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This paper investigates the asymptotic distribution of the partial sum
SN = ∑N

n=1�K�Xn� −EK�Xn��, as N → ∞, where 	Xn
 is a moving av-
erage stable process and K is a bounded and measurable function. The
results show that SN follows a central or non-central limit theorem de-
pending on the rate at which the moving average coefficients tend to 0.

1. Introduction. Suppose that 	εi
 is an iid sequence of random vari-
ables and 	aj
 is a sequence of constants for which the linear process

Xn =
∞∑
j=1

ajεn−j� n ≥ 1�(1)

is well defined. A large class of time series models can be represented as linear
processes [cf. Brockwell and Davis (1991)]. Let K be a measurable function
such that E�K�Xn�� < ∞. The investigation of the asymptotic behavior of

SN =
N∑
n=1

(
K�Xn� −EK�Xn�

)
�

as N → ∞, is the topic of a number of papers in the literature.
Generally speaking, if 	Xn
 is known to satisfy a certain mixing condition,

say a strong mixing condition [cf. Bradley (1986)], with the mixing coefficients
decreasing to 0 fast enough, then 	K�Xn�
 inherits the same properties, in
which case standard results based on mixing conditions could be used to derive
the limiting distribution of SN [cf. Peligrad (1986)]. In view of that, our focus
in this paper has to be processes which do not satisfy (or at least do not
obviously satisfy) the standard mixing conditions under which limit theorems
are already available. In the context of linear processes, it is well known that,
for the mixing conditions to hold, stringent restrictions typically have to be
imposed on the rate of decay of ai. See Gorodetskii (1977), Pham and Tran
(1985) and Withers (1981). Accordingly, we will make as few assumptions as
possible about how quickly the ai tend to 0.

In the case where 	Xn
 is Gaussian, one has to distinguish between the
short-memory case where

∑∞
j=1�aj� < ∞ and the long-memory case where∑∞

j=1�aj� = ∞ but
∑∞

j=1a
2
i < ∞. In fact, under the basic assumption that
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EK2�εi� < ∞ the appropriate normalizing constants for SN in the two cases
have different rates. In the short-memory case, SN is normalized by N1/2

to converge weakly to the normal distribution, whereas, in the long-memory
case, the proper normalization for SN has a faster rate than N1/2 and the
weak limit may or may not be normal depending on the Hermite rank of K,
that is, the smallest positive integer j for which∫ ∞

−∞
K�x� exp

(
x2

2

)
dj exp�−x2/2�

dxj
d��x� �= 0�

where ��x� is the standard normal distribution function. These are sometimes
referred to as central and noncentral limit theorems. See Breuer and Major
(1983), Dobrushin and Major (1979) and Taqqu (1979) for these results and
also Ho and Hsing (1997) for extensions to other finite-variance cases.

In this paper we consider the asymptotic distribution of SN for the infinite-
variance counterpart of the Gaussian linear process. That is, we are interested
in the case where the innovations εi follow a stable distribution with stable
index in �0�2�. Further, we will focus on the case where EK2�εi� < ∞. If
EK2�εi� = ∞, then the asymptotic theory of SN assumes a completely dif-
ferent character and has to be approached from another direction [cf. Davis
and Hsing (1995)]. For simplicity of presentation, we will henceforth confine
ourselves to the special case where K is bounded and the distribution of ε1 is
standard symmetric α-stable (SαS), namely,

E exp�itε1� = exp�−�t�α�� t ∈ ��(2)

where α ∈ �0�2�. A close inspection of the steps in the proofs will reveal that,
with additional technical details which involve essentially no new ideas, the
proofs can be readily extended to cover more general K and distributions that
are merely attracted to nonnormal stable distributions. See the remark at
the end of Section 3 for details. The reader is referred to Feller (1971) and
Samorodnitsky and Taqqu (1994) for the background of stable processes.

Although there is not yet a complete agreement on the definitions of short-
and long-range dependence for infinite-variance processes, here we say that
	Xn
 has short memory if

∞∑
i=1

�ai�α/2 < ∞(3)

and long memory if
∞∑
i=1

�ai�α/2 = ∞ but
∞∑
i=1

�ai�α < ∞�(4)

where the finiteness of the second sum in (4) is required for the infinite sum in
(1) to converge almost surely under (2) [cf. Samorodnitsky and Taqqu (1994)].
Theorem 1 below shows that, in the short-memory case, N−1/2SN converges
weakly to the normal distribution. For the long-memory case, in view of (4), we
will assume that aj = j−β for some β ∈ �α−1� 2α−1�. Note that the stable linear
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process then covers the so-called stable fractional ARIMA process which has
important applications in finance [cf. Kokoszka and Taqqu (1996)]. Theorem 2
shows that N−�3−αβ�/2SN converges weakly to the normal distribution. For the
two cases we also address the weak convergence of the partial sum processes
in � �0�1�. The main results are stated in Section 2 and the proofs are gathered
in Section 3.

It is interesting to note the striking contrast between the properties of SN

for the finite- and infinite-variance cases. In the long-memory, finite-variance
case, SN generally admits an asymptotic expansion [cf. Ho and Hsing (1997)]
and the asymptotic distribution of SN may be Gaussian or non-Gaussian. How-
ever, in the long-memory, infinite-variance case, the asymptotic distribution
of SN can only be Gaussian and asymptotic expansions are not feasible.

