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A FUNCTIONAL LIL FOR SYMMETRIC STABLE PROCESSES

BY X1A CHEN, JAMES KUELBS! AND WENBO L'

Northwestern University, University of Wisconsin and University of Delaware

A functional law of the iterated logarithm is obtained for symmet-
ric stable processes with stationary independent increments. This extends
the classical liminf results of Chung for Brownian motion, and of Taylor
for such remaining processes. It also extends an earlier result of Wichura
on Brownian motion. Proofs depend on small ball probability estimates
and yield the small ball probabilities of the weighted sup-norm for these
processes.

1. Introduction and main results. Throughout the paper we assume
{X(¢):t = 0} is a symmetric stable process of index « € (0, 2] with station-
ary independent increments. Furthermore, we always assume the process is
taken to have sample paths in D[0, c0), and X (0) = 0 with probability 1. For
t > 0,n > 1, define M(t) = supy—,; | X(s) | and

1.(t) = M(nt)/(can/LLn)"",

where the constant 0 < ¢, < oo is given by

(1.1 Co=— 11151+ £“log P< sup | X(s) |< s)

0<s<1

and LLn = max(1,log(logn)). The existence of the limit defining ¢, in (1.1)
can be found in Mogul’skii (1974). In an earlier paper, Taylor (1967) obtained
strictly positive, finite bounds for the liminf and limsup of the right-hand side
of (1.1), and there is also a variational representation of ¢, to be found in
Donsker and Varadhan (1977). When « = 2 the process is Brownian motion,
and it is well known that ¢, = 72/8 provided {X(¢):¢ > 0} is normalized to
have E(X?(1)) = 1. If « € (0, 2), the constant c, is also clearly X-dependent,
but due to the scaling property of { X (¢):¢ > 0} it only affects ¢, in multiplica-
tive fashion. The paper by Samorodnitsky (1998) studies self-similar stable
processes with stationary increments, and when they are also independent it
recovers the Taylor (1967) result mentioned above. Without this independence,
the upper and lower bounds in Samorodnitsky differ by a power of log(1/¢),
as e decreases to zero.
If @ = 2, then it was shown by Chung (1948) that

(1.2) liminf7n,(1)=1 a.s.,
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A FUNCTIONAL LIL FOR STABLES 259

and for general a € (0, 2], Taylor (1967) showed that
(1.3) liminf M(n)/(n/LLn)Y* =B, a.s.

where O = B, < oo. Of course, once one knows (1.1) holds with ¢, € (0, o) then
B, = = c¥/®. This follows from (1.6) below. The equality in (1.3) is also derived in
Donsker and Varadhan (1977) as an application of their functional law, and
B, is defined in terms of the rate function for large deviations of the Markov
process {X(t):¢ > 0}. Of course, if @ = 2, and in the definition of 71,(¢), M(-)
is replaced by X(-), then the rates of convergence in the functional LIL of
Strassen initiated by Csaki (1980) and de Acosta (1983) generalize (1.2) con-
siderably, and involve the entire function 1,(t), 0 < ¢ < 1 [see Kuelbs, Li and
Talagrand (1994) for further details and references]. Another possible exten-
sion of (1.2) or (1.3) is to examine the functional cluster set C({n,(-)}) in a
weak topology. This was done when a = 2 by Wichura (1973) in an unpublished
paper. The proof in Wichura (1973) obtains a related cluster set for the first
passage time process via properties of Bessel diffusions. Then the cluster set
for the maximal process {M(t):¢ > 0} is obtained from the fact that the first
passage time process is the inverse of {M(¢):¢ > 0} and various continuity
considerations.

Our main result studies the cluster set C({n,}) for all « € (0, 2], and recov-
ers the related fact in Wichura (1973) when a = 2. Our proof is quite different,
and we study the maximal process {M(¢):t > 0} directly. Of course, our re-
sults then apply to the first passage time process by reversing the steps in
Wichura (1973). See the remark following (1.6).

To describe these results, denote by .# the space of functions f:[0, c0) —
[0, oo] such that £(0) =0, f is right continuous on (0, c0), nondecreasing and
lim, . f(¢) =00
Let

K, = {fe%:/ooof‘“(t)dtg 1}

and endow .# with the topology of weak convergence, that is, pointwise con-
vergence at all continuity points of the limit function.

The topology of weak convergence on .# is metrizable and separable. This
can be seen as follows. Let .#” denote the functions g:(—o0, c0) — [0, 1] with
g(t) = 0 for ¢ < 0, right continuous on (0, co), nondecreasing, and such that
lim, ,, g(t) = 1. Let A(s) = s/(1 + s) for s € [0, oo], with co/oco understood to
be one, and for f € .# define

V(NG =11 = {)\(f(t)) giig

Then the map V: f — f* is one-to-one from .# onto .#', and we define a metric
d on .# by setting d(f, g) = L(f*, g*), where L is Lévy’s metric on .#/, that
is,

L(f*, g)=inf{le>0:f*(t—e)—e<g"(t) = f*(t+ &)+ efor —oo <t < oc0}.
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Now lim, d(f,,f)=0for f,, f € .« iff lim, L(f%, f*) = 0, and this holds iff,
1.4) lirrln fa(t)=f*()

for all ¢ in the continuity set of f*. Taking the usual topology on [0, co], and
the definition of the map ¥:f — f*, we see that (1.4) holds for all ¢ in the
continuity set of f* if and only if lim,, f,(¢) = f(¢) for all ¢ in the continuity set
of f. Since Lévy’s metric makes .#” a complete separable metric space, we have
(«#,d) a complete separable metric space, with d-convergence equivalent to
weak convergence on ./Z.

