξj�. It is therefore natural
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that the weak convergence of ηn is equivalent to the joint weak convergence
of the extreme order statistics of ξ1� � � � � ξn. See Hsing (1987), Resnick (1987),
O’Brien, Torfs and Vervaat (1990) and the references therein.

In this paper we consider the corresponding version of ηn for continuous-
time space stationary processes. Let �ξt� t ∈ �� be a strictly stationary process
defined on some probability space, where we make the minimal assumption
that the process is jointly measurable in t and ω (i.e., measurable with respect
to the product σ-field of the Borel σ-field of � and the σ-field of the probability
space). Define the random measure ζT by

ζT�E�=Lebesgue measure of
{
t
 (t/T�u−1

T �ξt�
)∈E}

for Borel sets E in �2
+�

where uT is an appropriate normalization whose role is similar to that of un
in ηn. We call ζT (or �ζT�T > 0�) the excursion random measure of �ξt�. The
goal of this paper is to consider issues related to the asymptotic distributional
properties of ζT�

Many features of the extremes of �ξt� are recorded by ζT for large T. As
an elementary illustration, for sets Ei = A× �0� τi�, 1 ≤ i ≤ k, where A ⊂ �+
and τi > 0, the random vector �ζT�E1�� ζT�E2�� � � � � ζT�Ek�� records simulta-
neously the amount of time in T ·A that the process �ξt� spends in the “rare
sets” �uT�τi��∞�. Clearly, the time and spatial sets here can be much more
general. Hence, with application of the continuous mapping theorem, the class
of limit theorems that can be derived from the asymptotic distribution of ζT go
beyond those in the literature on the sojourns in rare sets by stationary pro-
cesses [cf. Berman (1980, 1982, 1983)]. Furthermore, this approach is rather
general from the following viewpoints. First, since only the amount of excur-
sion time is relevant in defining ζT, very little is required in terms of sam-
ple path regularity. Furthermore, deriving the asymptotic distribution of ζT
is usually relatively straightforward and, in particular, does not require the
underlying process �ξt� to satisfy a stringent mixing condition such as the
strong mixing condition. Thus, the approach applies to a very general class of
processes and can potentially lead to a wide range of applications.

A major difference between the continuous and discrete-time cases is that
for the continuous-time case, in addition to the “global” normalization uT,
a “local” normalization on the durations of the high-level excursions is also
required for the distribution of ζT to stabilize for large T. This normalization,
which differs from process to process, is in the form of a multiplicative constant
aT of ζT. In some cases (for example, moving average stable processes) it is
possible to take aT as a fixed constant. However, typically up- and down-
crossings of a high level by �ξt� occur at time scale smaller than that of the
process, in which case aT→∞ at a speed that reflects the “natural time scale”
for observing high-level excursions. In the Gaussian case aT can be taken as
�logT�1/2.

The main theme of this paper will be approached from a completely gen-
eral point of view. First, in Section 2 we describe the theoretical foundation
of the excursion random measure. There we also define a mixing condition
under which we deduce a set of properties that must hold in the limit for
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the excursion random measure. The class of random measures possessing
such properties is characterized in Section 3, extending the results in Mori
(1977) and Hsing (1987). In Section 4, we develop an approach for deriving
the asymptotic distribution of the excursion random measure in terms of the
global and local properties of high-level excursions. In Section 5, four examples
of different natures are given to illustrate the various aspects of the limiting
excursion random measure. In particular, a moving average stable process and
a Gaussian process are considered. For clarity of presentation, all the proofs
are collected in Section 6.

In the remaining part of this section, we briefly review some basic con-
cepts and terminology from random measure theory relevant to this paper.
The reader is referred to Kallenberg (1983) and Matthes, Kerstan and Mecke
(1978) for details. In this paper, a subspace of a topological space has the
relative topology and a product space of topological spaces has the product
topology. For a topological space T, σ�T� denotes the Borel σ-field of T. The
random measures in this paper will have state (or phase) space S equal to
either �2

+, or �+, which have the usual topologies. Also let � = ��S� be the
collection of all bounded (i.e., relatively compact) sets in σ�S� and � = � �S�
the class of nonnegative measurable functions on S. Denote by � = � �S�
the collection of locally finite measures on �S�σ�S��. Here � is assumed to
have the vague topology which generates the Borel σ-field σ�� �. The null
measure in � is denoted by 0 when there is no risk of ambiguity. For µ ∈�
and f ∈ � , write µf = ∫

S fdµ. A random measure η on �S�σ�S�� is a mea-
surable mapping from some probability space �����P� to �� � σ�� ��. The
distribution of η, P ◦η−1, is uniquely determined by its Laplace transform

Lη�f� = � exp�−ηf�� f ∈ � �

Then η is infinitely divisible if, for each n ≥ 1, there exist some i.i.d. random
measures η1� � � � � ηn such that η has the same distribution as

∑n
i=1 ηi. The

following result is fundamental.

Theorem 1.1 [cf. Kallenberg (1983), Theorem 6.1]. The relation

− log � e−ηf = αf+
∫
� \�0�

(
1− e−µf)λ�dµ�� f ∈ � �(1.1)

defines a unique correspondence between the distributions of all infinitely di-
visible random measures η on �S�σ�S�� and the class of all pairs �α� λ�, where
α is in � and λ is a measure on � \�0� satisfying∫

� \�0�

(
1− e−µB)λ�dµ� <∞� B ∈ ��

For simplicity of terminology, we shall write in this case ηd 
= α and ηr 
=
η− ηd.

2. The excursion random measure. Let �ξt� t ∈ �� be a strictly sta-
tionary process that is jointly measurable in t and ω. Let �uT� T > 0� be
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a collection of normalizing functions on �+ = �0�∞� with the following pro-
perties.

(U1) uT is continuous and strictly decreasing for each T > 0;
(U2) limT→∞ u

−1
σT
◦uT�τ� = στ for each σ and τ > 0,

where u−1
T �y� = sup�τ > 0
 uT�τ� ≥ y� and “ ◦ ” stands for the composition of

functions. Condition (U1) is a smoothness condition, which is included here for
convenience. Condition (U2) enables a cleaner description of the asymptotic
distribution of the extremes. Condition (U2) is satisfied if, for example, uT
satisfies (U1) and

lim
T→∞

TP�M�1� > uT�τ�� = τ� τ > 0(2.1)

or

lim
T→∞

P
{
M�σT� ≤ uT�τ�

} = e−στ� σ� τ > 0�(2.2)

where

M�t� = sup
0≤s<t

ξs� t > 0�

Note that for a weakly dependent process, (2.1) and (2.2) are closely related
conditions. If the discrete time process �Xi = supi≤t<i+1 ξt� has a nonzero ex-
tremal index θ [cf. Leadbetter (1983)], then (2.2) holds with uT�τ� = vT�τ/θ�
whenever (2.1) holds with uT�τ� = vT�τ� for some vT. The role of uT is typi-
cally to estimate the quantiles of the extremes of ξt, 0 ≤ t < T. Therefore, the
function uT satisfying (2.1) or (2.2) corresponds to the most useful normaliza-
tion. For the most part, we will make that assumption. However, there is no
need to confine the treatment to these two possibilities at first.

The excursion random measure ζT defined in Section 1 may clearly be ex-
pressed as

ζT�E� =
∫
�
IE

(
t/T� u−1

T �ξt�
)
dt� E ∈ σ(�2

+
)
�

where IE�x�y� = 0 or 1 according as �x�y� �∈ E or �x�y� ∈ E. It follows
readily from the joint measurability of �ξt� and Fubini’s theorem that ζT�E�
is measurable for every Borel set E and hence ζT is a well-defined random
measure [cf. Kallenberg (1983), Lemma 1.4].

As explained in Section 1, a multiplicative constant aT of ζT is generally
necessary in order for the distribution of ζT to converge. Roughly speaking, a−1

T

reflects the time scale of the high-level excursions. Therefore, it is desirable
that aT and uT be such that aT times the mean excursion time of ξt above
uT�τ� for t ∈ �0�T� is bounded away from 0 and ∞; that is,

0 < lim inf
T→∞

aTTP
{
ξ1 > uT�τ�

} ≤ lim sup
T→∞

aTTP
{
ξ1 > uT�τ�

}
<∞�(2.3)
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If additionally TP�M�1� > uT�τ�� is also bounded away from 0 and ∞ [e.g.,
under (2.1)], then

aT �
TP

{
M�1� > uT�τ�

}
TP

{
ξ1 > uT�τ�

} 1
TP

{
M�1� > uT�τ�

} � P
{
M�1� > uT�τ�

}
P
{
ξ1 > uT�τ�

} �

in which case aT is bounded away from 0. We will follow this up in Remark 1
after Proposition 2.1.

One of the major purposes of this paper is to consider the possible
asymptotic distributions of the excursion random measure for weakly depen-
dent �ξt�. In particular we are interested in the weak dependence defined by
the following mixing condition. For 0 < s < t < T and τi > 0, 1 ≤ i ≤m, write

�T
s� t�τ1� � � � � τm� = σ

{(
ξv ≤ uT�τi�

)
 s ≤ v ≤ t� 1 ≤ i ≤m}
�

Write also

αT� l�τ1� � � � � τm� = sup
{ ∣∣P�A ∩B� −P�A�P�B�∣∣

A ∈ �T

0� s�τ1� � � � � τm��B ∈ �T
s+l�T�τ1� � � � � τm��
s ≥ 0� l+ s ≤ T}�

Then we say that the stationary process satisfies the condition /�uT� τ1� � � � �
τm� if

αT� lT�τ1� � � � � τm� → 0 as T→∞ for some lT = o�T��(2.4)

Moreover, we say that the condition /�uT� holds for �ξt� if �ξt� satisfies the
condition /�uT� τ1� � � � � τm� for any choice of m and τ1� � � � � τm > 0. It is conve-
nient to address the characterization of the weak convergence of the excursion
random measure under the condition /�uT�. However, it should be noted that
the principles in our results hold in more general situations. Indeed, even sta-
tionarity can be relaxed to a certain degree. We choose not to work under the
most general dependence setting to avoid complications of technical nature
that are not so relevant to the main theme. This point will be apparent from
the proofs and will be partially illustrated by the examples in Section 5. On
the other hand, the condition /�uT� is quite weak, and is satisfied by a large
class of processes, including all strongly mixing stationary processes. Verifying
whether any process satisfies any given mixing condition can of course be a
nontrivial task, and we shall not spend any effort in that regard in this paper.

