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ISOTROPIC LÉVY PROCESSES ON RIEMANNIAN MANIFOLDS

By D. Applebaum and A. Estrade

Nottingham Trent University and Université d’Orléans

Under a natural invariance assumption on the Lévy measure we con-
struct compound Poisson processes and more general isotropic Lévy pro-
cesses on Riemannian manifolds by projection of a suitable horizontal pro-
cess in the bundle of orthonormal frames. We characterize such Lévy pro-
cesses through their infinitesimal generators and we show that they can
be realized as the limit of a sequence of Brownian motions which are in-
terlaced with jumps along geodesic segments.

1. Introduction. A Lévy process in Rn is essentially a stochastic process
with stationary and independent increments. There are a number of equiva-
lent characterizations of such processes: Fourier analysis yields the beautiful
Lévy–Khintchine formula for the characteristic function, the Markov property
gives rise to a Feller semigroup with a canonical infinitesimal generator com-
prising a second-order differential operator perturbed by an integral operator
which expresses an average of translates (see, e.g., [4]) and Itô has shown that
the sample paths are Brownian motions with drift interlaced with jumps from
a Poisson point process [16].
The generalization of a Lévy process to a Lie group was carried out by

Hunt in 1956 [14], where we observe that increments of the process are now
defined using the group operation. Since there is, in general, no analogue of
the Fourier transform available, Hunt classified the processes through their
infinitesimal generators; in fact, the second-order differential operator is now
a second-order expression in the Lie algebra of the group and the integral
operator expresses an average of group translates. More recently, it was shown
in [3] that any such process can be expressed as the solution of a stochastic
differential equation (SDE) driven by a Brownian motion in the Lie algebra
and a Poisson random measure on the group.
Now we turn our attention to the problem of defining Lévy processes ρ on

Riemannian manifolds M. Here of course, the usual definition breaks down
as “increment” can have no meaning in this context. Nonetheless, in the case
where M is a Riemannian globally symmetric space and the Lévy process
is required to be spherically symmetric, the problem was solved by Gangolli
in the early 1960s (see [11, 12]). His approach utilized the fact that M is a
homogeneous space of a Lie group G and so he was able to effectively define
ρ to be the projection of a suitable symmetric Lévy process in G. In this
set-up, Fourier methods become available through the spherical transform
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of Harish–Chandra and Gangolli obtains a Lévy–Khintchine type formula for
his processes in [11] and shows that their sample paths can be realized as
Brownian motions interlaced with isotropic jumps in [12]. An approach to
Gangolli’s work using stochastic calculus can be found in [2].
When we generalize to arbitrary Riemannian manifolds, we note that one

process which has been extensively studied and which is surely a Lévy process
under any reasonable definition is Brownian motion. The usual definition of
this is that it is a Markov process β = �β�t�� 0 ≤ t < η� for which

f�β�t�� − f�p� − 1
2

∫ t

0
�f�β�s��ds is a martingale

for all f ∈ C∞�M� where p ∈ M is the starting point for the motion, � is the
Laplace–Beltrami operator and η is an explosion time (see, e.g., [8]). If the
manifold M is not parallelizable, β cannot be obtained as the global solution
of an SDE in M. However Eells and Elworthy have shown that it can always
be obtained as the projection of the solution of a certain SDE on the bundle
of orthonormal frames over M, driven by a Brownian motion and directed by
horizontal vector fields (see [6], [7] and [21]).
By analogy with the above, it is natural to define an analogue of a spheri-

cally symmetric Lévy process onM in the same way but with 1
2� replaced by

a more general operator � which contains an integral to take care of jumps.
We propose that � be of the following form:

� f�p� = 1
2a�f�p� +

∫
Tp�M�−	0


�f�Exp�y��p�� − f�p��νp�dy�

where � is the Laplace–Beltrami operator in M, a is a nonnegative constant,
Exp denotes the Riemannian exponential and 	νp� p ∈ M
 is a suitable field
of Lévy measures on tangent spaces Tp�M� (for further details see Section
3). Note that the jumps of the process at p are along all possible geodesics
emanating from p.
In an earlier paper [1], one of us tried without success to imitate the Eells–