If {f,} is a sequence of points in .#, then C({f,}) denotes the cluster set
of {f,}, that is, all possible subsequential limits of {f,} in the weak topology.
If A C .7, we write {f,}—A if {f,} is relatively compact and C({f,}) = A
in the weak topology. Then the following hold.

THEOREM 1.1. Let {X(t):t > 0} be a stationary independent increment

symmetric stable process of index o € (0,2] with sample paths in D[0, co)
and such that X(0) = 0. Then

(1.5) P(n,}—»K,)=1.

COROLLARY 1.1. Let {n,} be as in Theorem 1.1. Then

(1.6) P(limninfnn(l) - 1) ~1.

REMARK. Let D{[0, co) denote the nondecreasing functions which vanish
at zero, are right continuous on (0, co) and have left limits on (0, 00). If f €
D:{[O, 00), we define

_ _ O, 1fy = 07
Ty = {inf{t: f@) >y}, ify>0,

where inf ¢ = co. Then & maps D[0, 0o) into D{[0, ) and .7 f is a right
continuous inverse of f in the sense that .7 (7 f) = f. Furthermore, looking
at the Lévy metric, and considering compact subintervals of [0, co), we see
{f .} converging weakly to f in .# implies {7 f,} converges weakly to 7 f
in D}[0, 00). Of course, the weak topology on D{[0, o) can be described as
for .# with .#” expanded to include functions g with lim,_,  g(¢) < 1. We also
have

F(K)={Ff:feK,)= {g e Lo, oo):/ooo u dg(u) < 1},
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where dg(u) denotes integration with respect to the measure on [0, c0)
given by the nondecreasing function g. Hence (1.5) implies P({% (n,)}—
J(K,)) =1. Now

(F1,)(s) = inf{t:m,(¢) > s}
= inf {t: M(nt) > s(c,n/LLn)"*}

= %FM(s(can/LLn)l/a).

Letting m = m, = (c,n/LLn)"* we get n ~ c;'m®LLm, and hence as
n — 0o, F,(-) ~ FM(m(-))/(c;'m*LLm). Since ¥ M is increasing with
the values of {m,:n > 1} within distance 1 of any large integer, we may
replace m = m, by the greatest integer less than or equal to m, when we
investigate the asymptotic behavior of {7 M(m(-))/c;'m*LLm)}. Thus the
following corollary holds.

COROLLARY 1.2. Let N(0) = 0 and N(s) = inf{t: M(¢) > s} for s > 0
denote the first passage time process for {X(t):¢ > 0}. Then {N(s):s > 0} =
{7 M(s):s > 0}, and with probability 1,

{N(m(-))/(c;lm“LLm)}:1—»{g e D{|0, o0): foo u*dg(u) < 1}
= 0
in the weak topology.

There are various applications of the functional LIL given in Theorem 1.1,
very much in the same spirit as for Strassen’s LIL. For example, we know
from Corollary 1.1 that with probability one lim sup, 1,,(1) = 1, but how fast
does 71,,(-) get away from the zero function, say over the interval [0, 1], or how
many samples 71,(1),n < ¢ fall in the interval [0, ¢], ¢ > 1? One measure of
these quantities is the weighted occupation measure

. () = [ Toa(n(Do(s/0) ds,

where ¢ > 1, 6(-) maps (0,1] into (0,00) with 6(1) = 1,n,(x) = M(su)/
(cu8/LLs)Y* for s > 0,u > 0, and ny(u) = 0 for all z > 0. As the contin-
uous parameter s converges to infinity, the family of functions {7(-)} satisfies
(3.1), (3.2) and (3.3). The analogue of (3.3) follows immediately from the case
n — oo through the integers, as there can only be more cluster points when
s converges to infinity continuously. Furthermore, both (3.1) and (3.2) follow
in the continuous parameter case from the proofs in Propositions 3.2 and 3.1,
respectively.

Beyond the properties already mentioned for 6, we will also assume 6
satisfies

(1.8) s > s'/%/6(s) is increasing on (0, 1],
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1
(1.9) / 6%(s)/s ds = oo,
0
and the function
(1.10) h(s) = 6%(s) + /1 0°(w)/u du

maps (0, 1] onto [1, o) in continuous and one-to-one fashion. For example,
suppose (1.8) and (1.9) hold, and 0 is continuous and decreasing on (0, 1] with
0(1) = 1. Then A(s) is strictly decreasing and continuous on (0, 1] with range
[1, 00). The functions 6(s) = 1, 6(s) = (log(e/s))'/*, and 6(s) = 1/(log(e/s))"/*
all satisfy the conditions formulated in (1.8), (1.9) and (1.10). With this nota-
tion we now can state the following theorem. Its proof is in Section 4.