2. Main results. Throughout the rest of this paper we will assume the
following. Let K be a bounded, measurable function from � to �. Suppose that
εi satisfies (2) for some α ∈ �0�2�. Let 	Xn
 be defined by (1), where either
the aj satisfy (3) or aj = j−β for some β ∈ �α−1� 2α−1�. Further, define

Xn�j1� j2
=




∑
j1≤i≤j2

aiεn−i� 1 ≤ j1 ≤ j2 < ∞�

∑
i≥j1

aiεn−i� 1 ≤ j1 < ∞� j2 = ∞�

0� otherwise�

Let Fj1� j2
and Fj be the cdf ’s of Xn�j1� j2

and ajεn−j, respectively. Also define

K0�x� = K�x��(5)

Kj�x� = EK�x+Xn�1� j� =
∫
K�x+ y�dF1� j�y�� 1 ≤ j ≤ ∞(6)

and

Kĵ�x� = EK�x+Xn − ajεn−j�
(7)

=
∫
K�x+ y+ z�dF1� j−1�y�dFj+1�∞�z�� 1 ≤ j < ∞�

As mentioned in the Introduction, our main concerns in this paper are the
asymptotic properties of the centered partial sum

SN =
N∑
n=1

(
K�Xn� −EK�Xn�

)
�

For γ ∈ �1/2� 1�, denote by �γ the fractional Brownian motion on �0�1� with
the self-similar index γ; that is, �γ is a zero-mean Gaussian process on �0�1�
with

cov ��γ�s�� �γ�t�� =
1
2
�s2γ + t2γ − �s− t�2γ��

Note that �1/2 is the standard Brownian motion. See Samorodnitsky and
Taqqu (1994).
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We first consider the short-memory case. Define the truncated partial sum

SN� l =
N∑
n=1

(
K�Xn�1� l� −EK�Xn�1� l�

)
� 1 ≤ l ≤ N�

and the partial sum process

�N�t� = N−1/2
(
S�Nt� + �Nt− �Nt��(K�X�Nt�+1� −EK�X1�

))
� t ∈ �0�1��

Regard �N as a member of � �0�1�, the space of continuous functions on �0�1�
equipped with the sup-topology and Borel σ-field [cf. Billingsley (1968)].

The essence of the following result is that the asymptotic behavior of SN

can be approximated by that of SN� l for large N� l. Intuitively, this is the case
because both 	Xn
 and 	Xn�1� l
 have short memory. Since 	Xn�1� l� n ≥ 1
 is
l-dependent (with l fixed), that SN� l follows a

√
N-central limit theorem is

immediate. Consequently, SN can be expected also to follow a
√
N-central

limit theorem and the limiting distribution can be obtained as an iterated
limit.

Theorem 1. Suppose that (3) holds and

lim
l→∞

E
(
K�X1� −K�X1�1� l�

)2 = 0�(8)

Then

lim
l→∞

lim sup
N→∞

N−1 var
(
SN −SN� l

) = 0(9)

and

N−1/2SN −→d Normal �0� σ2��(10)

where

σ2 = lim
N→∞

N−1 var �SN� = lim
l→∞

lim
N→∞

var
(
SN� l

)
�(11)

which exists and is finite. Further, if

∞∑
i=1

�ai�α/3 < ∞�(12)

then �N converges in distribution in the space � �0�1� to �σ2�1/2 ·�1/2.

Next we consider the long-memory case, which is the harder of the two.
As explained in the Introduction, we assume in this context that aj = j−β,
where β ∈ �α−1�2α−1�. First, the strategy of the previous result completely
fails here since 	Xn� n ≥ 1
 now has long memory but 	Xn�1� l� n ≥ 1
 has
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short memory, and hence, for any fixed l, SN� l is a poor approximation of SN.
This is where the following quantity comes in:

TN =
N∑
n=1

∞∑
j=1

(
K∞�ajεn−j� −EK∞�ajεn−j�

)
� N ≥ 1�

To see a superficial connection between SN and TN, one can think of TN as be-
ing obtained from SN by bringing the summation on j out of K�∑∞

j=1 ajεn−j�
and then replacing K by K∞. Theorem 2 below shows that TN and SN have
the same asymptotic distribution. Unfortunately, we discovered this approach
through trial and error by carrying out detailed computations. As far as we
can see, there is no obvious logic or intuition which gives a hint that TN is a
good approximation of SN. It is clear, though, that the asymptotic properties
of TN are much more straightforward to investigate than those of SN.

Define the partial sum process in � �0�1�:

�N�t� = N−�3−αβ�/2
(
S�Nt� +

(
Nt− �Nt�)(K�X�Nt�+1� −EK�X1�

))
�

Also define

ω2 = Cα

∫ 1

x=0

∫ ∞

u=−∞

(∫ x

y=0
�K∞�y−βu� −K∞�0��dy

)2

�u�−α−1 dudx

+Cα

∫ ∞

x=0

∫ ∞

u=−∞

(∫ 1+x

y=x
�K∞�y−βu� −K∞�0��dy

)2

�u�−α−1 dudx�

where

Cα = α

2

(∫ ∞

0
x−α sinxdx

)−1

�

Lemma 4, in Section 3, establishes that ω2 is finite and it is clear that ω2 is
nonzero if K is not a constant function. The result for the long-memory case
is the following.

Theorem 2. Suppose that aj = j−β, where β ∈ �α−1� 2α−1�. Then, as
N → ∞,

var �SN −TN� = o
(
N3−αβ

)
(13)

and

var �TN� ∼ N3−αβω2�(14)

Further, �N converges in distribution in the space � �0�1� to �ω2�1/2 ·��3−αβ�/2.

The proofs of Theorems 1 and 2 are collected in Section 3.
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3. Proofs. We need a few lemmas first. In the following, for convenience,
we denote by C a generic constant whose value varies from line to line. The
first lemma is instrumental.