Elworthy method and construct Lévy processes inM by projection of a suitable
horizontal Lévy process in the orthonormal frame bundle. In this paper, we
show that this procedure does in fact work but only for an “isotropic” horizontal
Lévy process, that is to say if the law of the Lévy process in Euclidean space
which drives the SDE is invariant under orthogonal transformations, from
which it follows that there is no drift part and the Lévy measures νp satisfy
a natural invariance property.
The organization of this paper is as follows. In Section 2, we study the

prototype isotropic Lévy process in M which is a random walk of geodesics
time changed by a standard Poisson process. We show that it is a Markov
process and that it can be obtained as the projection of a horizontal compound
Poisson process on the orthonormal frame bundle, this being a random walk
of motions along integral curves of basic horizontal vector fields which is time
changed by the same Poisson process. In Section 3, we turn our attention
to more general Lévy processes and show that, with the isotropy property
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described above, there is a one-to-one correspondence between processes with
generator � and projections of the horizontal Lévy processes constructed in
[1]. In Section 4, we then use the interlacing procedure developed in [2] to
show that every Lévy process in M is the limit of a sequence of Brownian
motions interlaced with the jumps of a Poisson point process along geodesics.
In order to avoid complicated arguments involving explosion times, we assume
in Sections 3 and 4 that our manifold M is compact; however, we note that
our methods will extend to the noncompact case.
A global reference for all the differential geometry used in this paper is

[18]. Einstein summation convention will be used throughout.
In this paper, the term “Feller semigroup” will mean a positivity preserving,

strongly continuous, identity preserving contraction semigroup on the Banach
space Cb�M� of bounded continuous functions onM equipped with the supre-
mum norm.

2. Compound Poisson processes in Riemannian manifolds. Let M
be a d-dimensional connected Riemannian manifold with metric g and let
O�M� be the bundle of orthonormal frames overM so that there is a canonical
surjection π 
 O�M� → M. Let rp ∈ O�M� with π�rp� = p; we will find it
convenient to regard rp = �r1p� � � � � rdp� as a linear isometry rp 
 Rd → Tp�M�
through the action

rp�x� = xjr
j
p

for each x ∈ Rd.
We note thatM is equipped with its Riemannian connection which enables

us to write the Whitney direct sum

T�O�M�� = H�M� ⊕V�M��
where H�M� and V�M� are the subbundles of horizontal and vertical fibres
(respectively). Let � = 	F�x�� x ∈ Rd
 denote the basic horizontal vector
fields (sometimes called “standard” or “canonical”) on O�M�. These are char-
acterized as follows:

1. Each F�x��r� ∈ Hr�M��
2. dπr�F�x�� = rp�x�
for each x ∈ Rd� r ∈ O�M� with π�r� = p. Here dπr is the differential of π
which maps Tr�O�M�� linearly onto Tp�M�.

� will be equipped with the smallest topology for which each of the maps
x �→ F�x� is continuous.
We will assume that each F�x� is complete in O�M� so that M is geodesi-

cally complete. We will, as usual, use the exponential map to denote the con-
tinuous one-parameter group of diffeomorphisms generated by each F�x�. So,
for each u ∈ R� r ∈ O�M�� x ∈ Rd�

rx�u� = exp�uF�x���r�
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is the unique solution of the differential equation in O�M��
∂rx�u�
∂u

= F�x��rx�u��
with initial condition rx�0� = r.
Now let �X�n�� n ∈ N� be a sequence of i.i.d. random variables taking

values in Rd with common law µ and letN = �N�t�� t ≥ 0� be an independent
Poisson process with intensity α > 0. We denote as & = �&�t�� t ≥ 0�, the
compound Poisson process in Rd defined by

&�t� = X�1� +X�2� + · · · +X�N�t��
for t > 0 with &�0� = 0 (a.s.) and Y will denote the associated Poisson random
measure on R+ × �Rd − 	0
� so that for each t ≥ 0� A ∈ ��Rd − 	0
�,