THEOREM 1.2. Let 0:(0, 1] — (0, c0) satisfy 0(1) = 1, (1.8), (1.9) and that
h(s) as defined in (1.10) is continuous and one-to-one on (0, 1] into [1, c0).
Then, with probability 1,

(1.11) limsup WV, (¢)=1-s,,

t—00

where s = s, is the (unique) solution to h(s) = c*,c > 1.

ExaMPLES. If 6(s) = 1 on [0, 1], then A(s) = 1 —logs and A(s) = c¢* has
solution s, = exp(—(c* — 1)) for ¢ > 1. Thus (1.11) implies that with probabil-
ity 1,

t
lim sup t—lfo Tjp. (m(1)) ds = 1 — exp (—(¢* — 1))

t—o00

for each ¢ > 1.

If 6(s) = (log(e/s))"* on (0, 1], then for 0 < s < 1,h(s) = 1 — 2logs +
(log 5)?/2. Solving h(s) = ¢*,0 < s < 1 and ¢ > 1, we get s, = exp(2 —
2/1+ (c* — 1)/2)), and hence with probability 1,

limsup ¢! /Ot I, c](ns(l)(log(et/s))l/“) ds=1-exp(2— 2\/1 + (c*=1)/2)

t—00

for ¢ > 1.

If 6(s) = log(e/s))"** on (0, 1], then for 0 < s < 1, A(s) = (1 —log s)~! +
log(1 — log s), and h(s) is continuous and strictly decreasing on (0, 1] with
h(1) = 1. Thus A(s) has a unique continuous solution s, and Theorem 1.2
applies. However, an explicit formula for the value of s, is not immediate in
this case.

Another gauge of the rate of escape is the quantity ¢! fot Lo, 4(ni(s/t)) ds,
which is similar to W (¢) (as ¢ — o00), provides 6(s) = s'/*. With this choice of
0, (1.8) applies, but (1.9) fails and A(s) = 1 for all s € (0, 1]. Thus Theorem 1.2
is not applicable, but the techniques for its proof imply

. 1 [t 1 if c>1
1 _ ) — 4
(112 lim sup J, Tro.ctna(s /0 ds = {c“, if 0<c<1.
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The rate of escape with respect to the L? norms is given by the following
theorem, whose proof is in Section 4.

THEOREM 1.3. Let {X(¢):t > 0} be as above and suppose 0 < p < co. Then,
with probability 1,

1 1
] ] p — p —
(1.13) hgglffo In,(w)| du_}g&fo If(w)|P du = 1.

REMARK. Since 7,(-) is increasing, the analogue of (1.13) for the sup-norm
on [0,1] follows immediately from (1.6).

2. Probability estimates. The proof of Theorem 1.1 depends on the prob-
ability estimates obtained in this section. The first result is an Anderson-type
inequality for symmetric a-stable measures. It is a known fact, but we give a
proof for completeness.

LEMMA 2.1. Let {X(¢):t € T} be a symmetric stable process of index a €
(0, 2] such that T is a countable set and P(sup,.r|X(¢)| < oo) = 1. Then for
all A > 0, and all real numbers x,

(2.1) P(sup|X(t)+x| §A> < P<sup|X(t)| 5A>-
teT teT

PrOOF. The proof of (2.1) follows from Anderson’s inequality if « = 2. If o €
(0, 2), then by Lemma 1.6 of Marcus and Pisier (1984), we can find probabil-
ity spaces (Q, .7, P) and (O, &, P) and a real-valued stochastic process {Y (¢):
t € T} on (O x 0,7 x F,P x P) such that the processes {Y(¢):
t € T} and {X(¢):t € T} have the same distribution and for each fixed w € (),
the stochastic process {Y (¢, w,-):¢t € T} is a symmetric Gaussian process.
Hence for A > 0 and all x real, the @ = 2 case implies

(2.2) P(sup [Y(t, w, )+ x| < )\> < 13<sup Y (t, w, )| < A).
teT

Since (2.2) holds for all w € (), Fubini’s theorem and (2.2) combine to give
(2.1). O

PROPOSITION 2.2. Fix sequences {t;}*,{a;}i*, and {b;}", such that 0 =

to<ti<---<thpbanda; <b <ayg<by<---<a, <b,,. Then

lim sup &*log P(a;e < M(¢;) <bje,1<i <m)<—c, > (t; —t;_1)/b5.

e—0+ i=1
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PROOF. Let A; = {sup, .,
easy to see

X(s)| < bye} fori = 1,...,m. Then it is

s

(2.3) Pla;e < M(t;)) <bje,1<i<m)< P( AL-).
=1

1

Furthermore, we have

m m—1
P(NA)=[P( N A, suwp |X(s)-X(t, 1) +x]
i=1 R i=1 t,_1<s<t,,
Sbpe| X(ty-1) = x>dPX(tm1)(x)

=/RP< sup | X(s) — X(t,-1)+x]|=< bmg)

m-1=8<tp,

m—1

XP( N A | X(t,_1) = x>dPX(tm1)(x)’

i=1

since sup, ., |X(s)— X(¢,,_1)+x|is independent of X(¢,,_;) and Nt A,
by the independent increments property of X (¢).