Lemma 3. For each k ≥ 1, the kth derivatives of Kj and Kĵ, j ≥ 1� exist
and are uniformly bounded.

Proof. Let f be the density that corresponds to the stable characteristic
function exp�−c�t�α� for some c ∈ �0�∞�. We first establish that f has bounded
and integrable derivatives of all orders. By (2), Fourier inversion gives

f�k��x� = �−i�k
2π

∫
e−itxϕk�t�dt�(15)

where

ϕk�t� = tk exp�−c�t�α��
Now, for t �= 0,

ϕ
�1�
k �t� = ktk−1 exp�−c�t�α� − cαtk�t�α−1 sign�t� exp�−c�t�α�

and

ϕ
�2�
k �t� = k�k− 1�tk−2 exp�−c�t�α� − 2cαktk−1�t�α−1 sign�t� exp�−c�t�α�

−cα�α− 1�tk�t�α−2 exp�−c�t�α� + c2α2tk�t�2�α−1� exp�−c�t�α��
Observe that both ϕ

�1�
k and ϕ

�2�
k are integrable for k ≥ 1. Performing two

integrations by parts on the integral in (15), we obtain

f�k��x� = −�−i�k
2πx2

∫
e−itxϕ�2�

k �t�dt�

By the Riemann–Lebesgue lemma,

f�k��x� = o�1/x2� as x → ∞�

See Feller [(1971), pages 513–514]. Since f�k� is also bounded by (15), we
conclude that f�k� is integrable. Now consider the function

G�x� =
∫
K�x+ u�f�u�du =

∫
K�v�f�v− x�dv�

Since K is bounded and f�1� is integrable, Fubini’s theorem gives∫ y

x=0

∫ ∞

v=−∞
K�v�f�1��v− x�dvdx

=
∫ ∞

v=−∞

∫ y

x=0
K�v�f�1��v− x�dxdv

(16)
=
∫ ∞

v=−∞
K�v��f�v− y� − f�v��dv

= G�y� −G�0��
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It is clear that
∫∞
v=−∞K�v�f�1��v − x�dv is continuous in x. Hence, it follows

from (16) that

G�1��y� =
∫ ∞

v=−∞
K�v�f�1��v− y�dv =

∫ ∞

u=−∞
K�u+ y�f�1��u�du�

which is bounded. In view of the manner in which this bound depends on the
scale parameter c of the stable distribution, the uniformity statement in the
lemma can be easily verified. That G�k� is bounded for a general k can be
obtained by an induction based on this argument. ✷

Lemma 4. Assume that αβ ∈ �1� 2�. Then:

(i)
∫ 1

x=0

∫ ∞

u=−∞

(∫ x

y=0
�K∞�y−βu�dy−K∞�0��

)2

�u�−α−1 dudx < ∞�

(ii)
∫ ∞

x=0

∫ ∞

u=−∞

(∫ 1+x

y=x
�K∞�y−βu� −K∞�0��dy

)2

�u�−α−1 dudx < ∞�

Proof. Assume without loss of generality that K∞�0� = 0 for notational
convenience.

(i) First write

∫ 1

x=0

∫ ∞

u=−∞

(∫ x

y=0
K∞�y−βu�dy

)2

�u�−α−1dudx = I1 + I2�

where

I1 =
∫ 1

x=0

∫
�u�>1

(∫ x

y=0
K∞�y−βu�dy

)2

�u�−α−1 dudx

and

I2 =
∫ 1

x=0

∫
�u�≤1

(∫ x

y=0
K∞�y−βu�dy

)2

�u�−α−1 dudx�

Since K∞ is bounded, it is clear that I1 < ∞. Now, if β < 1, then, by the fact
that K�1�

∞ is bounded,

I2 ≤ C
∫ 1

x=0

∫
�u�≤1

(∫ x

y=0
y−β

)2

�u�1−αdudx < ∞�

If β ≥ 1, then, by change of variables and the facts that K∞ and K
�1�
∞ are

bounded and 2/β− α− 1 > −1,

I2 =
∫ 1

x=0

∫
�u�≤1

(∫ ∞

v=x−βu
K∞�v�v−1/β−1 dv

)2

�u�2/β−α−1 dudx

≤ C
∫ 1

x=0

∫
�u�≤1

(∫ 1

v=x−βu∧1
v−1/βdv+

∫ ∞

v=1
v−1/β−1 dv

)2

�u�2/β−α−1 dudx < ∞�
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(ii) Write∫ ∞

x=0

∫ ∞

u=−∞

(∫ 1+x

y=x
K∞�y−βu�dy

)2

�u�−α−1 dudx =
4∑

j=1

Ij�

where

I1 =
∫ ∞

x=1

∫
�u�≤xβ

(∫ 1+x

y=x
K∞�y−βu�dy

)2

�u�−α−1 dudx�

I2 =
∫ ∞

x=1

∫
�u�>xβ

(∫ 1+x

y=x
K∞�y−βu�dy

)2

�u�−α−1 dudx�

I3 =
∫ 1

x=0

∫
�u�>1

(∫ 1+x

y=x
K∞�y−βu�dy

)2

�u�−α−1 dudx�

I4 =
∫ 1

x=0

∫
�u�≤1

(∫ 1+x

y=x
K∞�y−βu�dy

)2

�u�−α−1 dudx�

Now,

I1 ≤ C
∫ ∞

x=1

∫
�u�≤xβ

(
x−βu

)2 �u�−α−1 dudx = �C/�2 − α��
∫ ∞

x=1
x−αβ dx < ∞

since αβ > 1. Similarly,

I2 ≤ C
∫ ∞

x=1

∫
�u�>xβ

�u�−α−1 dudx = �C/α�
∫ ∞

x=1
x−αβ dx < ∞�

That I3 < ∞ is trivial. It remains to consider I4, for which the treatment is
similar to that of the term I2 in the proof of (i) and is omitted. ✷