We first define some transformations. For τ ∈ �, σ ∈ �+, let gτ and hσ be
defined by

gτ
 �x�y� → �x+ τ� y��
hσ 
 �x�y� → �x/σ� σy�� �2

+ → �2
+�

(2.5)

Also, let Gτ and Hσ�β, β ∈ �, be defined by

Gτ
 µ→ µ ◦g−τ�
Hσ�β
 µ→ �σβµ� ◦h1/σ� �

(�+)→�
(�2

+
)
�
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where σβµ is σβ times µ. Here, as elsewhere, the notation for a transformation
and the corresponding set transformation will be the same; for example, for
B ⊂ �2

+,

gτ�B� =
{
gτ�x�y�
 �x�y� ∈ B

}
�

The proof of the following result is contained in Section 6.

Proposition 2.1. Assume that uT satisfies conditions (U1) and (U2), and
�ξt� satisfies the condition /�uT�. Suppose there there exist positive monotone
constants �aT� such that aTζT converges in distribution to some random mea-
sure η �= 0, and

lim sup
T→∞

P
{
aTζT

(�0�1� × �0�1�) ≤ B} > 0 for some B > 0�(2.6)

Then aT is regularly varying with some index β ∈ �, and η satisfies the con-
ditions (A1)–(A4) below.

(A1) Gτ ◦η d= η for all τ ∈ �;

(A2) Hσ�β
◦η d= η for all σ ∈ �+;

(A3) P�η��0�1� × �0�1�� <∞� > 0.
(A4) For any choice of bounded disjoint intervals �ai� bi� ⊂ ��1 ≤ i ≤ k, the

random measures

η
(· ∩ (�ai� bi� × �+))� 1 ≤ i ≤ k�

are mutually independent.

Remark 1. As explained earlier, in most cases of interest where both (2.2)
and (2.3) hold, aT is bounded away from zero, and then the regular variation
index β must be nonnegative. However, as illustrated by Examples 5.1 and
5.4, generally β can be negative as well as positive.

Remark 2. Here (A1) and (A4), respectively, state that η has stationary
and independent increments along the direction of the horizontal axis. Condi-
tion (A2) is a type of self-similar property. It can be seen (cf. Lemma 6.4) that
under (A1), (A2) and (A4), condition (A3) is equivalent to P�η��0�1�×�0� τ�� <
∞� = 1 for all τ > 0.

Remark 3. In Proposition 2.1 if uT satisfies (2.2), then (2.6) holds with
B = 0. In that case it is easy to see that the following condition also holds:

(A3′) P�η��0�1� × �0�1�� = 0� > 0�

We will give a characterization in Section 3 to processes satisfying (A1),
(A2), (A3) or (A3′), and (A4).
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3. Characterization. Throughout this section, let β ∈ � be a fixed con-
stant, η be a random measure on �2

+ = �−∞�∞� × �0�∞�. The goal of this
section is to obtain a characterization for random measures η on �2

+ satisfying
the conditions (A1)–(A4) defined in Proposition 2.1, thereby to characterize the
possible limiting distributions of the excursion random measures. The proofs
of Theorems 3.1 and 3.2 and Proposition 3.3 are deferred to Section 6.

We first introduce some notation. For σ ∈ �+ and φ ∈� ��+�, define

Tσ�β�φ� = σβφ�σ−1·��(3.1)

Let ϒ be a mapping which maps ��x�y�� ψ� ∈ �2
+×� ��+� to µ ∈� ��2

+� where

µ�E� = Ty�β�ψ��Ex� = yβψ
{
t/y
 �x� t� ∈ E}

� E ∈ σ(�2
+
)
�

Also define

mβ�dxdy� = yβm�dxdy�� �x�y� ∈ �2
+�(3.2)

where m is Lebesgue measure on �2
+.

Theorem 3.1. In order for η to satisfy (A1)–(A4), it is necessary and suffi-
cient that η is infinitely divisible with canonical measure λ and deterministic
part ηd = cmβ for some c ∈ �0�∞�, where c = 0 if β ≤ −1, and there exists

a set � ⊂ �ψ ∈ � ��+�\�0�
 ψ�0�1� < ∞�, such that � 
= ϒ��2
+ × � � is

measurable in � ��2
+� and is a subset of the support of λ with λ�� c� = 0, ϒ is

one-to-one and bimeasurable from �2
+×� to � , and there exists a probability

measure P on � such that

λ ◦ϒ =m× P on �2
+ ×�(3.3)

and
∫
�

∫ ∞
0

(
1− exp�−ν�0� σ�/σβ�)dσ

σ2
P�dν� <∞�

Remark 1. In the proof of Theorem 3.1 in Section 6, we will illustrate how
to construct �� �P�. In particular, it will be seen that the characterization in
Theorem 3.1 is nonunique in that different pairs of �� �P� could appear in the
decomposition (3.3). The general construction is somewhat artificial, which
makes it pointless to explain it here. However, we mention that there is a
rather natural construction of �� �P� in the important case where (A3′) also
holds (cf. Remark 3 of Section 2), as the following shows.

Theorem 3.2. If (A3) is replaced by (A3′), then the statements of Theo-
rem 3.1 remain valid by taking c = 0 and

� ⊂ {
ψ ∈� ��+�\�0�
 ψ�0� ρ� = 0 and ψ�ρ� t� > 0 for all t > ρ

}
�

where ρ = − logP�η��0�1� × �0�1�� = 0� ∈ �0�∞�.
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Remark 2. We note that, by (1.1) and (3.3), the Laplace transform of a
random measure η satisfying (A1)–(A4) can be written as

exp
{
−cmβf−

∫
�

∫
�2+

(
1− exp

(
−
∫ ∞

0
f�x�yz�yβν�dz�

))
m�dxdy�P�dν�

}
�

f ∈ �
(�2

+
)
�

One useful consequence is the following alternative presentation of Theo-
rem 3.1.

Proposition 3.3. The random measure η described in Theorem 3.1 can be
represented as

η = cmβ +
∑
ϒ��Xi�Yi�� γi��

where c ∈ �0�∞�, c = 0 if β ≤ −1, the �Xi�Yi� are the points of a stationary
Poisson process > on �2

+ with unit intensity, the γi are random elements in �
distributed according to P, and >� γ1� γ2� � � � are mutually independent.

In view of Proposition 3.3, a realization of the process ηr (cf. Theorem 1.1)
consists of an ensemble of measures confined to vertical lines. The Poisson
points can be generally interpreted as “reference” points of the lines. This is
especially meaningful in the important case where (A3′) also holds, since the
mass of the measure on the line at Xi lies entirely above ρYi with ρ given by
Theorem 3.2.

4. The limits of the excursion random measures. We now return to
the consideration of the excursion random measure described in Section 2 and
will continue to use the notation defined there. By Proposition 2.1 and Theo-
rems 3.1 and 3.2, the distributional limits of the excursion random measures
are readily characterized. In this section we focus on the interpretation of the
measure P of the limiting excursion random measure in the decomposition
(3.3). We shall limit ourselves to the case where (2.2) holds. First we need to
define an extended version of the condition /�uT�: say that the condition /�uT�
holds uniformly for the stationary process �ξt� in the sense that there are two
sequences of positive integers �kT� and �lT�, where kT→∞, for which

lim
T→∞

kT
(
αT� lT�τ1� � � � � τm� + lT/T

) = 0

holds for all τ1� � � � � τm and all m.

Theorem 4.1. Let uT satisfy P�M�T� ≤ uT�τ�� → e−τ, τ > 0, and let aT >
0 be regularly varying with index β. Let the condition /�uT� hold uniformly
for the stationary process �ξt�. Define the random measure on �+:

χT�·� = aT
(
u−1
T

(
M�rT�

))−β ∫ rT
0
I

(
u−1
T �ξt�

u−1
T �M�rT��

∈ ·
)
dt�
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where rT = T/kT. If on the space

˜� 
= {
ψ ∈� ��+�
 ψ�0�1� = 0 and ψ�1� t� > 0 for all t > 1��

there exists some probability measure P to which P�χT ∈ · �M�rT� > uT�τ��
converges weakly for all τ > 0, then the excursion random measure ηT = aTζT
converges in distribution to some nondegenerate random measure η which has
the representation given by Theorem 3.2 with ρ = 1. ✷

The proof of Theorem 4.1 is contained in Section 6.4. Note that by a straight-
forward blocking argument, the condition /�uT� together with P�M�T� ≤
uT�τ�� → e−τ, τ > 0, implies (2.2). Some additional remarks concerning The-
orem 4.1 are given below.

Remark 1. In Theorem 4.1, the global normalization uT controls the rate
of high-level excursions while rT is chosen in such a way to ensure that each
such excursion can be captured in a time interval no longer than rT. Within an
interval containing a high-level excursion, the random measure χT describes
the local behavior of the process relative to the supremum of the process on
the interval. The result shows that, with proper local normalization, the con-
ditional distribution of χT converges weakly to the measure P in the decompo-
sition of η in Theorem 3.2. Theorem 4.1 not only provides a tractable method
of obtaining the limiting excursion random measure but also a theoretical
framework for statistical modeling of local dependence.