Now Lemma 2.1, and that the sample paths are in D[0, co), together imply

P(t sup |X(s)— X(t,,_1) +x| < bms>

m-1=8<tp,

< P<t sup | X(s)— X(t,,_1)| < bmg)

m-1=S<tp
_ P( sup |X(8)| < bye/(t), — tm_o”“),
0<s<1

where the equality follows from the scaling property of {X(¢):¢ > 0} and the
homogeneity of the increments. Thus

P( (Wﬁ AL) = P<mﬁl Al)P< sup |X(S)| = bms/(tm - tm—l)l/a>a
i=1 i=1

0<s<1
and iterating the above estimate, along with (2.3), implies

lim sup &% log P(a;e < M(t;) < bje,1 <i <m)

e—>0*t

< > limsup &*log P( sup | X(s)| < %)
i—=1 &—>0F 0<s<1 (ti - ti—l) /e

=—c, ) (t; —t;_1)/bf,
iz

where the equality follows from (1.1).
Thus Proposition 2.2 is proved. O
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To obtain a reverse estimate, we need the following lemma.

LEMMA 2.3. Given 6 > 0,
(2.4) lir(r)l+ e“log P(M(1) < &,|X(1)| < €6) = —c,.

REMARK. From (2.4) one can see that for given positive numbers a < b and
6>0,

lim & log P(ae < M(1) < be, | X(1)| < £8) = —c, /b".

e—0*

PrROOF OF LEMMA 2.3. If 6 > 1, then (2.4) follows immediately from (1.1).
Hence assume 6 € (0, 1), and suppose 7' = {¢,} is a countable dense subset of

(0,1). Let {Y(¢):¢ € T} be a stochastic process on (Q x O, .7 x .Z, P x P) as
in the proof of Lemma 2.1. Then

P(M(1) <e,|X(1)| < &d)

=lim P( sup |X(¢;) <&, |X(1)| = 86)

1<j<n

=limE, (Pw,< sup |Y(¢;, w, o) <& |Y(1, 0, 0')| < sS))

1< j<n
>limE, (Pw,< sup |Y(¢;, 0, o) <& |Y(1, 0, 0)+ 6] < 85))
n 1<j<n

for all 6 € R, where the inequality is due to Anderson’s inequality applied
conditionally to the Gaussian probability in R**1; that is, we are translating
only the (n + 1)st coordinate. Continuing with the above we have for 6 € R
that

P(M(1) <e,|X(1)| < &d)

> (P x p/)(sup Y(t 0, 0) <Y1, 0,0)+0| < 88)
T
= P(sup|X(t)| <& |X(1)+ 6| =< 85)
T

= P<M(1) < |X(1)+ 0] < ea>.

Thus
[1/8]
P(M(1)<e)< > P(M(1)<e|X(1)+ jed| < &d)
J=11/8]
< (2[1/8]+ DP(M(1) < &, |X(1)] < &5).

Hence the above estimate implies (2.4).
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PROPOSITION 2.4. Fix sequences {t;}", {a;}ry, {b;}iro such that 0 = t, <
ty<--<thpanda; <b; <ay<by<---<a, <b,,. Then, for every vy > 0,
limiglf e“log P(a;e < M(t;) <bje,1 <i<m,|X(t,)| <b,,v¢)

=t
b

(2.5) > —c, i
i=1

Proor. Take a small 6 > 0 such that § < y and a;(1 + 8) < b;(1 — 8) for
all 1 < i < m. Define

Bi = {ais < sup |X(S)| < bl‘g, |X(tl)| < biﬁs}
ti_1=s=<t;

fori=1,...,m. Then

la;e < M(t;) <bie,1<i<m,|X(¢,) <b,ys} 2 () B;.
i=1

On the other hand, iffor i =1, ..., m,
A; ={a;(1+8)e< sup |X(s)— X(¢_1)| <b;(1—-30)s,

ti_1=s=t;

| X(;) — X(t; 1) < (b; — b;_1)8e},

then
ai(l + 6)8 bl(l — 5)8 (bL — bi—1)88
P(A)=P| —"— < M(1 X1 -t
) ((ti —t; )M = M= (ti —ti )V X = (6=t )l
and

m m—1 m—1 m

i=1 i=1 i=1 i=1
By the remark after Lemma 2.3 (2.5) follows from (2.6), and the proposition
is proved. O

As a direct consequence of our Proposition 2.2 and Proposition 2.4, we have
the following small ball estimates for X(¢) under weighted norms. The case
a = 2 was given in Mogul’skii (1982) and its connection with Gaussian Markov
processes was studied in Li (1998).