Lemma 5. Under the conditions of Theorem 2, as N → ∞,

N∑
n=1

∞∑
j=1

N−n+j∑
j′=j

(
aαj

∞∑
i=j+1

aαi

)1/2 (
aαj′

∞∑
i=j′+1

aαi

)1/2

= o�N3−αβ��(17)

Proof. Replacing aj by j−β and approximating sums by integrals, the
left-hand side of (17) is asymptotically equivalent to

N−1∑
n=0

∞∑
j=1

n+j∑
j′=j

j1/2−αβj′1/2−αβ ∼
N−1∑
n=0

∫ ∞

x=1

∫ n+x

y=x
x1/2−αβy1/2−αβ dxdy

(18)

=
N−1∑
n=0

∫ ∞

x=1

∫ 1+n/x

z=1
x2−2αβz1/2−αβ dxdz�

where in the last step we changed variables from y to zx. The derivations
for the three cases αβ > 3/2, αβ = 3/2 and 1 < αβ < 3/2 differ slightly. For
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αβ > 3/2, x2−2αβz1/2−αβ is integrable and hence the quantity in (18) is O�N�.
For the other two cases, write∫ ∞

x=1

∫ 1+n/x

z=1
x2−2αβz1/2−αβ dxdz

=
∫ n

x=1

∫ 1+n/x

z=1
x2−2αβz1/2−αβ dxdz+

∫ ∞

x=n

∫ 1+n/x

z=1
x2−2αβz1/2−αβ dxdz

which is bounded by

C

(∫ n

x=1
x−1 log

(
1 + n

x

)
dx+

∫ ∞

x=n
x−1

(n
x

)
dx

)

if αβ = 3/2 and by

C

(∫ n

x=1
x2−2αβ

(
1 + n

x

)3/2−αβ
dx+

∫ ∞

x=n
x2−2αβ

(n
x

)
dx

)

if 1 < αβ < 3/2. The rest of the proof is purely algebra and is omitted. ✷

Proof of Theorem 1. We first prove (9), (10) and (11). Let

σ2
l = lim

N→∞
N−1 var

(
SN� l

)
�(19)

which exists and is finite by l-dependence. By the Cauchy–Schwarz inequality,

var
(
SN� l1

−SN� l2

) ≤ 2 var
(
SN −SN� l1

)+ 2 var
(
SN −SN� l2

)
�(20)

Supposing (9) holds, it follows from (20) and the triangle inequality that
	σ2

l � l = 1� 2� � � �
 is a Cauchy sequence and therefore σ2
l tends to some finite

value σ2 as l → ∞. Consequently, (11) follows readily from (9). Further, since,
for each fixed l, 	Xn�1� l
 is l-dependent, we conclude readily that

N−1/2SN� l −→d Normal �0� σ2
l ��

Hence (10) follows by taking limits iteratively [cf. Billingsley (1968), Theo-
rem 4.2]. Thus, we focus on the proof of (9). Let

�−∞� k = σ-field generated by εi� i ≤ k�

First write SN and SN� l as telescoping sums:

SN =
N∑
n=1

∞∑
j=1

[
E
(
K�Xn���−∞� n−j

)−E
(
K�Xn���−∞� n−�j+1�

)]
�

SN� l =
N∑
n=1

l∑
j=1

[
E
(
K�Xn�1� l���−∞� n−j

)−E
(
K�Xn�1� l���−∞� n−�j+1�

)]
�

and then accordingly

SN −SN� l =
N∑
n=1

∞∑
j=1

Un�j� l�
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where

Un�j� l =
[
E
(
K�Xn���−∞� n−j

)−E
(
K�Xn���−∞� n−�j+1�

)]
−[E(K�Xn�1� l���−∞� n−j

)−E
(
K�Xn�1� l���−∞� n−�j+1�

)]
I�j ≤ l�

= [
Kj−1�Xn�j�∞� −Kj�Xn�j+1�∞�]
−[Kj−1�Xn�j� l� −Kj�Xn�j+1� l�

]
I�j ≤ l��

It is straightforward to verify that

E�Un�j� l� = 0 for all n� j� l

and

cov�Un�j� l�Un′� j′� l� = 0 unless n− j = n′ − j′�(21)

By an elementary inequality,

E�SN −SN� l�2 ≤ RN�1� l +RN�2� l +RN�3� l�

where

RN�1� l = 3 var
( N∑
n=1

Un�1� l

)
�

RN�2� l = 3 var
( N∑
n=1

l∑
j=2

Un�j� l

)
�

RN�3� l = 3 var
( N∑
n=1

∞∑
j=l+1

Un�j� l

)
�

Thus our goal is to show that

lim
l→∞

lim sup
N→∞

N−1RN�i� l = 0(22)

for i = 1� 2� 3. It follows readily from (21) and (8) that

lim
l→∞

lim sup
N→∞

N−1RN�1� l ≤ 3 lim
l→∞

lim sup
N→∞

N−1
N∑
n=1

EU2
n�1� l = 0�

Next by (21) and the Cauchy–Schwarz inequality, with n′ = n− j+ j′,

RN�2� l ≤ 6
N∑
n=1

l∑
j=2

l∑
j′=j

E1/2�U2
n�j� l�E1/2�U2

n′� j′� l��

Similarly,

RN�3� l ≤ 6
N∑
n=1

∞∑
j=l+1

∞∑
j′=j

E1/2�U2
n�j� l�E1/2�U2

n′� j′� l��
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Clearly, that (22) holds for i = 2� 3 will follow if we show that there exists a
finite C such that