Remark 2. Under the assumptions of the theorem, one can also show that
the weak convergence of η implies that of χT so that the two convergence
statements are equivalent. See Hsing (1993), Theorem 2.2.

Remark 3. It is worth pointing out that the result is related to the so-
called “local and global sojourn limit theorems” in Berman (1982, 1983). Con-
sider now the Laplace–Stieltjes transform of aTη��0�1� × �0� τ��, the normal-
ized total excursion time of �ξt� in �uT�τ��∞� for t ∈ �0�T�. By Remark 2
following Theorem 3.2, for s > 0,

lim
T→∞

E exp
(−saTη(�0� 1� × �0� τ�))

= exp
{
−
∫
�

∫ ∞
0

(
1− exp�−sν�0� τ/y�yβ�)dyP�dν�

}

= exp
{
−
∫ ∞

0

(
1− exp�−sx�)�m+ × P� ◦V−1�dx�

}
�

where m+ is the Lebesgue measure on �+ and V is the mapping defined by

V
 �y� ν� → ν�0� τ/y�yβ� �+ ×A→ �+�
Comparing this with Theorem 4.1 of Berman (1983), we see that the function

�m+ × P� ◦V−1�x�∞�
plays the role of H�x� or −>′�x� in Theorem 4.1 of Berman (1983).
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Remark 4. To give a complete characterization of the limit of the excursion
random measure, one should address the issue of whether there is a process
�ξt� for which a given probability measure P on ˜� would appear in the de-
composition of the limiting excursion random measure. This is quite difficult
and so far we have not resolved it.

We illustrate in Section 5 how Theorem 4.1 can be applied to obtain limiting
excursion random measures with three classes of examples.

5. Examples. This section contains four examples which illustrate the
various aspects of the excursion random measure (details of proof being again
deferred to Section 6). In Example 5.1 we construct a somewhat artificial
example to show that the regular variation index of aT can take any value
in the entire range �0�∞�. We consider moving average stable processes in
Example 5.2 and normal processes in Example 5.3. Finally, in Example 5.4
we illustrate that if the normalizing function uT does not reflect the extreme
quantiles of ξt, 0 ≤ t < T then β can be negative and the limiting excursion
random measure can be nonrandom.

Example 5.1 (Regular variation index of aT). Let β ≥ 0 be a constant and
Xi, i ∈ I be i.i.d. unit exponential random variables, where I is the set of
integers. Define a process ξ̄t by

ξ̄t =
∞∑

i=−∞
I
(
t ∈ �i� i+ 1�)(Xi − �t− i� exp�βXi�

)
� t ∈ �−∞�∞��

While ξ̄t is not stationary, ξt 
= ξ̄t+δ is where δ is uniform on �−1/2�1/2�.
Clearly the amounts of excursion time above any level in a large time interval
by �ξt� and �ξ̄t� are asymptotically the same. Let

uT�τ� = log�T/τ�� τ > 0 and u−1
T �y� = Te−y� y ∈ �−∞�∞��

Then

lim
T→∞

P

{
sup

0≤s<T
ξ̄s ≤ uT�τ�

}
= lim
T→∞

P

{
sup

0≤s<T
ξs ≤ uT�τ�

}

= lim
T→∞

P

{
max

1≤j<�T�
Xj ≤ uT�τ�

}

= e−τ� τ > 0�

Proposition 5.1. For the processes �ξ̄t� and �ξt� defined above, the random
measures

Tβ
∫
�
IE

(
t/T�u−1

T �ξ̄t�
)
dt and Tβ

∫
�
IE

(
t/T�u−1

T �ξt�
)
dt� E ∈ σ(�2

+
)

both converge weakly to a limit η which has the structure described by Theorem
3.2 with ρ = 1 and � containing only the measure ν, where

ν�1� x� = log x� x ≥ 1�
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Example 5.2 (Moving average stable processes). We now consider the mov-
ing average stable process. Let �ξt� be the moving average stable process
described in Theorem 5.2 in Rootzén (1978); that is,

ξt =
∫
a�t− x�dZ�x�� −∞ < t <∞�

where a�t� is a deterministic filter satisfying various regularity conditions,
and Z has stationary independent stable increments with Z�0� = 0 and
Z�1� ∼ stable �σ�α� γ� where the scale parameter σ = 1, the index of sta-
bility α ∈ �0�2� and the parameter of symmetry γ ∈ �−1�1�. We will basically
follow the notation of Rootzén (1978) (with the exception of γ, the parameter
of symmetry, which is denoted by β there) to which the reader is referred for
details. Thus for example, A = supt∈��a�t� ∨ 0�, a = supt∈��−a�t� ∨ 0� and
cα = π−1>�α� sin�απ/2�. By Corollary 5.3 of Rootzén (1978),

lim
T→∞

P
{
M�T� ≤ xT1/α} = exp�−cx−α�� x > 0�

where c = cα�Aα�1+ γ� + aα�1− γ��. Thus let

uT�τ� =
(
cT

τ

)1/α

� τ > 0

and

u−1
T �u� =

cT

uα
I�u > 0� +∞ · I�u ≤ 0�� u ∈ ��

Proposition 5.2. For the moving average stable process described above,
the excursion random measure∫

�
IE

(
t/T�u−1

T �ξt�
)
dt� E ∈ σ(�2

+
)
�

converges in distribution to η, which has the structure described by Theorem 3.2
with ρ = 1, β = 0 and

P�ν+� =
Aα�1+ γ�

Aα�1+ γ� + aα�1− γ� � P�ν−� =
aα�1− γ�

Aα�1+ γ� + aα�1− γ� �

where ν+�1� x� =
∫∞
−∞ I�a�t� ≥ Ax−1/α�dt, ν−�1� x� =

∫∞
−∞ I�−a�t� ≤ ax−1/α�dt�

for x ≥ 1.

Example 5.3 (Normal processes). Consider in this example the stationary
normal process �ξt�, standardized to have zero mean and unit variance. As-
sume that the covariance r�t� = Eξ0ξt satisfies

r�t� = 1− λ2t
2/2+ λ4t

4/4!+ o�t4� as t→ 0

and r�t� tends to 0 fast enough as t→∞ [cf. Ibragimov and Rozanov (1978)]
so that �ξt� is strongly mixing. The conditions on r�t� at both 0 and ∞ could
possibly be weakened. In particular, we assume strong-mixing here so that we
can readily apply Theorem 4.1. We have shown elsewhere that the excursion
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random measure converges in distribution by a different method based on the
condition r�t� log t→ 0 as t→∞. [cf. Hsing and Leadbetter (1997)].

By Rice’s formula [Theorem 7.3.2 of Leadbetter, Lindgren and Rootzén
(1983)], the mean number of upcrossings of a level u by ξt in a unit inter-
val is

µ�u� = λ
1/2
2

2π
exp

(
−u

2

2

)
� u ∈ ��

Let

uT�τ� =
(

2 log
λ

1/2
2 T

2πτ

)1/2

� τ > 0�

so that Tµ�uT�τ�� = τ� τ > 0, and

u−1
T �u� =

Tλ
1/2
2

2π
exp

(
−u

2

2

)
I�u > 0� +∞ · I�u ≤ 0�� u ∈ ��(5.1)

By Theorem 11.1.5 of Leadbetter, Lindgren and Rootzén (1983),

lim
T→∞

P
{
M�T� ≤ uT�τ�

} = e−τ� τ > 0�

Proposition 5.3. For the stationary normal process described above, and
with aT = uT�1�, the excursion random measure

aT

∫
�
IE

(
t/T�u−1

T �ξt�
)
dt� E ∈ σ(�2

+
)

converges in distribution to η which has the structure described by Theorem 3.2
with ρ = 1, β = 0, and � containing only the measure ν satisfying

ν�1� y� = 2
(
2λ−1

2 log y
)1/2
� y ≥ 1�

Example 5.4 (Degenerate limit). The following result provides a contrast
and shows that if the normalization uT is not chosen appropriately, aT may
tend to 0, in which case a degenerate limiting excursion random measure is
possible.

Proposition 5.4. Let aT > 0 be regularly varying with index β ∈ �−1�0�
and let aT and uT be such that

aTTP�ξ1 > uT�τ�� → τβ+1 for all τ > 0�

Also let the condition /�uT� τ� hold for �ξt� for all τ > 0, such that for each
τ > 0 there exist kT, lT ≥ 1 for which

lim sup
n→∞

aTT/kT <∞ and lim
T→∞

kT
(
αT� lT�τ� + lT/T

) = 0�(5.2)

Then aTζT
p→ �β+ 1�mβ, where mβ is defined by (3.2).

6. Technical details. Sections 6.1–6.6 contain, respectively, the proofs of
Proposition 2.1, Theorem 3.1, Theorem 3.2, Proposition 3.3, Theorem 4.1 and
those for Examples 5.1 to 5.4.
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6.1. Proof of Proposition 2�1. We first state a lemma.

Lemma 6.1. Suppose τ1� � � � � τm are positive reals, that the condition /�uT�
τ1� � � � � τm� holds for �ξt�, and that �kT� is a collection of positive integers
satisfying

lim
T→∞

kT
(
αT� lT�τ1� � � � � τm� + lT/T

) = 0�(6.1)

Let Ii�= Ii�T��, 1 ≤ i ≤ kT, be disjoint subintervals of �0�1� with lengths ≥
lT/T,

⋃kT
1 Ii = �0�1� and Jj = �0� τj��1 ≤ j ≤ m. Then for any nonnegative

constants sij�= sij�T��, 1 ≤ i ≤ kT, 1 ≤ j ≤m�

E exp
(
−

kT∑
i=1

m∑
j=1

sijζT�Ii ×Jj�
)

−
kT∏
i=1

E exp
(
−

m∑
j=1

sijζT�Ii ×Jj�
)
→ 0 as T→∞�

Proof. For any fixed choice of �sij� define the random measure

ζ ′T�B� 
=
kT∑
i=1

m∑
j=1

sijζT
(�B ∩ Ii� ×Jj)� B ⊂ �0�1��

Thus ζ ′T is a random measure satisfying the conditions of Lemma 2.2 of Lead-
better and Hsing (1990), from which the result follows by taking B = �0�1�. ✷

Remark 1. In view of (2.4), (6.1) clearly holds for bounded kT, and more-
over kT can be chosen to tend to ∞ and satisfy (6.1).