Y�t�A� = #	s ≤ t� ��&�s�� ∈ A

and E�Y�t�A�� = tν�A� where ν denotes the finite measure αµ.
We define the horizontal compound Poisson process starting at r ∈ O�M�

to be the process R = �R�t�� t ≥ 0� given as follows:
R�t� = exp�F�X�N�t��� ◦ · · · ◦ exp�F�X�2��� ◦ exp�F�X�1����r�

for t > 0, where R�0� = r (a.s.). It is easy to check that R is cadlag.
By a standard argument (see, e.g., [2]) we find that for all f ∈ Cb�O�M���

t ≥ 0,

f�R�t�� = f�r� +
∫ t+

0

∫
Rd−	0


�f�expF�x��R�s−�� − f�R�s−��Y�dx�ds�(2.1)

so that in particular we see that R is an example of a horizontal Lévy process
in the sense of [1]. It is then easy to deduce that R is a Feller process and if
we define the associated contraction semigroup �T�t�� t ≥ 0� by

T�t�f�r� = E�f�R�t���R�0� = r�
for f ∈ Cb�O�M��� r ∈ O�M�� t ≥ 0, we again deduce by the argument of
[2] that Cb�O�M�� ⊆ Dom�� � where � is the infinitesimal generator of the
semigroup and

� �f��r� =
∫
Rd−	0


�f�exp �F�x���r�� − f�r��ν�dx�

for each f ∈ Cb�O�M��� r ∈ O�M�.
In the sequel we will find a use for the following notation: if m ∈ N, then

rm will denote the random frame exp�F�X�m��� ◦ · · · ◦ exp�F�X�1����r� and if
z ∈ �Rd�m with z = �z1� � � � � zm� then r�z� will denote the frame exp�F�zm��
◦ · · · ◦ exp�F�z1���r�.
Now we turn our attention to the manifoldM. For each r ∈ O�M�, we define

a probability measure µr
p on Tp�M� [where p = π�r�] by the prescription,

µr
p�Ap� = µ�r−1�Ap��(2.2)

for all Ap ∈ ��Tp�M��.
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Lemma 2.1. For all p ∈ M, the measure µr
p on Tp�M� is independent of

the choice of r ∈ O�M� for which π�r� = p if and only if the measure µ on Rd

is invariant under orthogonal transformations.

Proof. The result follows immediately from the right action of the group
� �d� of all orthogonal transformations in Rd on the principal fibre bundle
O�M� through

�O� r� 1 ≤ i ≤ d� ∈ � �d� ×O�M� �→
( ∑
1≤i≤d

Oijr
i� 1 ≤ j ≤ d

)
� ✷

From now on, if µ is invariant under orthogonal transformation, we will
say that the measure µ is isotropic and we will denote as µp the unique Borel
measure induced by (2.2) on Tp�M�, for each p ∈ M.
Now let X ∈ Tp�M� and let 	gX�u�� u ∈ R
 be the unique maximal

geodesic in M for which

gX�0� = p and ġX�0� = X�

We define the Riemannian exponential map Exp: Tp�M� → M by

Exp�X��p� = gX�1�
and note that

π�exp�F�x���r�� = Exp�dπr�F�x����p�
= Exp�r�x���p�

(2.3)

for each x ∈ Rd and each r ∈ O�M� with π�r� = p.
In the sequel, we will often abuse notation to the extent of writing

Exp�X� ◦ Exp�Y��p� = Exp�X��q�
where q = Exp�Y��p�� X ∈ Tq�M� and Y ∈ Tp�M�.
We now define a process γ = �γ�t�� t ≥ 0� in M by the procedure

γ�t� = π�R�t��
for each t ≥ 0, so that in particular, γ�0� = p (a.s.). We call γ a compound
Poisson process in M starting at p. Clearly it is cadlag.
By (2.3), we find that for each t ≥ 0,
γ�t� = Exp�rN�t�−1�X�N�t��� ◦ · · ·Exp�r1��X�2��� ◦ Exp�r�X�1����p��

The remainder of the section will be devoted to a discussion of the Marko-
vianity of the process γ. The following lemma will be a vital tool in this regard.