EU2
n�j� l ≤ C�aj�α

( ∞∑
i=l+1

�ai�α
)

for 2 ≤ j ≤ l(23)

and

EU2
n�j� l ≤ C�aj�α for j ≥ l+ 1�(24)

We first consider (23). Define

D�u� v� w� x� =
([
Kj−1�u+ v+w� −Kj−1�v+w+ x�]

− [
Kj−1�u+ v� −Kj−1�v+ x�])2

�

For 2 ≤ j ≤ l,

EU2
n�j� l = E

([
Kj−1�Xn�j�∞� −Kj�Xn�j+1�∞�]
− [

Kj−1�Xn�j� l� −Kj�Xn�j+1� l�
])2

=
∫∫∫ ([

Kj−1�u+ v+w� −Kj�v+w�]− [
Kj−1�u+ v� −Kj�v�

])2
×dFj�u�dFj+1� l�v�dFl+1�∞�w��

which, by the Cauchy–Schwarz inequality, is bounded by∫∫∫∫
D�u� v� w� x�dFj�u�dFj+1� l�v�dFl+1�∞�w�dFj�x�
= E1 +E2 +E3 +E4�

where

E1 =
∫∫∫∫

I��u− x� ≤ 1� �w� ≤ 1�
×D�u� v� w� x�dFj�u�dFj+1� l�v�dFl+1�∞�w�dFj�x��

E2 =
∫∫∫∫

I��u− x� > 1� �w� ≤ 1�
×D�u� v� w� x�dFj�u�dFj+1� l�v�dFl+1�∞�w�dFj�x��

E3 =
∫∫∫∫

I��u− x� ≤ 1� �w� > 1�
×D�u� v� w� x�dFj�u�dFj+1� l�v�dFl+1�∞�w�dFj�x��

E4 =
∫∫∫∫

I��u− x� > 1� �w� > 1�
×D�u� v� w� x�dFj�u�dFj+1� l�v�dFl+1�∞�w�dFj�x��
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Now write

D�u� v� w� x� = g1�u� − g1�x� = g2�w� − g2�0��
where

g1�z� = Kj−1�z+ v+w� −Kj−1�z+ v�
and

g2�z� = Kj−1�z+ u+ v� −Kj−1�z+ v+ x��
By Taylor expansions and Lemma 3,

D�u� v� w� x� = �u− x�2(g�1�
1 �y∗�)2 = w2(g�1�

2 �z∗�)2
= �u− x�2w2(g�2�

2 �z∗∗�)2
for appropriate choices of y∗� z∗� z∗∗. Since Kj−1, K�1�

j−1 and K
�2�
j−1 are bounded

by Lemma 3, there exists some C such that

E1 ≤ C
(∫∫

I��u− x� ≤ 1��u− x�2dFj�u�dFj�x�
)

×
(∫

I��w� ≤ 1�w2dFl+1�∞�w�
)
�

E2 ≤ C
(∫∫

I��u− x� > 1�dFj�u�dFj�x�
)

×
(∫

I��w� ≤ 1�w2dFl+1�∞�w�
)
�

E3 ≤ C
(∫∫

I��u− x� ≤ 1��u− x�2dFj�u�dFj�x�
)

×
(∫

I��w� > 1�dFl+1�∞�w�
)
�

E4 ≤ C
(∫∫

I��u− x� > 1�dFj�u�dFj�x�
) (∫

I��w� > 1�dFl+1�∞�w�
)
�

By Feller [(1971), XVII.5], if Z has the characteristic function given by (2),
then, as λ ↓ 0,

P�λ�Z� > 1� ∼ Cλα(25)

and

E
[�λZ�2I�λ�Z� ≤ 1�] ∼ Cλα�(26)

Hence, by the stable assumption (2), as j� l → ∞,∫∫
I��u− x� ≤ 1��u− x�2 dFj�u�dFj�x� ∼ C�aj�α�∫∫

I��u− x� > 1�dFj�u�dFj�x� ∼ C�aj�α�
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∫
I��w� ≤ 1�w2 dFl+1�∞�w� ∼ C

∞∑
i=l+1

�ai�α�

∫
I��w� > 1�dFl+1�∞�w� ∼ C

∞∑
i=l+1

�ai�α�

Hence (23) is proved. The proof of (24) is similar (in fact, simpler) and is
omitted. This completes the proof of (9) and hence those of (10) and (11).

Next we consider the functional convergence of �N in � �0�1�. Let �N� l be
the partial sum process defined for the the truncated sequence 	Xn�1� l
 in
the same way as �N for the nontruncated sequence 	Xn
. Since 	Xn�1� l
 is
l-dependent, �N� l clearly converges in distribution to �σ2

l �1/2 ·�1/2 in � �0�1�,
where σ2

l is defined in (19). By (9) it suffices to show that �N is also tight in
� �0�1�. By the telescoping decomposition used previously, it is easy to show
that