PROPOSITION 2.5. Let {X(¢):t > 0} be a symmetric stable process with ho-
mogeneous independent increments, sample paths in D[0, o), and parameter
a € (0,2]. Let p:[0,1] — [0,00) be a bounded function such that p(t)* is
Riemann integrable on [0, 1]. Then

1
liII(l) &“log P( sup |p(8) X ()| < a) = —ca/ p(H)* dt.
£—> 0

0<t<1
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The proof of Propositions 2.2 and 2.4 using Gaussian symmetrization is a
direct and easy path, and was our first approach. Subsequent study revealed
that the 1974 paper of Mogul’skii contains results which are related to these
propositions. However, we chose to retain our line of proof here as the constant
¢, 1s not identified precisely there, and certain steps of the proof are not clear
to us.

3. Proof of Theorem 1.1 and Corollary 1.1. The proof of Theorem 1.1
follows immediately from the following three facts:

(3.1) P(C({n,}) C K,) =1,
(3.2) P({n,} is relatively compact in .#) =1
and

(3.3) P(K,cC({n,}) =1

Of course, the topology on .# is that of weak convergence, which is separable
and metric.

In order to prove (3.2) we first observe that a subset F of .# is relatively
compact if for every I' > 0 there exists t, = ¢y,(I") such that ¢ > ¢, implies
inf,.p f(¢) > I'. This characterization of relative compactness in .# is imme-
diate from the homeomorphism of .#" and .#.

PrOPOSITION 3.1.  P({m,} is relatively compact in .#) = 1.

PROOF. Let n, = 2* and observe that for n,_; < n < n,, and all k suffi-
ciently large,
(3.4) 0a(t) = M, (0t/0) (0 LLn/(RLL)) =, (¢/2).
Hence for I' > 0, (3.4) implies
(3.5)  P(m,(¢) > I eventually in n) > P(n,,(¢/2) > I' eventually in k).
Rescaling, and applying (1.1), we have for all % sufficiently large that
P(n,,(¢/2) = T) = P(M(1) = T(2¢,/(tLLny))") < exp { — (¢LLn;)/(4T")}.

Hence if ¢t > 81'%, we have

> P(n,,(t/2) <T) < o,
k>1

and the Borel-Cantelli lemma implies P(7,,(¢/2) < I' i.o.) = 0. Thus (3.5)
implies P(n,,(¢) > T eventually in n) = 1 for ¢ > 8['*. Letting I' / oo through
a countable set implies (3.2), and the proposition is proved. O

ProprosiTION 3.2. P(C({n,}) C K,)=1
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Proor. Fix f € .# N K¢, and hence

(3.6) [ Ty de > 1.

Let t; = sup{t: f(¢) < oc}. Then ¢} = 0 negates (3.6), so t; = co or 0 < ¢} < oo.
Suppose (3.6) holds. Since f(¢) = oo for ¢ > ¢} we have

t; 00
3.7 /0 (f()dt= /0 (f(¥)*dt>1.
Furthermore, since f is increasing and nonnegative, the integrals in (3.7) exist
as improper Riemann integrals. Hence there exist points 0 = ¢, < ¢; < --- <

t, <ty and & > 0 such that 0 < f(¢;) <--- < f(¢,) and
(3.8) Z(f(tj) + 8)7a(tj — tj—l) > ]_
j=1

Furthermore, we may assume the ¢ ;’s are continuity points of f. That is, if ¢;
* such that ¢; < t’;-, t’;- is a

is not a continuity point, then we choose a point ¢ ¥
continuity point of / and for ¢’ sufficiently close to ¢; we have
(F@E) +0)*(t; —t; 1)+ (F(£j01) +8) (¢4 — 1)

> (f(t;)+8)(t; —tj 1)+ (f(j41) +0)*(tj11 — t;) — B/(2r),
where, by (3.8),

(3.9)

B=—-1+>(f(t;)+8)(t;—t;1)>0.

Jj=1

The inequality in (3.9) holds since f is right continuous on (0, c0) and con-
tinuous everywhere except possibly a countable set. Modifying each ¢; in this
way (starting with ¢;, then ¢,, etc. whenever necessary), we see the ¢ ;’s can be
taken to be continuity points of f and (3.8) holds.

With 6 > 0 as in (3.8) we define

Ny={ged:f(tj))-0<g(t;)<f(tj))+d,1=<j=<r}
Then for g € N,

(310) Y (8(t)) () —t; 1) = S (F(E) 48 (e, — 1, 1) > 1,
j=1 j=1

and since [, (f(¢))"*dt exists as an improper Riemenn integral, with refine-
ments of a partition leading to an increase of the partial sums in (3.10) (they
are lower sums), we have N, N K, = &. Rescaling, applying Proposition 2.2,
and taking y > 0 such that

eo PN +8) "ty — 15 1)~y > (1+7)ea.
j=1
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we have for n sufficiently large that
P(n, € Ny) = P( NA{M(nt;)/n"* € (ca/ LLR)Y*(f(t,) = 8, f(2;) + 5)})
j=1
(3.11) < exp{ — (LLn/c )<c Z fimti 'y>}
B ¢ ajzl (f(tj)+5)a
<exp{—(1+vy)LLn}.
Thus if n;, = exp{k/L*k}, (3.11) and the Borel-Cantelli lemma implies
(3.12) P(n,, € Nyio.)=0.