Proof of Proposition 2.1. That η satisfies (A1) follows readily from the
stationarity of �ξt�. Next we show that aT is regularly varying and that (A2)
holds. For σ and T > 0, define a one–one transformation

hσ�T�x�y� =
(
x/σ� u−1

σT
◦uT�y�

)
� �x�y� ∈ �2

+�

It follows from (U2) that

lim
T→∞

hσ�T�x�y� = hσ�x�y�� �x�y� ∈ �2
+�(6.2)

where hσ is defined in (2.5). By definition, for E ∈ σ��2
+�,

ζT�E� =
∫
IE�t/T� u−1

T �ξt��dt
and

ζσT�E� =
∫
IE

(
t

σT
�u−1

σT�ξt�
)
dt =

∫
IE

(
t

σT
�u−1

σT
◦uT ◦u−1

T �ξt�
)
dt

=
∫
IE

(
hσ�T

(
t

T
� u−1

T �ξt�
))
dt = ζT ◦h−1

σ�T�E��
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Thus

ζT = ζσT ◦hσ�T� σ� T > 0�

It follows that

aTζT = aTζσT ◦hσ�T =
aT
aσT

aσTζσT ◦hσ�T� σ�T > 0�(6.3)

Since aσTζσT →d η by assumption, it follows from (6.2) and the continuous
mapping theorem that

aσTζσT ◦hσ�T→d η ◦hσ� σ > 0 as T→∞�
By (6.3), this implies that aT/aσT converges for each σ > 0 as T→∞. There-
fore aT is regularly varying and aT/aσT→ σ−β for some β (cf. Resnick, 1987).
Then (A2) also follows from (6.3).

By Lemma 3.1 of Hsing (1987), aTζT��0�1� × �ε�1��
d→η��0�1� × �ε�1�� for

all ε > 0. Thus, by (2.6) and Billingsley (1968), Theorem 2.1, for some B > 0,

P
{
η
(�0�1� × �0�1�) ≤ B} = lim

ε→0
P
{
η
(�0�1� × �ε�1�) ≤ B}

≥ lim sup
ε→0

lim sup
T→∞

P
{
aTζT

(�0�1� × �ε�1�) ≤ B}

≥ lim sup
T→∞

P
{
aTζT

(�0�1� × �0�1�)≤ B}> 0�

This shows (A3). Next let Ii = �ai� bi�, 1 ≤ i ≤ k, and Jj = �0� τj�, 1 ≤ j ≤m,
where −∞ < ai < bi < ∞ with the �ai� bi� disjoint and 0 < τj < ∞. To show
(A4) it suffices to show for all sij ≥ 0,

E exp
(
−

k∑
i=1

m∑
j=1

sijη�Ii ×Jj�
)
=

k∏
i=1

E exp
(
−

m∑
j=1

sijη�Ii ×Jj�
)
�(6.4)

In doing so, note that by (A1) and (A2) we need verify (6.4) only for the case
where the Ii’s are contained in [0,1). By Lemma 6.1, the condition /�uT�
implies that as T→∞,

E exp
(
−aT

k∑
i=1

m∑
j=1

sijζT�Ii ×Jj�
)

−
k∏
i=1

E exp
(
−aT

m∑
j=1

sijζT�Ii ×Jj�
)
→ 0

(6.5)

Since aTζT→d η, applying Lemma 6.1.2 of Kallenberg (1983) and Lemma 3.1
of Hsing (1987) we get
(
aTζT�Ii ×Jj��1 ≤ i ≤ k�1 ≤ j ≤m

)→d

(
η�Ii ×Jj��1 ≤ i ≤ k�1 ≤ j ≤m

)
�

Thus (6.4) follows from (6.5). This completes the proof. ✷
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6.2. The proof of Theorem 3�1. In this subsection we give a detailed proof
of Theorem 3.1. Since the proof is rather long, we divide it into several parts.
First, the sufficiency part of the theorem is relatively straightforward. In fact,
it will be quite obvious after the proof of necessity. Therefore we shall focus on
the more difficult part of the proof and begin by assuming that η is a random
measure on �2

+, satisfying conditions (A1)–(A4).

Lemma 6.2. The term η is infinitely divisible. Write, with the notation in-
troduced in Theorem 1.1, η = ηd + ηr. Then conditions (A1)-(A4) hold with η
replaced by ηd and ηr.

Proof. To show infinite divisibility only requires (A1) and (A4). It suffices
to show that �η�Em�, 1 ≤m ≤ k� is infinitely divisible as a random vector for
each integer k and bounded sets E1� � � � �Ek of the form �a� b� × �c� d� ⊂ �2

+
[cf. Kallenberg (1983), Lemma 6.3]. Moreover by (A4), it suffices to show that
�η�Eij�, 1 ≤ i ≤ I, 1 ≤ j ≤ J� is infinitely divisible as a random vector for
any integers I and J, and bounded sets Eij = �ai� bi� × �cj� dj� ⊂ �2

+, where
the �ai� bi�’s are disjoint. For each n ≥ 1, write

E
�n�
ijk =

[
ai +

�k− 1��bi − ai�
n

�ai +
k�bi − ai�

n

)
× [
cj� dj

)
�

By (A1) and (A4), the n random vectors �η�E�n�ijk �, 1 ≤ i ≤ I, 1 ≤ j ≤ J�,
1 ≤ k ≤ n� are i.i.d., showing that η is infinitely divisible. Clearly, (A3) and
(A4) must both hold for η replaced by ηd and ηr. To show that the same can
be said for (A1) and (A2), simply notice that

Gτ�ηd� = �Gτ�η��d d= ηd�
Hσ�β�ηd� =

(
Hσ�β�η�

)
d

d= ηd�

This completes the proof. ✷

In view of Lemma 6.2 and Theorem 1.1, to characterize η, we can focus on
the structure of ηd and ηr (equivalently, α and λ). In the following let m±, m+
and m, respectively, be Lebesgue measures on �, �+ and �2

+. Recall that mβ

is the measure on �2
+ defined by (3.2). The deterministic part ηd is completely

characterized by the following.

Lemma 6.3. ηd = cmβ for some c ∈ �0�∞�, where c = 0 if β ≤ −1.

Proof. Define

η̃d�E� =
∫
E
y−βηd�dx�dy�� E ∈ σ(�2

+
)
�



EXCURSION RANDOM MEASURE OF STATIONARY PROCESSES 725

By (A2),

�Hσ�0 ◦ η̃d��E� = η̃d ◦h1/σ�E� =
∫
E
�y/σ�−β�ηd ◦h1/σ��dx�dy�

=
∫
E
y−β�Hσ�β

◦ηd��dx�dy� =
∫
E
y−βηd�dx�dy� = η̃d�E��

Thus it is easily seen that

η̃d = Gτ ◦ η̃d =Hσ�0 ◦ η̃d for all �τ� σ� ∈ �2
+�

It follows from Lemma 2.5 of Hsing (1987) that η̃d is a constant multiple of
Lebesgue measure m, and hence ηd�dx�dy� = cmβ�dx�dy� for some c ≥ 0.
However, if β ≤ −1 then mβ��0�1� × �0�1�� = ∞ so that c = 0 by (A3). ✷

The rest of the proof focuses on the consideration of ηr, or equivalently, the
canonical measure λ.

Lemma 6.4. The following hold.

(i) P�ηr��0�1� × �0�1�� < ∞� = 1; equivalently, λ�µ ∈ � ��2
+�\�0�:

µ��0�1� × �0�1�� = ∞� = 0.
(ii) P�ηr��0�1� × �0� ε�� = 0� is either identically equal to 0 or strictly posi-

tive and tends to 1 as ε tends to 0; equivalently, λ�µ ∈� ��2
+�\�0�
 µ��0�1� ×

�0� ε�� > 0� is either identically equal to ∞ or strictly positive and tends to 0
as ε tends to 0; equivalently, P�ηr��0�1� × �0�1�� = 0� = 0 or > 0.

Proof. By (A1), (A2) and (A4) (cf. Lemma 6.2),

P2
{
ηr��0�1� × �0�1�� <∞

} = P{ηr��0�2� × �0�1�� <∞}
= P{2−βηr��0�1� × �0�2�� <∞

}
= P{ηr��0�1� × �0�1�� <∞}

�

where the last equality follows from the fact that �0�1�×�1�2� is bounded and
hence P�ηr��0�1�× �1�2�� <∞� = 1. This implies that P�ηr��0�1�× �0�1�� <
∞� = 1 by (A3). Using the Laplace transform representation (2.1), it follows
by dominated convergence that

λ
{
µ ∈� ��2

+�\�0�
 µ
(�0�1� × �0�1�) = ∞}

= − lim
s→0

∫ (
1− exp

(−sµ��0�1� × �0�1��))λ�dµ�
= − lim

s→0
log � exp

(−sηr��0�1� × �0�1�)

= − logP
{
ηr��0�1� × �0�1�� <∞

} = 0�

This proves (i). To prove (ii), note that by (A1), (A2) and (A4),

P

{
ηr

(
�0�1� ×

(
0�

1
n

))
= 0

}
= P

{
n−βηr

([
0�

1
n

)
× �0�1�

)
= 0

}

= P1/n{ηr��0�1� × �0�1�� = 0
}
�
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which is identically equal to zero or tends to one according as P�ηr��0�1� ×
�0�1�� = 0� = 0 or > 0. Then (ii) follows by monotone convergence from

λ
{
µ ∈� ��2

+�\�0�
 µ��0�1� × �0� ε�� > 0
}

= lim
s→∞

∫ (
1− exp�−sµ��0�1� × �0� ε��)�λ�dµ�

= − lim
s→∞ log � exp

(−sηr(�0�1� × �0� ε�))
= − logP

{
ηr��0�1� × �0� ε�� = 0

}
� ✷

(i) of Lemma 6.4 shows that under (A1), (A2) and (A4), the condition (A3)
is equivalent to P�η��0�1� × �0�1�� <∞� = 1. (ii) of Lemma 6.4 describes the
dichotomy of η satisfying (A3′) and the complement of (A3′) in (A3). We will see
below that the characterization problem is more straightforward under (A3′).