E�SN −SN� l�4 ≤ QN�1� l +QN�2� l +QN�3� l�

where

QN�1� l = CE

(
N∑

n1=1

l∑
j=1

Un�j� l

)4

�

QN�2� l = C

(
N∑
n=1

∞∑
j=l+1

N−n+j∑
j′=j

EUn�j� lUn′� j′� l

)2

�

QN�3� l = C
N∑

n1=1

∞∑
j1=l+1

N−n1+j1∑
j2=j1

N−n1+j1∑
j3=j2

N−n1+j1∑
j4=j3

E�Un1� j1� l
Un2� j2� l

Un3� j3� l
Un4� j4� l

��

where in QN�2� l, n′ = n− j+ j′, and in QN�3� l, ni = n1 − j1 + ji. It is readily
shown that

lim
N→∞

N−2QN�1� l = 0 for each l

and, by the second-moment computations already done above,

lim
l→∞

lim sup
N→∞

N−2QN�2� l = 0�

Hence it suffices to consider QN�3� l. Since the Un�j� l are bounded,

QN�3� l ≤ C
N∑

n1=1

�N− n1�
∞∑

j1=l+1

∞∑
j2=j1

∞∑
j3=j2

E1/3��Un1� j1� l
�3�E1/3��Un2� j2� l

�3�

×E1/3��Un3� j3� l
�3��

The same approach as that used in the second-moment computation gives

E�Un�j� l�3 ≤ C�aj�α� j ≥ l+ 1�
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Hence assumption (12) implies that

lim
l→∞

lim sup
N→∞

N−2QN�3� l = 0�

Summarizing, we have shown that

lim
l→∞

lim sup
N→∞

N−2E�SN −SN� l�4 = 0�(27)

By l-dependence,

lim
N→∞

N−2ES4
N� l = cl

for some constant cl ∈ �0�∞�. By (27) and the Cauchy argument previously
used, we obtain

lim
N→∞

N−2ES4
N = lim

l→∞
cl ∈ �0�∞��

which implies that

sup
N≥1

N−2ES4
N ≤ C ∈ �0�∞��

Hence,

1
N2

ES4
�Nt� =

�Nt�2
N2

1
�Nt�2ES

4
�Nt� ≤ Ct2 for all N ≥ 1, t ∈ �0�1�.

By Billingsley [(1968), Theorem 12.3], 	�N
 is tight in � �0�1�. The proof is
complete. ✷

Proof of Theorem 2. We first prove (13). Define

AN�1 =
N∑
n=1

∞∑
j=1

(
Kj−1�ajεn−j� −Kj�0�

)
�

AN�2 =
N∑
n=1

∞∑
j=1

(
Kĵ�ajεn−j� −EKĵ�ajεn−j�

)
�

where the Kj and Kĵ are defined by (5)–(7). Write

SN −AN�1 =
N∑
n=1

∞∑
j=1

Un�j�

AN�1 −AN�2 =
N∑
n=1

∞∑
j=1

Vn�j�

AN�2 −TN =
N∑
n=1

∞∑
j=1

Wn�j�
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where

Un�j = (
Kj−1�Xn�j�∞� −Kj�Xn�j+1�∞�)− (

Kj−1�ajεn−j� −Kj�0�
)
�

Vn�j = (
Kj−1�ajεn−j� −Kj�0�

)− (
Kĵ�ajεn−j� −EKĵ�ajεn−j�

)
�

Wn�j = (
Kĵ�ajεn−j� −EKĵ�ajεn−j�

)− (
K∞�ajεn−j� −EK∞�ajεn−j�

)
�

Note that in the expression for SN−AN�1 above we incorporated the telescop-
ing sum of SN introduced in the proof of Theorem 1. We first estimate the
variance of Un�j. Clearly, Un�1 has finite variance since Un�1 is bounded. For
j ≥ 2, write

Un�j = Un�j�1 +Un�j�2 +Un�j�3 +Un�j�4�

where

Un�j�1 = I
(�ajεn−j� ≤ 1� �Xn�j+1�∞� ≤ 1

)×Un�j�

Un�j�2 = I
(�ajεn−j� > 1� �Xn�j+1�∞� ≤ 1

)×Un�j�

Un�j�3 = I
(�ajεn−j� ≤ 1� �Xn�j+1�∞� > 1

)×Un�j�

Un�j�4 = I
(�ajεn−j� > 1� �Xn�j+1�∞� > 1

)×Un�j�

Note that

Un�j =
∫
u∈�

[
gu�Xn�j+1�∞� − gu�0�

]
dFj�u��

where

gu�x� = Kj−1�ajεn−j + x� −Kj−1�u+ x��
Hence, by two Taylor expansions,

Un�j�1 = I��ajεn−j� ≤ 1� �Xn�j+1�∞� ≤ 1�Xn�j+1�∞

×
∫
u∈�

[
K

�1�
j−1�ajεn−j + u∗� −K

�1�
j−1�u+ u∗�

]
dFj�u�

= I
(�ajεn−j� ≤ 1� �Xn�j+1�∞� ≤ 1

)
Xn�j+1�∞

×
[ ∫

�u�≤1
�ajεn−j − u�K�2�

j−1�u∗ + u∗∗�dFj�u�

+
∫
�u�>1

(
K

�1�
j−1�ajεn−j + u∗� −K

�1�
j−1�u+ u∗�

)
dFj�u�

]

for appropriate u∗� u∗∗. Consequently,

�Un�j�1� ≤ CI
(�ajεn−j� ≤ 1� �Xn�j+1�∞� ≤ 1

)�Xn�j+1�∞�(�ajεn−j� + bj
)
�

where

bj = aαjI�0 < α < 1� + aj�− log aj�I�α = 1� + ajI�1 < α < 2��(28)