The above argument shows K¢ is open, and since .# is separable there are
{f;} dense in K, such that K c U5, N . Hence

(CUm,HNKE £@} c U {CUn, HN Ny, £2),

j=1
and (3.12) implies
(3.13) P(C({m,,) C K,) =1

If np_y < n < n; it is useful to write 7,(t) = n,,(nt/n,)(n,LLn/

(nLLny))"*. Then f € C({n,}) implies f € C({n,,}) since limn,/n; ; = 1.
Thus (3.13) implies (3.1) and the proposition is proved. O

ProposITION 3.3. P(K,cC C({n,})) =1

PROOF. Let A(f) = [, (f(¢))"dt. Suppose A(f) < 1and N is an arbitrary
weak neighborhood of f. Since ./ is metrizable in the weak topology, there
is a countable neighborhood base at each point of .#, and hence f € C({n,})
with probability 1 provided

(3.14) P(n, € N;io)=1.

Since K, has a countable dense set, we then have every point of K, in C({n,})
with probability 1 provided (3.14) holds for f € K ,,.

To establish (3.14) for each f € K, our first step is to show we may actually
assume A(f) is strictly less than 1. To do this we define ¢} = sup{¢: f(¢) < oo}
as before, and consider the two possibilities tp = o0 and 0 < tp < oo.

If t’; = oo, then a typical neighborhood of f is of the form N = (\;_; T’
where 0 < ¢; <--- < ¢,

(3.15) Uyj=A{g:f(t)—v<sgty)<ri;)+v}
and vy > 0. Hence if we define

- 0, t=0,
f(t):{f(t)+y/4, 0<t<oo,

J
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then f > f, f € N, and A(f) < 1. Defining Nf =N} fj, where
Dy={g:f(t;)—v/2 < glt)) < f(t;) +v/2},

we see N C N, and (3.14) will hold provided P(n, € N i.0.) = 1.
The other case is 0 < ¢} < oo. Then a typical neighborhood of f is of the

form
vi-(Ar)o ()
j=1 k=1

where 0 =¢, <t <--- <t <t} <t <+ <t is defined as in (3.15)
and R, , ={g:g(t,,) > m,}. Now we can define

0, t=0,
}F(t)— f()+vy/4, O0<t< (t,+t;§)/2,
TV 1+1/2, (t,+15)/2 <t <t +]1,

00, t>t,,s+ 1,
and set

Nz(mfj)m<m Rk>

j=1 k=1

where

fj ={g: f(tj) —v/2 < g(t;) < f(tj)+ v/2},
Rr-‘rk = {g l < g(tr+k) < l+1}
and I > f((¢, + tj})/Z) + v/4 is sufficiently large so that

B (t,+£1)/2

A(f) = fo (F@O)+v/4) " dt+ (b + 1 (8 +17)/2)/1° < 1.

Then f € N C Ny, A(f) < 1. Hence in both cases it suffices to verify (3.14)
with f € Ny and A(f) < 1.

Assuming A(f) < 1, we consider only the case ¢ = oo (the other case is
much the same). Then N, = N, _;I';, where I'; is given in (3.15). To verify
(3.14) we take n; = exp{k!*°} with 8 > 0 to be specified later as a function of
B=1-A(f) > 0. Now we observe

(3.16) P(nnk S i.0.) > P(A, N B, i.0.),
where

Ap={ft))—v/2 <7, (t;) < ft))+v/2,1<j=<r}

Bi={ sw  X(u)l = (e LLny

O0<s=n;_it,/ng
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and

T, (8) = sup | X(nys) — X(ny_1t,)|/(conp/LLny)"*.

np_1t,/n,<s<t

Lévy’s inequality and rescaling implies
P(B;) < 2P(|X(nj_1t.)| > (v/4)(cany/LLny)")

< 2E(|1X(np_1t,)1*")(4/7)* "(LLny/(canp))' ="

= 2(4/7)* "E(IX(t)|* ") (np1 LLny/(canp)) ™%,
provided 0 < 6 < a. Since n;, = exp{k'*?}, we see 3_,.; P(Bj) < oo, and hence
P(Bj, i.0.) = 0. Thus P(B,, eventually) = 1 and (3.14) will follow from (3.16)
provided P(A, i.0.) = 1.