Let G map �x�ψ� in �×� ��+� to µ in � ��2
+� satisfying µ�E� = ψ�Ex� =

ψ�t
 �x� t� ∈ E��E ⊂ �2
+. Also, for convenience, say that the condition V�β�

holds for some set � ⊂� ��+�\�0� if
∫ 1

0

(
1− exp�−ψ�0� σ�/σβ�)σ−1 dσ <∞� ψ ∈ �(6.6)

and � is invariant under the family of transformations �Tσ�β� σ > 0� [defined
by (3.1)] in the sense that ψ ∈ � ⇒ Tσ�β�ψ� ∈ � for all σ > 0 [equivalently,
Tσ�β�� � = � for all σ > 0].

Lemma 6.5. There exists � ⊂ �ψ ∈ � ��+�\�0�
 ψ�0�1� < ∞� measurable
in � ��+� and satisfying the condition V�β�, such that � 
= G�� × �� is
measurable in � ��2

+� and is contained in the support of λ with λ�� c� = 0, G
is one–one and bimeasurable as a mapping from �×� to � and

λ ◦G =m± ×Q on �×��(6.7)

where m± is Lebesgue measure on � and Q is a measure on � such that∫
�

(
1− exp�−ψ�0�1��)Q�dψ� <∞(6.8)

with Tσ�β defined by (3.1).

Proof. Define

H = G(�× {
ψ ∈� ��+�\�0�
 ψ�0�1� <∞

})
�

We first show that λ�Hc� = 0. Then H can be written as A ∩B where

A = {
µ ∈� ��2

+�\�0�
 µ��x� × �+�c = 0 for exactly one x ∈ �}�
B = {

µ ∈� ��2
+�\�0�
 µ

(�× �0�1�) <∞}
�

Since Hc = Ac ∪ �A ∩Bc�, it is sufficient to show

λ�Ac� = λ�A ∩Bc� = 0�
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Let Amn = �µ ∈� ��2
+�\�0�
 µ��k/2n� �k+1�/2n�× �0�m�� = 0 for all but pos-

sibly one k in I�, where I is the set of all integers. Then Amn is nonincreasing
in m for each n,

⋂∞
m=1Amn is nonincreasing in n and A = ⋂∞

n=1
⋂∞
m=1Amn.

Thus

λ�Ac� = lim
n→∞ lim

m→∞λ�A
c
mn�

≤ lim
n→∞ lim

m→∞
∑
i�=j
λ

{
µ ∈� ��2

+�\�0�
 µ
([

i

2n
�
i+ 1

2n

)
× �0�m�

)
> 0

and µ
([

j

2n
�
j+ 1

2n

)
× �0�m�

)
> 0

}
�

By (A4) and Lemma 6.4(i), we can apply 2.2.12 of Matthes, Kerstan and Mecke
(1978) [cf. Lemma 7.3 of Kallenberg (1983)] to conclude that

λ

{
µ ∈� ��2

+�\�0�
 µ
([

i

2n
�
i+ 1

2n

)
× �0�m�

)
> 0 and

µ

([
j

2n
�
j+ 1

2n

)
× �0�m�

)
> 0

}
= 0

for each i, n and m. Thus λ�Ac� = 0. Similarly

A ∩Bc ⊂
∞⋃

m=−∞

{
µ ∈� ��2

+�\�0�
 µ
(�m− 1�m� × �0�1�) = ∞}

�

It follows readily from Lemma 6.2 that

λ ◦Gτ = λ for all τ ∈ ��(6.9)

Thus Lemma 6.4(i) implies that

λ�A ∩Bc� ≤
∞∑

m=−∞
λ
{
µ ∈� ��2

+�\�0�
 µ
(�m− 1�m� × �0�1�) = ∞} = 0�

This shows λ�Hc� = 0.
Now, by (6.9), if G�τ�ψ� is in the support of λ for some τ ∈ �, then G�τ�ψ�

is in the support of λ for all τ ∈ �. Therefore, support�λ� = G��×� � for some
closed set � ⊂� ��+�\�0�. Write

˜� = support�λ� ∩ H�
In view of the definition of H, we conclude that

˜� = G�� × �̃��
where �̃ = �ψ ∈ � 
 ψ�0�1� <∞�. Clearly ˜� and �̃ are, respectively, measur-
able in � ��2

+� and � ��+�, ˜� is contained in the support of λ with λ� ˜� c� = 0
and G is one–one and bimeasurable from �× �̃ to ˜� .

Next fix E ∈ σ��̃� and define the set function

ρE�B� = λ ◦G�B×E�� B ∈ σ����



728 T. HSING AND M. R. LEADBETTER

Let Bi, i ≥ 1 be mutually disjoint sets in σ���. Since λ is a measure and G is
one–one and bimeasurable, we have

ρE

( ∞⋃
i=1

Bi

)
= λ

( ∞⋃
i=1

G�Bi ×E�
)
=

∞∑
i=1

ρE�Bi��

Thus ρE�·� is a measure on �. By (6.9), for each B ∈ σ���,
ρE�B+ τ� = ρE�B�� τ ∈ ��

This shows that ρE can be written as Q̃�E�×m± where Q̃�E� is a nonnegative
constant. Next regarding Q̃ as a set function on σ��̃�, it can be shown as before
that Q̃ is a measure, and hence

λ ◦G =m± × Q̃ on �× �̃�(6.10)

Applying (i) of Lemma 6.4, (6.10), and the canonical representation in Theo-
rem 1.1, it follows that∫

�̃

(
1− exp�−ψ�0�1��)Q̃�dψ� <∞�(6.11)

Now, applying (A2) and (6.10) twice, it follows that

σ�m± × Q̃��B×E� = �m± × Q̃��σB×E� = λ ◦G�σB×E�
= λ ◦Hσ�β ◦G�σB×E�
= λ ◦G�B×Tσ�β�E�� = �m± × Q̃��B×Tσ�β�E���

B ∈ σ����E ∈ σ��̃��
showing that

Q̃ = σ−1Q̃ ◦Tσ�β� σ > 0�(6.12)

It is then straightforward to conclude that �̃ (which is the support of Q̃) is
invariant under the family of transformations �Tσ�β� σ > 0�. (See the expla-
nation following (6.6).) Moreover, (6.11) and (6.12) imply that

∞ >
∫
�̃

(
1− exp�−ψ�0�1��)Q̃�dψ�

=
∫ 1

0

∫
�̃

(
1− exp�−ψ�0�1��)Q̃(

dTσ�β�ψ�
)dσ
σ

=
∫
�̃

∫ 1

0

(
1− exp�−ψ�0� σ�/σβ�)dσ

σ
Q̃�dψ��

Thus (6.6) holds for all ψ ∈ �̃ except a set � of Q̃-measure 0, where

� =
{
ψ ∈ �̃


∫ 1

0

(
1− exp�−ψ�0� σ�/σβ�)dσ

σ
= ∞

}
�

Note that � (and hence � c� is also measurable in � ��+� and invariant under
�Tσ�β� σ > 0�.
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Finally, making use of the above, � 
= �̃ ∩ � c, � 
= G�� ×�� and Q 
=
the restriction of Q̃ to � satisfy the requirements of the lemma. ✷

We now continue the proof with the notation developed in Lemma 6.4. For
convenience, call a function s from � to R+ a scale function for � if it is
measurable and

s
(
Tσ�β�ψ�

) = σs�ψ�� σ > 0� ψ ∈ ��(6.13)

There exist infinitely many different scale functions for �. A “good” scale
function makes the decomposition of (3.3) more informative. The proof of The-
orem 3.1 does not depend on the particular choice of this function. However,
we now show that there exists at least one leading to the set of criteria as in
Theorem 3.1. Define

gψ�y� =
∫ y

0

(
1− exp�−ψ�0� σ�/σβ�)σ−1dσ� y > 0�

By a change of variables, it is readily seen that

gTσ�β�ψ��y� = gψ�y/σ�� y > 0� σ > 0(6.14)

and it is clear that gψ�y� <∞ for all y > 0 and ψ ∈ �. Consider the function

s
 ψ→ inf
{
y > 0
 gψ�y� ≥ 1 ∧ gψ�∞�/2

}
� � → �+�(6.15)

By (6.14) for any σ > 0,

s�Tσ�β�ψ�� = inf
{
y > 0
 gTσ�β�ψ��y� ≥ 1 ∧ gTσ�β�ψ��∞�/2

}
= inf

{
y > 0
 gψ�y/σ� ≥ 1 ∧ gψ�∞�/2

} = σs�ψ��
showing (6.13). Also the measurability of s can be routinely checked, which
verifies that s is a scale function.