Lemma 2.2. Let µ be isotropic; then for any f ∈ Cb�M�� m ∈ N� r ∈ O�M�
and qm−1 ∈ M such that π�rm−1� = qm−1, we have

E�f�Exp�rm−1�X�m����qm−1��� = E�f�Exp�rm−1�X�m����qm−1����
where rm−1 is an arbitrary frame for which π�rm−1� = qm−1.
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Proof. Since X�m� is independent of σ	X�1�� � � � �X�m− 1�
 we obtain
E�f�Exp�rm−1�X�m����qm−1���

=
∫
�Rd�m−1

∫
Rd

f�Exp�r�z��x��q�z���ν�dx�ν⊗m−1�dz��

where q�z� ∈ M is such that π�r�z�� = q�z� for all z ∈ �Rd�m−1. Hence since
ν is isotropic we have

E�f�Exp�rm−1�X�m����qm−1���

=
∫
�Rd�m−1

∫
Tq�z��M�

f�Exp�y��q�z���νq�z��dy�ν⊗
m−1�dz�

from which the required result follows. ✷

We now let S = �S�t�� t ≥ 0� denote the family of linear contractions on
Cb�M� defined by

S�t��f��p� = E�f�γ�t���γ�0� = p�
so that

S�t��f��p� = T�t��f ◦ π��r�
whenever π�r� = p. We also introduce the bounded linear operator � on
Cb�M� by

� �f��p� =
∫
Tp�M�−	0


�f�Exp�y��p�� − f�p��νp�dy��

Note that when µ is isotropic it is easy to verify that

� �f��p� = � �f ◦ π��r�
whenever f ∈ Cb�M� and π�r� = p.

Theorem 2.1. If µ is isotropic then S is a Feller semigroup with infinites-
imal generator � .

Proof. Write f = g ◦ π in (2.1) and use (2.3) to obtain

g�γ�t��−g�p� =
∫ t+

0

∫
Rd−	0


�g�Exp�R�u−��x���γ�u−���−g�γ�u−���Y�dx�du��

Now take expectations and apply Lemma 2.2 to find that

S�t��g��p� − g�p�

=
∫ t

0

∫
Rd−	0


E��g�Exp�R�u��x���γ�u��� − g�γ�u����γ�0� = p�ν�dx�du

=
∫ t

0

∫
Rd−	0


E��g�Exp�r�γ�u���x���γ�u��� − g�γ�u����γ�0� = p�ν�dx�du�
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where r�γ�u�� is an arbitrary frame for which π�r�γ�u��� = γ�u� for each
u ≥ 0. Now using Fubini’s theorem, we obtain
S�t��g��p� − g�p�

=
∫ t

0
E
[∫

Rd−	0

�g�Exp�r�γ�u���x���γ�u��� − g�γ�u���ν�dx��γ�0� = p

]
du

=
∫ t

0
E
[∫

Tγ�u��M�−	0

�g�Exp�y��γ�u��� − g�γ�u���νγ�u��dy��γ�0� = p

]
du

=
∫ t

0
� Su�f��p�du

and the required result follows. ✷

Corollary 2.1. The process γ is a Feller process with transition semigroup
�S�t�� t ≥ 0��

Proof. We show that γ enjoys the Markov property. Let ν be an initial
probability measure on M and ν̃ be any probability measure on O�M� for
which ν̃ ◦ π = ν. We choose 0 = t0 < · · · < tk < ∞ and take f1� � � � � fk to be
bounded Borel functions on M; then since R is Markov we have

E

[
k∏

i=0
fi�γ�ti��

]

= E

[
k∏

i=0
�fi ◦ π��R�ti��

]

= Eν̃��f0 ◦ π�T�t1���f1 ◦ π�T�t2 − t1�
×��f2 ◦ π� · · ·T�tk − tk−1��fk ◦ π� · · ·��R�0���

= Eν�f0S�t1���f1S�t2 − t1��f2 · · ·S�tk − tk−1�fk� · · ·��γ�0���
from which the Markov property of R follows (see, e.g., [22], page 76). The rest
follows immediately from Theorem 2.1. ✷

3. Lévy processes on manifolds. In this section, to avoid complicating
the argument with explosions, we will assume that M is compact and so it is
automatically complete. We note that the frame bundle O�M� is also compact
in this case. In the sequel we will denote as Fj, the basic vector field F�ej�
where 	ej� 1 ≤ j ≤ d
 is the natural basis in Rd.