The time homogeneous, independent increments of { X (¢): ¢ > 0} imply the

A,’s are independent provided n;,_i¢,/n; < t;, that is, for all k sufficiently
large, and, furthermore, that

P(A,) = P( NHM(n(t; — i sty /m)/(eun/LLny) e € Fﬂ’)‘

J=1

From Proposition 2.4, and rescaling, we thus have for all p > 0 that for %
sufficiently large,

P(A,) = P( (rj {M(t; —njp_qt./ny) € (ca/LLnk)l/aFj}>
j=1

>exp{ — ty—npat/ng |~ (i —tj1)
>e p{ (LLnk)(1+p)<(f(t1)+y/2)a +jZ=2(f(tj)+y/2)a>}

> p(L8)(Lp)(1-p)

where 8 = 1 — A(f) > 0. In particular, taking p = 6 and (1+6)% < (1 - B)!
we have Y ;.; P(A;) = co. Independence and the Borel-Cantelli lemma now
imply P(A, i.0.) = 1. Thus (3.16) implies (3.14). Hence we have shown (3.1)—
(3.3), and Theorem 1.1 follows immediately. O

PROOF OF COROLLARY 1.1. Applying the zero—one law we may assume with
probability 1 that liminf, 1,(1) = d. If d < 1, then for every f € K, with
t = 1 a continuity point of f, there is a subsequence (random) such that

limn, (1)=f(1)=d <1 as.
np

Thus [;° f~(t)dt > fol d=*dt > 1, which contradicts f € K,. Hence d > 1.
If d > 1 we define
0, t=0,
fo(t)z{d, 0<t<1+36,
400, t>1+36.
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Then f, € .# and for é§ > 0 sufficiently small, f, € K,. Furthermore, since 1
is a continuity point of [,

P(liminfn, (1) < fo(1) =d) = 1.

Since d > 1 is arbitrary, this proves Corollary 1.1, and (1.3) holds with 8, =
1/a
Ca .

4. Proof of Theorems 1.2 and 1.3. We first establish several lemmas
which allow us to identify the left-hand terms in (1.11), (1.12) and (1.13).

LEMMA 4.1. Let F.(f) = fol Lo, o(f(w)r(w)) du, and

6.0 = [ 1o (miwre (B ) au,

where r:(0, 1] — [0, c0) is measurable. Then for each ¢ > 0, with probability 1,
(4.1) limsup G.(¢) < sup F.(f).
feK

t—00
Furthermore, we have equality in (4.1) whenever supsek, Fo(f) is left contin-
uous at c.

PROOF. First we prove limsup,_, ., G.(¢) < sup;.x, F.(f). Suppose the con-
trary, so there is a set E C () (our probability space for {X(¢):¢t > 0}) with
P(E) > 0, and for w € E,

limsup G.(¢) > sup F ().

t—00 fek

Let )y € Q with P(y) =1 and for w € £,
@) C{n}t—oc)=K

(i) {m,} is relatively compact in ./ as t — oco.

a

(4.2)

Then for w € E N (), there exists a possibly random subsequence {¢;(w)} =
{¢;} such that ¢; — oo,lim; . G.(¢;) > supseg, Fo(f), and 7, () — fo €
K, weakly. Hence lim_, “qtj(u) = fo(u) except possibly for countably many
values of u, and therefore,

LL¢t ;u\Y*
li I ‘ . <1,
1mjsup [070](7] J(u)r(u)< LLt ) ) 0, c)(Fo(w)r(uw))

for almost all u € [0, 1] (Lebesgue measure), since the characteristic function
of a closed set is upper semicontinuous. Thus the reverse Fatou lemma implies

_ 1 LLt ju\""
hmjsquc(tj) 5/0 hmjsupI[O,c](ntj(u)r(u)< LLt, ) )du

= [ T Folwyr(w) du
= F.(fo) < sup F.(f),
fekK,
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which contradicts that E exists with P(E) > 0. Thus limsup, G.(¢) <

SupfeKﬂ Fc(f)
To prove the reverse inequality take f, € K,. Then for all w € (), there
exists a possibly random subsequence {¢;(w)} = {¢,}, such that

n.,(-) > fo € K, weakly.
Then for 6 > 0,¢—6 > 0,
limsup G.(¢) > hm supF (n,) = hm supF (n:,) = hmlan ().

t—00

Now by Fatou’s lemma,

1
liminf F(n)) = [ lminfTjp o(n, (u)r(w) du
1 . .
> [ o oo timinf 1, () )

= [10, ¢~ (32D Fowyrw)) du,

where the last inequality holds because [0, ¢ — (6/2)) is open in [0, co] and
therefore Iy ._(s/2)) is lower semicontinuous here. Thus limsup,_,,, G.(¢) >
F. sy, and since f, € K, is arbitrary we have limsup, . G.(¢) >
supseg, F._s5(f). The left-continuity of sups.x, F4(f) at c thus implies equal-
ity in (4.1) and the lemma is proved. O

LEMMA42 If0 <a<2and 0 < p < oo, then infyk ||f||, = 1, where
I, = (fo [f(w)|P du)YP,0 < p < oo, and ||f|| is the essential supremum of
f on [0, 1] with respect to Lebesgue measure.