Now let s be any scale function. Since the condition V�β� holds for �, for
every given ψ1 in �, the image of the set

{
ψ ∈ �
 ψ = Tσ�β�ψ1� for some σ > 0

}
under s is R+. Consequently there exists in the set a unique measure ν such
that s�ν� = 1. In fact, this measure is equal to T1/s�ψ��β�ψ� = T−1

s�ψ�� β�ψ� for
every ψ in this class, since

s
(
T1/s�ψ��β�ψ�

) = �1/s�ψ��s�ψ� = 1�

Now let � be the space of such representatives; that is,

� = �ψ ∈ �
 s�ψ� = 1��
Here � is equipped with the relative σ-field. Let I map �σ� ν� ∈ �+ ×� to
Tσ�β�ν� ∈ �.
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Lemma 6.6. Assume the notation of Lemma 6.5 in this lemma, and let �
and I be as defined above and ϒ as in Section 3. Then the mapping

ϒ
(�x�y�� ν) = G(x�I�y� ν�)� (�x�y�� ν) ∈ �2

+ ×� �

is one–one, onto and bimeasurable as a mapping from �2
+ × � to its range

� and

λ ◦ ϒ =m× P on �2
+ ×� �(6.16)

where m is Lebesgue measure on �2
+ and P is a measure on � satisfying

∫
�

∫ ∞
0

(
1− exp�−ν�0� t�/tβ�)dt

t2
P�dν� <∞�(6.17)

Proof. First we show that I is one–one and bimeasurable from �+ ×�
to �. It follows simply from the definition of � that I is one–one and I is
measurable since the mapping

�
 �σ� ν� → Tσ�β�ν�� �+ ×� ��+� →� ��+�
is measurable (in fact continuous) and I is the restriction of � to �+×� . On
the other hand, the composition of the following two measurable mappings

ψ→ (
s�ψ�� ψ)� � → �+ ×��

�σ�ψ� → �σ�T−1
σ�β�ψ��� �+ ×� → �+ ×�

is σ���∣∣σ��+ × ��-measurable . Since I−1 is in fact this composition and
� has the relative σ-field, I−1 is σ����σ��+ × � �-measurable. Thus, as a
mapping from �+×� to �, I is one–one, onto and bimeasurable. Combining
with Lemma 6.5, it is concluded that ϒ is one–one, onto and bimeasurable as
a mapping from �2

+ × � to its range � . To show (6.16), in view of (6.7) of
Lemma 6.5, it suffices to show that

Q ◦I =m+ × P on �+ ×� �(6.18)

The approach here is basically the same as that in the proof of (6.10). Fix a
measurable set E in � , and define

ξE�B� 
= Q ◦I�B×E� = Q
{
Ty�β�ν�
 y ∈ B� ν ∈ E

}
� B ∈ σ��+��

Then ξE is a measure on σ��+� since I is one–one and bimeasurable. By
(6.12), for each σ > 0,

ξE�σB� = Q
{
Tσy�β�ν�
 y ∈ B� ν ∈ E

} = Q
{
Tσ�β ◦Ty�β�ν�
 y ∈ B� ν ∈ E

}
= σQ{

Ty�β�ν�
 y ∈ B� ν ∈ E
} = σξE�B��

This implies that ξE can be written as P�E� ×m+ where P�E� is a nonnega-
tive constant and m+ is Lebesgue measure on �+. Again, treating P as a set
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function, it is readily seen that it is a measure on � . Thus (6.18) and hence
(6.16) are proved. It remains to show (6.17), which follows from (6.8) by noting

∞>
∫
�

(
1− exp�−ψ�0�1��)Q�dψ� = ∫

�

∫ ∞
0

(
1− exp�−Tσ�β ◦ ν�0�1��

)
dσP�dν�

=
∫
�

∫ ∞
0

(
1− exp�−ν�0� σ�/σβ�)dσ

σ2
P�dν��

The proof is complete. ✷

Remark 2. Note that the arguments in the proof of Lemma 6.6 do not
depend on which scale function s we use. In particular, they are not based on
the scale function s in (6.15). However, the decomposition (6.16) does depend
on the choice of s. For clarity of notation, we will denote in the following
��s�Ps� the pair of �� �P� based on a particular scale function s.

The proof of the necessity part of Theorem 3.1 is now nearly complete. The
only problem is that we have not shown that Ps in (6.16) may be chosen to
be a probability measure. For that, our strategy is to first pick an arbitrary
scale function s, and obtain the pair ��s�Ps� according to Lemma 6.6. Then,
making use of the information contained in Ps, another scale function s′ is
defined from s in such a way that Ps′ is a probability measure. This is made
precise in the following lemma.

Lemma 6.7. There exists a scale function s for � for which Ps in (6.16) is a
finite measure. Furthermore if for some scale function s, Ps��s� = ρ <∞, then
for any c > 0, Ps′ ��s′ � = cρ for s′ = c−1s.

Proof. We begin by taking s to be any scale function for � and show first
that Ps is σ-finite. Since �s =

⋃
m≥1

⋃
n≥1�ν ∈ �s
 ν�0�m� > 1/n�, it suffices

to show that Ps�ν ∈ �s
 ν�0� a� > ε� <∞ for all a, ε > 0. By (6.17),

∞ >
∫
�s

∫ ∞
0

(
1− exp�−ν�0� σ�/σβ�)dσ

σ2
Ps�dν�

≥
∫
�ν∈�s
 ν�0�a�>ε�

∫ ∞
a

(
1− exp�−ν�0� σ�/σβ�)dσ

σ2
Ps�dν�

≥ Ps�ν ∈ �s
 ν�0� a� > ε�
∫ ∞
a

(
1− exp�−ε/σβ�)dσ

σ2
�

Since
∫∞
a �1− exp�−ε/σβ���dσ/σ2� > 0, we conclude that Ps�ν ∈ �s
 ν�0� a� >

ε� <∞. Hence Ps is σ-finite.
Write I = Is and ϒ = ϒs to stress the dependence of I�ϒ on s. Let �Ei� be

a disjoint measurable partition of ��s, σ��s�, Ps� such that Ps�Ei� <∞. This
is possible since Ps is σ-finite. Choose wi > 0 such that

∑∞
1 w

−1
i Ps�Ei� = 1.

Define

s′�ψ� =
∞∑
i=1

wis�ψ�1
(
ψ ∈ p−1

s �Ei�
)
� ψ ∈ ��
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where ps�ψ� = T−1
s�ψ�� β�ψ�; namely, ps maps ψ ∈ � to its representative in �

(ps is the second coordinate of I−1
s ). Then s′ is measurable since it is a sum

of measurable functions. For each σ > 0, ψ ∈ �,

1
(
Tσ�β�ψ� ∈ p−1

s �Ei�
) = 1

(
ψ ∈ p−1

s �Ei�
)

since if ψ ∈ p−1
s �Ei� then every equivalent ψ′ is in p−1

s �Ei�. Thus it is readily
seen that s′�Tσ�β�ψ�� = σs′�ψ�, σ ∈ �+� and hence s′ is also a scale function
for �. For ψ ∈ p−1

s �Ei�,

s′�ψ� = wis�ψ�

and hence if

ν 
= ps�ψ� = T−1
s�ψ�� β�ψ��

then

ν ′ 
= ps′ �ψ� = T−1
s′�ψ�� β�ψ� = T−1

wis�ψ�� β�ψ� = T−1
wi�β

�ψ� ◦T−1
s�ψ�� β�ψ� = T−1

wi�β
�ν��

Thus, for �x�y� ∈ �2
+, ν ∈ Ei,

ϒs′
(�x�wiy�� ν′) = ϒs��x�y�� ν��

Hence if E′i = ps′ �p−1
s �Ei��, two applications of (6.16) give

wiPs′ �E′i� =m��0�1� × �0�wi��Ps′ �E′i�
= λ ◦ϒs′

(��0�1� × �0�wi�� ×E′i)
= λ ◦ϒs

(��0�1� × �0�1�� ×Ei)
=m(�0�1� × �0�1�)Ps�Ei� = Ps�Ei��

Since, by the proof of Lemma 6.6, Is is bimeasurable, it follows that

I−1
s′
(
Is��+ ×Ei�

) = �+ × ps′(p−1
s �Ei�

)

is measurable in �+ ×�s′ . Thus E′i = ps′ �p−1
s �Ei�� is measurable in �s and

it is clear that �E′i = ps′ �p−1
s �Ei��� is a disjoint measurable partition of �s′ .

Therefore by the choice of wi,

Ps′ ��s′ � =
∞∑
i=1

Ps′ �E
′
i� =

∞∑
i=1

w−1
i Ps�Ei� = 1�

which shows that Ps′ is a probability measure. The second claim also follows
in an obvious way from the above proof. ✷
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6.3. The proof of Theorem 3�2. The proof is largely the same as that of
Theorem 3.1, with the following minor modifications. First, as before, we only
show the necessity part. Thus it is assumed throughout that conditions (A1),
(A2), (A3′) and (A4) hold. First we note that ηd is absent by (A3′).

Lemma 6.8. The set � of Lemma 6.5 is a subset of �ψ ∈ � ��+�\�0�

ψ�0� ε� = 0 for some ε > 0�.