3.1. Horizontal Lévy processes. Let Y = �Y�t�� t ≥ 0� be a d-dimensional
Lévy process in Rd so that Y is a stochastically continuous process with sta-
tionary and independent increments for which Y�0� = 0 a.s. The Lévy–Itô
decomposition [15] yields the following for 1 ≤ i ≤ d� t ≥ 0,

Yi�t� = bit+Bi�t� +
∫
0<��x��<1

xiÑ�t� dx� +
∫
��x��≥1

xiN�t� dx��(3.1)
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where:

1. b ∈ Rd�
2. B = �B�t�� t ≥ 0� is a d-dimensional Brownian motion with covariance
Cov�Bi�t��Bj�t�� = aijt for all t ≥ 0� 1 ≤ i� j ≤ d where a = �aij� is a
d× d real-valued nonnegative definite symmetric matrix;

3. N is a Poisson random measure on R+ × �Rd − 	0
� which is independent
of B and whose intensity measure ν is a Lévy measure on Rd − 	0
� that
is, for each A ∈ ��Rd − 	0
�� t ≥ 0�

E�N�t�A�� = tν�A��
where

∫
Rd−	0
���x2�� ∧ 1�ν�dx� < ∞. Ñ denotes the compensator defined by

Ñ�t�A� = N�t�A� − tν�A��
We recall the definition of a horizontal Lévy process on the orthonormal

frame bundle O�M� from [1].
Let R = �R�t�� 0 ≤ t < η� be a cadlag semimartingale in O�M� where η

is an explosion time. We say that R is a horizontal Lévy process starting at
r ∈ O�M� if R solves the following stochastic differential equation in O�M�:

g�R�t�� = g�r� +
∫ t

0
Fig�R�u−��dYi�u� + 1

2a
ij
∫ t

0
FiFjg�R�u��du

+∑
u≤t

�g�exp�F��Y�u����R�u−���−g�R�u−��−Fig�R�u−���Yi�u��(3.2)

for all g ∈ C∞�O�M��� t ≥ 0.
By (3.1) we can write this as

g�R�t�� = g�r� +
∫ t

0
Fig�R�u��dBi�u� +

∫ t

0
� �g��R�u��du

+
∫ t+

0

∫
0<��x��<1

�g�exp�F�x���R�u−��� − g�R�u−���Ñ�dx�du�(3.3)

+
∫ t+

0

∫
��x��≥1

�g�exp�F�x���R�u−��� − g�R�u−���N�dx�du��

where

� �g��r� = F�b�g�r� + 1
2a

ijFiFjg�r�

+
∫
Rd−	0


�g�exp�F�x���r� − g�r� − 1��x��<1F�x�g�r��ν�dx��(3.4)

It is shown in [1] that (3.3) has a unique cadlag solution R = �R�t�� 0 ≤
t < ζ� in O�M�. We will show below that ζ = ∞ (a.s.). For now, it will do us
no harm to assume this. We will also show that R is a Markov process with
infinitesimal generator � . We prove now that an infinitesimal generator of
the form (3.4) is characteristic of a horizontal Lévy process.
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Proposition 3.1. If R is a Markov process in O�M� with infinitesimal
generator given by (3.4) then R is a horizontal Lévy process.

Proof. We follow [9] to define the vectorial (anti-)development Y of R (see
also [7] for the Brownian case) by

Y� =
∫ �

0
θ ◦ dR�

where θ is the canonical form of O�M� with values in Rd� that is,

∀ r ∈ O�M� ∀ X ∈ TrO�M�� θr�X� = r−1�dπr�X���

and where the following sense is given to the Stratonovich integral of a 1-form
along a cadlag semimartingale: take the usual definition for the continuous
part, and at a jump time u of R consider that the “integral” presents the
additive jump �θ�R�u−��� exp−1R�u−��R�u���.
Then, for all g in C∞�O�M��, using the Stratonovich integral of the 1-form

dg along R we can, by Proposition 2.4 of [9], write

g�R�t�� = g�r�0�� +
∫ t

0
dg ◦ dR

+∑
u≤t

�g�R�u�� − g�R�u−��− < dg�R�u−��� exp−1R�u−��R�u�� >��

Splitting the 1-form dg in horizontal and vertical parts as in Proposition 4.3
of [9], we see that the process R is a solution of (3.2).
Therefore the only thing to prove is that Y is a Lévy process in Rd. We will

do this by introducing the triplet of local characteristics �A�C�µ� of Y as in
[17], Chapter II. Those characteristics are defined as follows:

1. A is the d-dimensional predictable process with finite variation appearing
in the Doob decomposition of the special semimartingale Y−∑

u≤� 1��Y�u��>1�Y�u��
2. C is the continuous finite variation process with values in the set of non-
negative symmetric matrices given by Cij = �Yic�Yjc��

3. µ is the predictable compensator of the random measure j on R+×Rd−	0

associated to the jumps of Y
 j�dt�dx� = ∑

u≤t δ�u��Y�u���dt�dx�1��Y�u��>0�

We then have by Theorem 2.42 of [17] that for all g ∈ C∞�O�M���

g�R�t�� − g�R�0�� −
∫ t

0

(
Fig�R�u−��dAi

u + 1
2
FiFjg�R�u��dCij

u

+
∫
Rd−	0


�g�exp�F�y���R�u−�� − g�R�u−��

−1�y�<1F�y�g�R�u−���µ�dy�du�
)
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is a local martingale. Identification with the infinitesimal generator of R gives

Ai
t = bit� C

ij
t = aijt� µ�dy�dt� = ν�dy�dt�

Now by Theorem 4.19 of [17] we see that such a triplet characterizes Lévy
processes and so Y is a Lévy process as required. ✷

3.2. Isotropic Lévy process on M. Let R be a horizontal Lévy process and
X = �X�t�� 0 ≤ t < ζ� be defined by X�t� = π�R�t�� so that X is cadlag
with values in M. The process X is a candidate to be a “Lévy process on
M”; however, as is shown in [1], it is not, in general, a homogeneous Markov
process.
As was shown in [1], the problem is that the law of X may depend on

the choice of the initial frame R�0� = r at X�0� = p (see [15], page 283
where a similar discussion is developed for Brownian motion inM). In order to
emphasize the dependence, we will in this paragraph write R�t� = R�r�Y� t�
for the solution of (3.2) and X�t� = X�r�Y� t� for its projection on M. Let
r′ be another orthonormal frame at p (π�r′� = p) and let O ∈ � �d� be the
orthogonal transformation such that r′ = rO [recall that the structure group
� �d� acts on O�M� on the right]. It follows from (3.2) and from the relation

dπrO�F�y�� = dπr�F�Oy�� ∀ y ∈ Rd

that

X�r′�Y� t� = X�r�OY� t� ∀ t ≥ 0�
Hence we see that the processesX�r�Y� ·� andX�r′�Y� ·� will agree in law

if the processes Y and OY agree in law for all O ∈ � �d�. Now if we write
Rd = M�d� \ � �d� where M�d� is the group of all isometries of Rd then we
see that we require Y to be a spherically symmetric Lévy process on Rd in
the sense of [11], [12] and [2]. It follows that Y is characterized by the Lévy–
Khintchine formula

E�exp�iu�Y�t��� = exp
{
t

[
− 1
2a��u��2 +

∫
Rd−	0


�eiu�x − 1�ν�dx�
]}

for all t ≥ 0� u ∈ Rd where a ≥ 0 and the Lévy measure ν is isotropic in that
ν�OA� = ν�A�

for all A ∈ ��Rd − 	0
�� O ∈ � �d�.
In the case where Y is spherically symmetric as above, we say that the

horizontal Lévy process R is isotropic and that its projection X to M is an
isotropic Lévy process on M. We will see below that such isotropic processes in
M are always homogeneous Markov as is required.
We note first of all that the infinitesimal generator for an isotropic horizon-

tal Lévy process takes the form

� �g��r� = 1
2a�Hg�r� +

∫
Rd−	0


�g�exp�F�x���r�� − g�r��ν�dx�(3.5)
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for all g ∈ C∞�O�M��� r ∈ O�M� where �H is the horizontal Laplacian,