ProOF. If p = oo, then f  implies 1nffeK I[fllc < infreg f(1) < 1.
On the other hand, 1f [Ifll« <1, then fo ~*(¢)dt > 1 and f ¢ K,. Thus
infrg [Iflla =1

If 0 < p < o0, take r € (1, o0) such that a/(r —1) = p. Then fol |f(w)|? du <
oo and f € K, imply both f and f~! are finite and nonnegative a.s. on [0, 1].
Hence with Lebesgue measure 1 = f*/"(u)f~*/"(u), and therefore by Holder’s
inequality with » > 1and ¢! =1 —r~! = (r — 1)/r, we have

1
L= [ (F@)"(F(w)) " du
< ( /0 1( £ () D du>(r1)/r( /0 1( £(w)™ du)l/r
< (/Ol(f(u))p du)l/pl

since f € K,. Thus lim;.g _[|f|[, > 1, and it is trivially less than or equal to
1 by the p = oo case.
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PROOF OF (1 13). Fix0<a <2and 0 < p < co. Then Lemma 4.2 implies
that inf, g fo I (u)|P du = 1, so it remains to verify the first equality. Hence
assume liminf, | fo |nt(u)|P du<1on aset E C Q with P(E) > 0 and
assume (), € Q is as in Lemma 4.1. In particular, w € , implies (4.2) holds,
and for w € E N (), there exists a possibly random sequence {¢;(w)} = {¢;}
such that lim;_, ., [, In,,(w)|Pdu <1 and n, — f, weakly, for some f, € K,,.
Then lim;n, (u) = fo(u) except for possibly countably many » and hence
Fatou’s lemma implies

1mi ! p ! p 1 ! p
timinf [ |n, (0)|? = [ 1fo@)|? du = inf ["1f @) du=1.

This contradicts the assumption P(E) > 0, so we have with probability 1 that

liminf, | fol [n:(w)|? du > 1. On the other hand, liminf, fol [ (w)|Pdu <
lim, ,  |n,(1)|]? = 1 by Corollary 1.1 and that 7,(-) is increasing on [0, 1].
Hence (1.13) holds and Theorem 1.3 is proved. O

PROOF OF (1.12). Fix 0 < @ <2 and set u = s/t in (1.12). Then

t 1
4.3)  limsupt~! /0 Tio, q(n(s/)) ds = lim sup /O Tjo, q(n()) du
t—00

t—o00

with probability 1. Let () = 1 and define F.(f) as in Lemma 4.1. Then, for
0 < ¢ < oo, consider

1
sup F(f) = sup [ I o(f(u))du.
fekK, feK, 70

If ¢ > 1, then setting
0, if u =0,
fc(u)z{c, if0<u<l,
+oo, ifu>1,
we see fol Ijo, (fe(u))du = 1 and since ¢ > 1 we also have f, € K,. Since
supsex. fo Ijo,o(f (1)) du < 1, we have

sup F.(f)=1
feK,

forc>1.If 0 < ¢ < 1, define

0, if u =0,
fc(u)z{c, if 0 < u < ¢,

+oo, ifu > c°.

Then f, € K,, and since f € K, is increasing with f(0) = 0, it is easy to see
that

1 1
sup [ (/) du = [ To,o(fw) du = "
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Thus supscx, F.(f) is continuous for 0 < ¢ < oo and hence the method of
proof of Lemma 4.1 implies with probability 1,

. 1 1, ife>1,
40 Timsup [ o on,0))du = sup F(f) = (o dezb
Combining (4.3) and (4.4) yields (1.12). O

PROOF OF (1.11). Since n4(1) = n,(s/t)(tLLs/sLLt)"* for s, t > 0, letting
u = s/t implies W (¢) as given in (1.7) satisfies

()= [ T (nxu)u-“ae(u)(“t“)M> du.

LLt

Now Lemma 4.1 with r(z) = wuY*0(u) implies limsup, . V.(¢) =
supscg, F.(f) with probability 1, provided sups.x, F.(f) is left continuous
at c.

When ¢ > 1,

1
(4.5) sup Fo(f) = sup [ Ijo o(f(w)u""0(u)) du
feK, feK,”’0

is taken on by the function [ (z) where

0, ifu=0,
cuy*/6(ug), if 0 <u < uy,
cul’?/0(u), ifuy<u<l,
+00, ifu>1.

fc(u) =

That is, if f(u) > cu'/*/6(u) for u € E C [0, 1], then since both cu!/*/6(u)
and f(u) are increasing on [0, 1] with (1.9) holding, we minimize the quantity
fol f~%(u)du by having the set E be an interval starting at zero. Thus the
choice of f, is optimal provided we choose u, such that A(uy) = ¢ where A(+)
is as in (1.10). Then u, = s,, f,. € K,, and for all ¢ > 1,

1
(4.6) sup [ Io. o (Ff(@)u™*6(w)) du =1 —s,.
feK,’0

Now A(-) one-to-one and continuous from [0, 1] onto [1, co) with (1) = 1im-
plies s, is continuous for all ¢ > 1 and s; = 1. Thus Lemma 4.1, (4.5) and (4.6)
imply (1.11) for ¢ > 1. If ¢ = 1, then s; = 1 and the upper bound in (4.1) imply
with probability 1 that lim sup,_, . ¥ .(¢) < 0. However, limsup,_, . ¥.(¢) > 0
is trivial, so (1.11) holds even when ¢ = 1. Hence Theorem 1.2 is proved. O
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