Proof. First define

H = G(�× {
ψ ∈� ��+�\�0�
 ψ�0� ε� = 0 for some ε > 0

})
�

It suffices to show that λ�Hc� = 0 and the rest of the proof completely parallels
that of Lemma 6.5. Write

H = A ∩B�
where A is as defined in the proof of Lemma 6.5, and

B = {
µ ∈� ��2

+�\�0�
 µ�� × �0� ε�� = 0 for some ε > 0
}
�

It is easy to see that

A ∩Bc ⊂
∞⋃
m=1

∞⋂
n=1

{
µ ∈� ��2

+�\�0�
 µ
(
�−m�m� ×

(
0�

1
n

))
> 0

}

and hence by (6.9),

λ�A ∩Bc1� ≤ lim
m→∞ lim

n→∞λ
{
µ ∈� ��2

+�\�0�
 µ
(
�−m�m� ×

(
0�

1
n

))
> 0

}

≤ lim
m→∞ lim

n→∞2mλ
{
µ ∈� ��2

+�\�0�
 µ
(
�0�1� ×

(
0�

1
n

))
> 0

}
�

where the right-hand side is 0 by (ii) of Lemma 6.4. Thus we have shown that
λ�Hc� = 0, which concludes the proof. ✷

Note that by Lemma 6.4, ρ 
= − logP�η��0�1� × �0�1�� = 0� ∈ �0�∞�. For
the set � in Lemma 6.8, define the function s by

s
 ψ→ inf�y > 0
 ψ�0� y/ρ� > 0�� � → �+�(6.19)

It is easily verified that s is a scale function for �. As before, define the space
� = �ψ ∈ �
 s�ψ� = 1�. The proof of Theorem 3.2 is complete once it is shown
that the measure P in (6.16) based on this scale function is a probability
measure. Observe that � contains measures in � ��+� whose supports start
at ρ−1. Thus,

ϒ
((�0�1� × �0� ρ�)×�

) = {
φ ∈ H
 φ(�0�1� × �0�1�) > 0

}
�
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where H is as defined in the proof of Lemma 6.8. This implies that

P�� � = λ
{
φ ∈ H
 φ��0�1� × �0�1�� > 0�

m
(�0�1� × �0� ρ�)

= − logP
{
η
(�0�1� × �0�1�) = 0

}
/ρ = 1�

which completes the proof. ✷

6.4. The proof of Proposition 3�3. By Remark 2 of Section 3, it suffices to
show that the Laplace transform of

∑
ϒ��Xi�Yi�� γi� is equal to

exp
{
−
∫
�

∫
�2+

(
1− exp

(
−
∫ ∞

0
f�x� yz�yβν�dz�

))
m�dxdy�P�dν�

}
�

f ∈ � ��2
+��

Let Eq�r = �q− 1� q� × �r− 1� r� and

ηq�r =
∑

�Xi�Yi�∈Eq�r
ϒ
(�Xi�Yi�� γi�� r ≥ 0� q� r ∈ I�

where I is the set of all integers. Conditional on >�Eq�r� = k� where k is any
nonnegative integer, the points of > in Eq�r are independently and uniformly
distributed over Eq�r. Thus for any f ∈ � ��2

+�,

� exp
{
−
∫
�2+
fdηq� r

}

=
∞∑
k=0

P�>�Eq�r� = k��
{

exp
(
−
∫
�2+
fdηq� r

)∣∣∣∣>�Eq�r� = k
}

=
∞∑
k=0

exp�−1�
k!

{∫
�

∫
Eq�r

exp
(
−
∫ ∞

0
f�x�yz�yβν�dz�

)
dxdyP�dν�

}k

= exp
{
−
∫
�

∫
Eq�r

(
1− exp�−

∫ ∞
0
f�x�yz�yβν�dz�

)
dxdyP�dν�

}
�

The result follows from the fact that
∑
ϒ��Xi�Yi�� γi� can be written as the

sum of the random measures ηq�r, r ≥ 0, q� r ∈ I� which are mutually inde-
pendent. ✷

6.5. The proof of Theorem 4�1. For each B ∈ σ��+�, let

�B =
{
ψ ∈� ��+�
 ψ�0� y� = 0 for some y > 0 �depending on ψ� and

ψ�B� > 0
}
�

Also define �step��+� as the collection of step functions f of the form

f�y� =
k∑
i=1

siI�0� τi��y�� y > 0�
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where k ≥ 1, si ≥ 0,0 < τi < ∞. We start by stating some conclusions that
will be used repeatedly throughout the proof. First define

ωT�·� = aT
∫ rT

0
I
(
u−1
T �ξt� ∈ ·

)
dt

and

QT = kTP ◦ω−1
T �

Routine calculations using the mixing condition and Lemma 6.1 show that

− logE exp
{
−
∫
�2+
I�0�1��x�f�y�dηT�x�y�

}

= kTE
(
1− exp�−ωTf�

)+o�1�
=

∫ (
1− exp�−ψf�)QT�dψ� + o�1�� f ∈ �step��+��

(6.20)

Also using the mixing condition and the assumption P�M�T� ≤ uT�τ�� → e−τ,
it follows analogously to Lemma 2.3 of Hsing, Hüsler and Leadbetter (1988)
that

QT

(
��0� τ�

) = kTP{ηT��0�1� × �0� τ�� > 0
}→ τ� τ > 0�(6.21)

We first prove that ηT converges in distribution to a nontrivial random mea-
sure if there exists a measure Q on ��0�∞� such that

lim
T→∞

kTE
(
1− exp�−ωTf�

) = ∫
��0�∞�

(
1− exp�−ψf�)Q�dψ� <∞�

f ∈ �step��+��
(6.22)

With the latter assumption, use of (6.20) shows that the random vectors
ηT��0�1� × �0� τ1��� � � � � ηT��0�1� × �0� τk�� jointly converge in distribution for
all τ1� � � � � τk > 0. It may be shown in the same manner as in Theorem 3.2 of
Leadbetter and Hsing (1990) that this implies that the random measures

ηT
(�· ∩ �0�1�� × �0� τ1�

)
� � � � � ηT

(�· ∩ �0�1�� × �0� τk�)
jointly converge in distribution. In particular this implies that for any
�ai� bi� ⊂ �0�1�, 1 ≤ i ≤ k,

ηT��a1� b1� × �0� τ1��� � � � � ηT��ak� bk� × �0� τk��
jointly converge in distribution. It is further possible to show using stationarity
and the property (U2) (which holds by the mixing condition and the condition
on uT) that the restriction of �ai� bi� ⊂ �0�1� can be relaxed. Hence, by a stan-
dard existence criterion [see, for example, Lemma 5.1 of Kallenberg (1983)],
ηT converges in distribution to a nontrivial random measure. In view of this,
to prove Theorem 4.1 it suffices to show that the assumptions of the theorem
imply (6.22) for some Q. Similar to Section 6.2, let I map �σ� ν� ∈ �+ × ˜�
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to Tσ�β�ν� ∈ ��0�∞�. It is clear that I is one–one and bicontinuous. For any
y > 0,

QT

(
I��0� y� × ·� ∩��0� τ�

)
QT���0� τ��

= QT ◦I
(�0� y ∧ τ� × ·)

QT���0� τ��

= QT ◦I
(�0� y ∧ τ� × ·)

QT���0� y∧τ��
QT���0� y∧τ��
QT���0� τ��

→w P�·�y ∧ τ
τ

on ˜� �

where the weak convergence follows using the assumption and the fact that
the first ratio is simply P�χT ∈ ·�M�rT� > uT�y ∧ τ��. This implies that

QT

(
I�· × ·� ∩��0� τ�

)
QT���0� τ��

→w

m+�· ∩ �0� τ�� × P�·�
m+�0� τ�

on �0�∞�× ˜� �

which implies, by the fact that I is bicontinuous, that

QT�· ∩��0� τ��
QT���0� τ��

→w

�m+ × P� ◦I−1�· ∩��0� τ��
τ

on ��0�∞��

Defining Q = �m+ × P� ◦I−1, the last convergence can be rewritten as

QT�· ∩��0� τ��
QT���0� τ��

→w

Q�· ∩��0� τ��
Q���0� τ��

on ��0�∞��

which implies that for any f ∈ �step��+� with support in �0� τ�,
∫
��0� τ�

e−ψfQT�dψ�
QT���0� τ��

→
∫
��0� τ�

e−ψfQ�dψ�
Q���0� τ��

�

Since QT���0� τ�� → Q���0� τ�� by (6.21), and the support of f is contained in
�0� τ�, this implies that∫

�1− e−ψf�QT�dψ� →
∫
�1− e−ψf�Q�dψ��

Since this holds for all τ > 0 and f ∈ �step��+�, (6.22) is proved. ✷

6.6. Proofs for Section 5.

Proof of Proposition 5.1. In this proof we do not directly use Theo-
rem 4.1, but rather the essence of it. Note that since �ξ̄t� i ≤ t < i+ 1�, i ∈ I,
are i.i.d., it suffices to show that conditional on sup0≤s<1 ξ̄s > uT�τ�,

Tβ
(
u−1
T

(
sup

0≤s<1
ξ̄s

))−β ∫ 1

0
I

(
u−1
T �ξ̄t�

u−1
T �sup0≤s<1 ξ̄s�

≤ x
)
dt

→ log x� x ≥ 1�

(6.23)
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for each τ > 0. Notice that sup0≤s<1 ξ̄s =X0 and

u−1
T �ξ̄t�

u−1
T �sup0≤s<1 ξ̄s�

= T exp�−�X0 − t exp�βX0��
Te−X0

= exp�t exp�βX0���

Thus

Tβ
(
u−1
T

(
sup

0≤s<1
ξ̄s

))−β ∫ 1

0
I

(
u−1
T �ξ̄t�

u−1
T �sup0≤s<1 ξ̄s�

≤ x
)
dt

= Tβ(T exp�−X0�
)−β ∫ 1

0
I
(
exp�teβX0� ≤ x)dt

= Tβ(T exp�−X0�
)−β ∫ 1

0
I
(
t ≤ log x

exp�βX0�
)
dt�

which, if X0 is large, is equal to

Tβ
(
T exp�−X0�

)−β log x/ exp�βX0� = log x�

This establishes (6.23) and completes the proof. ✷

A sketched proof of Proposition 5.2. We only provide an explanation
of why the result is true, referring the reader to Hsing and Leadbetter (1991)
for a complete proof. First, note that we can assume without loss of generality
that a has compact support so that �ξt� is m-dependent. For, if this is not the
case, writing

a�m��t� = a�t�I��t� ≤m/2�
and

ξ
�m�
t =

∫
a�m��t− x�dZ�x�� −∞ < t <∞�

it is easy to show that

lim
m→∞ lim

T→∞
P

{
sup

0≤t≤T
�ξt − ξ�m�t � > uT�τ�

}
= 0� τ > 0�

Hence a standard uniform convergence argument combined with the following
will suffice. Also for notational convenience we assume that a�t� is nonnega-
tive. Bym-dependence and Theorem 4.1, it is enough to show that there exists
a sequence kT such that kT→∞, rT 
= T/kT→∞ and

lim
T→∞

P

{∫ rT
0
I

(
u−1
T �ξt�

u−1
T �M�rT��

≤ x
)
dt > z

∣∣∣∣M�rT� > uT�τ�
}

= I
{∫ ∞
−∞
I
(
a�t� ≥ Ax−1/α)dt > z

}
� x ≥ 1� z > 0� τ > 0�

(6.24)