1594 T. HSING

The same arguments lead to

�Un�j�2� ≤ CI
(�ajεn−j� > 1� �Xn�j+1�∞� ≤ 1

)× �Xn�j+1�∞��
�Un�j�3� ≤ CI

(�ajεn−j� ≤ 1� �Xn�j+1�∞� > 1
)(�ajεn−j� + bj

)
�

�Un�j�4� ≤ CI
(�ajεn−j� > 1� �Xn�j+1�∞� > 1

)
�

Thus, it follows again from (25) and (26) that, for j ≥ 2,

EU2
n�j� k ≤ Caαj

∞∑
i=j+1

aαi � k = 1� 2� 3� 4�

and consequently, for all j,

EU2
n�j ≤ Caαj

∞∑
i=j+1

aαi �(29)

Next observe that

Vn�j =
∫ [(

Kj−1�ajεn−j� −Kj�0�
)

− (
Kj−1�ajεn−j + u� −Kj�u�

)]
dFj+1�∞�u��

By the Cauchy-Schwarz inequality,

EV2
n�j ≤ EU2

n�j ≤ Caαj

∞∑
i=j+1

aαi �(30)

Similarly one deduces

EW2
n�j ≤

∫ [(
Kĵ�u� −Kĵ�v�

)
− (

Kĵ�u+w� −Kĵ�v+w�)]2
dFj�u�dFj�v�dFj�w��

Using this and arguments similar to those in dealing with Un�j, it is readily
shown that

EW2
n�j ≤ Ca2α

j �(31)

As in (21),

cov�Un�j� Un′� j′ � = cov�Vn�j� Vn′� j′ � = cov�Wn�j� Wn′� j′ � = 0 if n−j �= n′−j′�

Hence,

var�SN −AN�1� + var�AN�1 −AN�2� + var�AN�2 −TN�

≤ 2
N∑
n=1

∞∑
j=1

N−n+j∑
j′=j

�EU2
n�j�1/2�EU2

n′� j′ �1/2
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+ 2
N∑
n=1

∞∑
j=1

N−n+j∑
j′=j

�EV2
n�j�1/2�EV2

n′� j′ �1/2

+ 2
N∑
n=1

∞∑
j=1

N−n+j∑
j′=j

�EW2
n�j�1/2�EW2

n′� j′ �1/2�

where we write n′ = n− j+ j′ and it follows readily from (29), (30), (31) and
Lemma 5 that

var�SN −AN�1� + var�AN�1 −AN�2� + var�AN�2 −TN� = o�N3−αβ��

Thus, (13) is proved.
Next we show (14). Write

var�TN� =
N∑

n1=1

N∑
n2=1

n1∧n2−1∑
i=−∞

{
E
[
K∞�an1−iε1�K∞�an2−iε1�

]
(32)

−E
(
K∞�an1−iε1�

)
E
(
K∞�an2−iε1�

)}
�

Clearly we can assume without loss of generality that K∞�0� = 0, which we
do from this point on to simplify notation. Fix a δ and consider

N∑
n1=1

N∑
n2=1

n1∧n2−1∑
i=−∞

E
[
K∞�an1−iε1�K∞�an2−iε1�I��ε1� ≤ δ�]�

Since K∞ has a bounded derivative,

E
[
K∞�an1−iε1�K∞�an2−iε1�I��ε1� ≤ δ�

]
≤ Can1−ian2−i�

Now

N∑
n1=1

N∑
n2=1

n1∧n2−1∑
i=−∞

an1−ian2−i =
N−1∑
i=−∞

(
N∑

n=�i+1�∨1

an−i

)2

=
N∑
j=1

(
j∑

i=1

ai

)2

+
∞∑
j=1

(
N+j∑
i=j

ai

)2

�

which is clearly O�N� if β > 1. Consider the case β < 1, for which β must
be in �1/2� 1� by the assumption αβ ∈ �1� 2�. It is straightforward to conclude
that

N∑
j=1

(
j∑

i=1

ai

)2

= O�N3−2β� = o�N3−αβ�
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and that

∞∑
j=1

(
N+j∑
i=j

ai

)2

≤ C
∫ ∞

0

(�N+ x�1−β − x1−β)2 dx

= CN3−2β
∫ ∞

0

(�1 + x�1−β − x1−β)2 dx

= O�N3−2β� = o�N3−αβ�
since, by the Taylor expansion, ��1+ x�1−β − x1−β�2 ≤ Cx−2β and 2β > 1. As a
result,

N∑
n1=1

N∑
n2=1

n1∧n2−1∑
i=−∞

E
[
K∞�an1−iε1�K∞�an2−iε1�I��ε1� ≤ δ�] = o�N3−αβ��(33)

Next, it is straightforward to show that, for any constant a ∈ �0�1�,
EK∞�aε1� = aαI�0 < α < 1� + a�− log a�I�α = 1� + aI�1 < α < 2��

Computations similar to those leading to (33) show that

N∑
n1=1

N∑
n2=1

n1∧n2−1∑
i=−∞

E
(
K∞�an1−iε1�

)
E
(
K∞�an2−iε1�

) = o�N3−αβ��(34)

To show (14), by (32)–(34), it suffices to show that

lim
δ→∞

lim
N→∞

N−�3−αβ�

×
N∑

n1=1

N∑
n2=1

n1∧n2−1∑
i=−∞

E
[
K∞�an1−iε1�K∞�an2−iε1�I��ε1� > δ�] = ω2�

(35)

Take a large δ and approximate the density of ε1 by Cα�u�−α−1 for �u� > δ [cf.
Samorodnitsky and Taqqu (1994), (1.2.9)]. Thus,

N∑
n1=1

N∑
n2=1

n1∧n2−1∑
i=−∞

E
[
K∞�an1−iε1�K∞�an2−iε1�I��ε1� > δ�]