�H =
d∑

i=1
FiFi�

3.3. Infinitesimal generator of an isotropic Lévy process onM. Let �Ba�t��
t ≥ 0� be a Brownian motion process in Rd with covariance matrix aI where
a > 0. By the Eels–Elworthy construction we know that the solution R of the
SDE in O�M� given by

g�R�t�� = g�r� +
∫ t

0
Fig�R�u�� ◦ dBi

a�u�

for all t ≥ 0� g ∈ C∞�Rd�, when projected on M yields a diffusion process
with infinitesimal generator 1

2a� (called Brownian motion on M when a = 1)
where � is the Laplace–Beltrami operator defined by

�f�p� = �H�f ◦ π��r�
for all f ∈ C∞�M�� r ∈ O�M� with π�r� = p.
Conversely, it is proved (see [7], page 310 or [15], page 288) that every

diffusion with infinitesimal generator 1
2a� is obtained by this way. We now

prove an analogous result for isotropic Lévy processes on M.

Theorem 3.1. Let X be a cadlag semimartingale in M. The process X
is an isotropic Lévy process on M if and only if X is a Feller process with
infinitesimal generator � given by

� f�p� = 1
2
a��f��p� +

∫
Tp�M�−	0


�f�Exp�y��p�� − f�p��νp�dy�(3.6)

for each f ∈ C∞�M�� p ∈ M where a ≥ 0 and �νp�p∈M is a field of measures on

Tp�M� deduced from an isotropic Lévy measure ν on Rd by νp�A� = ν�r−1�A��
whenever π�r� = p.

Proof of first implication of Theorem 3.1. Let X be the projection
π�R� of an isotropic horizontal Lévy process R on O�M�. Denoting by �
the generator of R and observing that

� �f��p� = � �f ◦ π��r�
whenever π�r� = p� then the fact thatX is a Feller process follows by a similar
argument to that of Theorem 2.1 and Corollary 2.1 where we note that the
continuity of R�t� as a function of its initial point (which follows from the
arguments of [10]) ensures that the semigroup associated to (3.5) preserves
C�O�M�� and hence its projection preserves C�M�. ✷

Proof of second implication of Theorem 3.1. LetX be a Feller process
starting at p0 ∈ M with infinitesimal generator given by (3.6) and denote by
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R its horizontal lift in O�M� (see [9]) starting from r0 ∈ O�M� such that
π�r0� = p0.
In view of Proposition 3.1, the processR will be an isotropic horizontal Lévy

process if R is shown to admit the generator � defined in (3.5).
That the differential part of the operator � is 1

2a�H is clear since it would
be the unique term for continuous X and R (i.e., for X a diffusion onM with
generator 1

2a�).
Therefore let us concentrate on the jumps of R. They will induce in the op-

erator � the integral term with respect to measure ν if we can prove that, for
all predictable h
 :×R+×O�M�×O�M� → R such that E�∑u≤t �h�u�R�u−��
R�u��� < ∞ for all t ≥ 0,∑

u≤�
h�u�R�u−��R�u�� −

∫ �

0

∫
Rd−	0


h�u�R�u−�� exp F�x��R�u−��ν�dx�du

is a local martingale.
By [9] we know that the process R jumps when and only whenX does, and

that for u a jump time,R�u� is given by the parallel transport τX�u−��X�u�R�u−�
of R�u−� along the geodesic in M from X�u−� to X�u�. More precisely let u
be a fixed jump time and denote p = X�u−� and r = R�u−�. Take y ∈ Tp�M�
such that X�u� = Exp�y��p�. There exists some x ∈ Rd such that y = r�x�
and then R�u� = exp F�x��r�. Hence∑
u≤t

h�u�R�u−�� R�u��

= ∑
u≤t

h�u�R�u−�� τX�u−�� X�u�R�u−��

= a local martingale

+
∫ t

0

∫
TX�u−��M�−	0


h�u�R�u−�� τX�u−�� Expy�X�u−�R�u−��νX�u−��dy�du

= a local martingale +
∫ t

0

∫
Rd−	0


h�u�R�u−�� expF�x��R�u−��ν�dx�du

and the theorem is proved. ✷

Note. Let � be a second-order differential operator on M which is ex-
pressed in a chart �U�φ� as