Let x ≥ 1, z > 0, τ > 0 be fixed from now on. As in Rootzén (1978), let h�T� > 0
be such that h�T� → ∞ and h�T�/T→ 0 but otherwise arbitrary, and let

tT1 = inf
{
t ≥ h�T�
 ξt > uT�τ�

}
�
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By Theorem 5.2 of Rootzén (1978), there is a sequence of constants �τT1� such
that

lim
δ→∞

lim sup
T→∞

P
{�tT1 − τT1� > δ

} = 0

and as T→∞,

P
{
YT1�t�/uT�τ� ∈ ·�tT1 ≤ εT

}→w P
{
Za�−t� ∈ ·} on D�−∞�∞�� ε > 0�

where YT1�t� = ξt+τT1
and

P�Z ≤ z� = 1−A−α�1+ γ�z−α� z ≥ A�1+ γ�1/α�
Thus there exists kT (which can be chosen independent of τ > 0) such that
kT→∞, rT 
= T/kT→∞, h�T�/rT→ 0, and

P
{
YT1�t�/uT�τ� ∈ ·�tT1 ≤ rT

}→w P
{
Za�−t� ∈ ·} on D�−∞�∞��(6.25)

It turns out that the two events �M�rT� > uT�τ�� and �tT1
< rT� approximate

each other so that

P

{∫ rT
0
I

(
u−1
T �ξt�

u−1
T �M�rT��

≤ x
)
dt > z

∣∣∣∣M�rT� > uT�τ�
}

= P
{∫ m
−m
I

(
YT1�t� ≥ x−1/α sup

−m<s<m
YT1�s�

)
dt > z�tT1 < rT

}
+ o�1��

the proof of which can be found in Hsing and Leadbetter (1991). Now (6.24)
follows by virtue of (6.25).

A sketched proof of Proposition 5.3. Again, some technical details
will be omitted to save space. A detailed proof is contained in Hsing and Lead-
better (1991). Since �ξt� is strongly mixing, the sequence kT in Theorem 4.1
exists for �ξt�. By Theorem 4.1 and the fact that P�ν� = 1, ν being defined in
Proposition 5.3, it suffices to show that

P

{
aT

∫ rT
0
I

(
u−1
T �ξt�

u−1
T �M�rT��

≤ y
)
dt ≤ x

∣∣∣∣M�rT� > uT�τ�
}

→ I
(
ν�1� y� ≤ x)� τ� x > 0� y ≥ 1�

which, after replacing u−1
T �u� by the expression given in (5.3.1), becomes

PT 
= P
{
aT

∫ rT
0
I

(
ξt ≥ �M2�rT� − 2 log y�1/2

)
dt ≤ x

∣∣∣∣M�rT� > uT�τ�
}

→ I�ν�1� y� ≤ x�� τ�> 0� y ≥ 1�

(6.26)

Then (6.26) is proved using the idea that the behavior of a normal process at
a high-level crossing can be described by a Slepian model process, defined (for
u ∈ �) by

ξu� t = ur�t� −
ζr′�t�
λ2

+ κt� t ∈ ��
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where ζ has density �z/λ2� exp�−z2/2λ2�, z > 0, and κt is a nonstationary
normal process, independent of ζ with zero mean, and with the covariance
function

cov�κs� κt� = r�s− t� − r�s�r�t� −
r′�s�r′�t�
λ2

�

See Chapter 10 of Leadbetter, Lindgren and Rootzén (1983) for details. Let
ξ̂u be the supremum of ξu� t for t between 0 and the first time a downcrossing
of u by ξu� t occurs (cf. Corollary 10.3.3 of Leadbetter, Lindgren and Rootzén
(1983). Also define

ξ∞� t = −
λ2t

2

2
+ ζt� t ∈ ��

It follows from Theorem 10.4.2 of Leadbetter, Lindgren and Rootzén (1983)
that ξ∞� t is the a.s. limit of u�ξu� t/u − u� as u → ∞. Let ξ̂∞ be the global
supremum of ξ∞� t. Also for δ > 0, define

QT�δ� = P
{
uT�1�

∫ δ/uT�τ�
−δ/uT�τ�

I�ξuT�τ��t ≥ �ξ̂2
uT�τ� − 2 log y�1/2�dt ≤ x

}
�

It can be shown that

lim
δ→∞

lim
T→∞

∣∣PT −QT�δ�
∣∣ = 0�(6.27)

so that it suffices to analyze QT�δ�. In the integral of the definition of QT�δ�,
making a change-of-variables with v = uT�τ�t,

QT�δ� = P
{∫ δ
−δ
I�ξuT�τ�� v/uT�τ� ≥

(
ξ̂2
uT�τ� − 2 log y

)1/2�dv

≤ xuT�τ�/uT�1�
}
�

(6.28)

By Theorem 10.4.2 of Leadbetter, Lindgren and Rootzén (1983),

uT�τ�
(
ξuT�τ�� v/uT�τ� − uT�τ�

)→ ξ∞� v a.s. uniformly for �v� ≤ δ
for any finite δ. Thus

ξ̂2
uT�τ� − ξ2

uT�τ�� v/uT�τ� =
(
ξ̂uT�τ� − uT�τ�

)2 − �ξuT�τ�� v/uT�τ� − uT�τ��2

+ 2uT�τ�
(
ξ̂uT�τ� − uT�τ�

)
− 2uT�τ�

(
ξuT�τ�� v/uT�τ� − uT�τ�

)
→ 2�ξ̂∞ − ξ∞�v� a.s. uniformly for �v� ≤ δ�

Therefore, since uT�τ�/uT�1� → 1,

P

{∫ δ
−δ
I�ξuT�τ�� v/uT�τ� ≥

(
ξ̂2
uT�τ� − 2 log y

)1/2�dv ≤ xuT�τ�/uT�1�
}

→ P

(∫ δ
−δ
I
(
2�ξ̂∞ − ξ∞� v� ≤ 2 log y

)
dv ≤ x

)
� as T→∞�

(6.29)
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which converges, as δ→ 0, to

P

(∫ ∞
−∞
I
(
2�ξ̂∞ − ξ∞� v� ≤ 2 log y

)
dv ≤ x

)

= I
(∫ ∞

−∞
I
(
λ2v

2 ≤ 2 log y
)
dv ≤ x

)

= I(2�λ−1
2 2 log y�1/2 ≤ x)�

(6.30)

Thus the result follows from (6.27)–(6.30). ✷

Proof of Proposition 5.4. First, let 0 < x < 1. It follows from (5.2) and
Lemma 6.1 that for s > 0,

− logE
(
exp

{−saTζT��0� x� × �0� τ��})
= xkTE

(
1− exp

{−saTζT��0�T/kT� × �0� τ��})+ o�1�
= xkTE

(
1− exp

{
−saT

∫ T/kT
0

I�ξt > uT�τ��dt
})
+ o�1��

By Bonferroni’s inequality,

E

(
saT

∫ T/kT
0

I�ξt > uT�τ��dt
)
− 1

2E

(
saT

∫ T/kT
0

I�ξt > uT�τ��dt
)2

≤ E
(

1− exp
{
−saT

∫ T/kT
0

I�ξt > uT�τ��dt
})

≤ E
(
saT

∫ T/kT
0

I�ξt > uT�τ��dt
)
�

By stationarity,

E

(
saT

∫ T/kT
0

I�ξt > uT�τ��dt
)
= saTT

kT
P�ξ0 > uT�τ�� ∼

τβ+1s

kT
�

Also

E

(
saT

∫ T/kT
0

I�ξt > uT�τ��dt
)2

≤ s
2a2
TT

kT

(∫ lT
0
+
∫ T/kT

0

)
P
{
ξ0 > uT� ξt > uT�τ�

}
dt

≤ s
2a2
TT

kT

(
lTP�ξ0 > uT�τ�� +

T

kT
αT� lT�τ� +

T

kT
P2�ξ0 > uT�τ��

)

= s
2aTlT
kT

(
τβ+1 + o�1�)+ s2a2

TT
2

k2
T

αT� lT�τ� +
s2

k2
T

(
τ2�β+1� + o�1�)�
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By (5.2),

lim sup
n→∞

kT
aTlT
kT

≤ lim sup
n→∞

aTT

kT
lim
n→∞

kTlT
T

= 0�

lim sup
n→∞

kT
a2
TT

2

k2
T

αT� lT�τ� ≤ lim sup
n→∞

a2
TT

2

k2
T

lim
n→∞kTαT� lT�τ� = 0�

Hence,

xkTE

(
1− exp

{
−saT

∫ T/kT
0

I�ξt > uT�τ��dt
})

→ xτβ+1s�

Thus

lim
T→∞

E
(
exp

{−saTζT��0� x� × �0� τ��}) = exp�−xτβ+1s��

Since the limit is degenerate, the result follows readily. ✷
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