≈ Cα

N∑
n1=1

N∑
n2=1

n1∧n2−1∑
i=−∞

∫
�u�>δ

K∞�an1−iu�K∞�an2−iu��u�−α−1 du

= Cα

N−1∑
j=−∞

∫
�u�>δ

(
N∑

n=�j+1�∨1

K∞�an−ju�
)2

�u�−α−1 du

= Cα

N∑
j=1

∫
�u�>δ

(
j∑

i=1

K∞�aiu�
)2

�u�−α−1 du
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+Cα

∞∑
j=1

∫
�u�>δ

(
N+j∑
i=1+j

K∞�aiu�
)2

�u�−α−1 du

= AN +BN�

Now approximating the sums in An by integrals and performing changes of
variables,

AN ∼ Cα

∫ N

x=1

∫
�u�>δ

(∫ x

y=1
K∞�y−βu�dy

)2

�u�−α−1 du

= CαN
3−αβ

∫ 1

x=1/N

∫
�u�>δ/Nβ

(∫ x

y=1/N
K∞�y−βu�dy

)2

�u�−α−1 dudx�

Thus by (i) of Lemma 4 and Lebesgue’s dominated convergence theorem,

AN ∼ CαN
3−αβ

∫ 1

x=0

∫ ∞

u=−∞

(∫ x

y=0
K∞�y−βu�dy

)2

�u�−α−1 dudx�(36)

Similarly by (ii) of Lemma 4 and Lebesgue’s dominated convergence theorem,

BN ∼ CαN
3−αβ

∫ ∞

x=0

∫ ∞

u=−∞

(∫ 1+x

y=x
K∞�y−βu�dy

)2

�u�−α−1 dudx�(37)

Hence (35) follows from (36) and (37). This completes the proof of (14).
Finally we show the weak convergence of �N in � �0�1�. For that it suffices to

show tightness in � �0�1� and convergence of finite-dimensional distributions.
By (13) and (14),

E�N−�3−αβ�/2S�Nt��2 = 1
N3−αβES

2
�Nt� =

�Nt�3−αβ
N3−αβ

1
�Nt�3−αβE�S2

�Nt��

≤ Ct3−αβ for all t ∈ �0�1��
Since αβ < 2, tightness of �N in � �0�1� follows readily from Theorem 12.3 of
Billingsley (1968).

Next we show that the finite-dimensional distributions of �N converge to
multivariate Gaussian. In view of (13) and (14), it suffices to consider the
convergence of the finite-dimensional distributions of T�Nt�, 0 ≤ t ≤ 1. Let
MN be a sequence of positive integers such that MN ∼ Nγ for some 1 < γ <
1/�2�1 − β��. Note that β > 1/2 since αβ > 1 and α ∈ �0�2�. Write

TN = TN�1 +TN�2�

where

TN�1 =
N∑
n=1

MN∑
j=1

(
K∞�ajεn−j� −EK∞�ajεn−j�

)
�

TN�2 =
N∑
n=1

∞∑
j=MN+1

(
K∞�ajεn−j� −EK∞�ajεn−j�

)
�
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The same argument used in deriving (14) shows that

var�TN�2� = o�N3−αβ�
and by (14) it suffices to focus on TN�1. To do that we first write

TN�1 =
N∑
n=1

n−1∑
k=n−MN

(
K∞�an−kεk� −EK∞�an−kεk�

) = N−1∑
k=1−MN

ηN�k�

where

ηN�k =
�k+MN�∧N∑
n=�k+1�∨1

(
K∞�an−kεk� −EK∞�an−kεk�

)
�

Clearly, ηN�1−MN
� � � � � ηN�N−1 are independent random variables with zero

means. Hence the convergence of finite-dimensional distributions of T�Nt��1 to
mutivariate Gaussian will follow if we show that Lindeberg’s condition holds
for the ηN�k/

√
var�TN�, namely that for each δ > 0,

lim
N→∞

1
var�TN�

N−1∑
k=1−MN

E
[
η2
N�kI

( ∣∣ηN�k

∣∣ > δ
√

var�TN�)] = 0�(38)

It is easy to show that

�k+MN�∧N∑
n=�k+1�∨1

∣∣EK∞�an−kεk� −K∞�0�∣∣ ≤ C
MN∑
j=1

bj�

where bj is as defined in (28) and similarly if �εk� ≤ some ζ, then

�k+MN�∧N∑
n=�k+1�∨1

∣∣K∞�an−kεk� −K∞�0�∣∣ ≤ Cζ
MN∑
j=1

aj�

Hence, by the triangle inequality, if �εk� ≤ ζ, then

∣∣ηN�k

∣∣ ≤ C
MN∑
j=1

(
bj + aj

)
�

which, in all cases of α, is o�√N� if ζ is fixed. As a result, if
∣∣ηN�k

∣∣ >
δ
√

var�TN� � √
N, then it must be that �εk� > ζN for some ζN → ∞. Then (38)

follows again from arguments similar to those used in deriving (14). This com-
pletes the proof of Lindeberg’s condition and hence the proof of Theorem 2. ✷

Although we assumed that ε1 is symmetric α-stable and that K is bounded,
these conditions can be considerably relaxed since they are applied essentially
through the following two properties:

1. The asymptotic relations (25) and (26) hold approximately for Z = ε1.
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2. For each j ≥ some finite jo, the convolutions Kj must have two derivatives
which are bounded or at least have some high enough moments with respect
to the distribution Fj+1. In particular, this should allow us to properly
bound quantities such as E1� � � � �E4 in the proof of Theorem 1.

Needless to say, the details pertaining to how to achieve these in different
contexts depend on the intrinsic nature of the problems.

Acknowledgments. I am grateful to the referee for a number of helpful
comments and suggestions.
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