� �f ◦φ��p� = 1
2
aij�y� ∂2f

∂yi∂yj
�y� + bj�y� ∂f

∂yj
�y�

for all f ∈ C∞�Rd� where p ∈ U with φ�p� = y and each �aij�y��1≤i� j≤d is
a strictly positive definite matrix in any choice of local coordinates. We can
choose a metric and a compatible connection on M (see [15], page 288) such
that, for all r ∈ O�M� with π�r� = p,

1
2F̃iF̃j�f ◦ π��r� = �f�p��
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where �F̃1� � � � � F̃d� is the system of basic horizontal vector fields on O�M�
corresponding to the choosen connection.
Therefore, for each isotropic Lévy measure ν on Rd, we can construct an

isotropic Lévy process on M with prescribed infinitesimal generator

� f�p� = �f�p� +
∫
Tp�M�−	0


�f�Exp�y��p�� − f�p��νp�dy��

4. The interlacing construction. We will now give an alternative con-
struction of the processes R and X, which utilizes the interlacing technique
of [2].

4.1. Horizontal interlacing. We begin by studying the horizontal processes.
Let �R�t�� 0 ≤ t < ζ� be a horizontal Lévy process on O�M� starting at
r0 ∈ O�M�. Note that at this stage we are not assuming that R is isotropic
nor that ζ = ∞ (a.s.).
We will find it convenient to rewrite equation (3.3) in a different way. First

we fix 0 < ε < 1; we then have

g�R�t�� = g�r0� +
∫ t

0
Fig�R�u−��dBi�u� +

∫ t

0
� ′

εg�R�u−��du

+
∫ t+

0

∫
0<��x��<ε

[
g
(
exp�F�x���R�u−��)− g�R�u−��]Ñ�dx�du�(4.1)

+
∫ t+

0

∫
��x��≥ε

[
g
(
exp�F�x���R�u−��)− g�R�u−��]N�dx�du��

where

� ′
εg�r� = F�b′�ε��g�r� + 1

2a
ijFiFjg�r�

+
∫
0<��x��<ε

[
g
(
exp�F�x���r�)− g�r� −F�x�g�r�]ν�dx�

and

b′�ε� = b−
∫
ε<��x��<1

xν�dx��

Now we begin to construct R by interlacing. To this end we let �cn� n ∈
N� be a decreasing sequence of positive numbers with supn∈N cn ≤ ε and
limn→∞ cn = 0. Let Br�0� denote the open ball in Rd which is centered on
the origin. We define a sequence of Borel sets �Vn� n ∈ N� in Rd by Vn =
Bε�0� −Bcn

�0� so that Vn ↑ Bε�0� as n → ∞. Although it is not essential for
this part of the construction, we will find it useful later to also introduce a
sequence �bn� n ∈ N� in Rd for which limn→∞ bn = b and for each n ∈ N, we
define b′n�ε� as above for b′�ε� except that b is replaced on the right-hand side
by bn.
For each n ∈ N, we consider the Poisson process

N�n� = �N�Vn × �0� t��� t ≥ 0�
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with intensity ν�Vn� and we denote as �τ�n�m � m ∈ N�, the sequence of interar-
rival times forN�n�. Let also �X�n�

m �m ∈ N� be the sequence of i.i.d. Rd-valued
random variables given by

X
�n�
m =

∫
Vn

xN�n��dx� 	τ�n�m 
��(4.2)

Each X
�n�
m takes values in Vn and has law q�n� where

q�n��A� = ν�A�
ν�Vn�

whenever A ∈ ��Vn�. Moreover the X�n�
m ’s are all independent of the τ�n�m ’s.

Now define a sequence of horizontal Brownian flows with drift on O�M�,
�β�n�� n ∈ N�, as follows:

dβ�n��t� = F�b�n���β�n��t��dt+Fi�β�n��t�� ◦ dBi�t��(4.3)

where ◦ denotes the Stratonovich differential, each β�n��0� is the identity map
on M (a.s.) and

b�n� = b′n�ε� −
∫
Vn

xν�dx��

Since O�M� is compact, it follows that each β�n� is a stochastic flow of
diffeomorphisms of O�M� (see, e.g., [19], page 192).
We now define a sequence �η�n�� n ∈ N� of stochastic flows of diffeomor-

phisms of O�M� by interlacing as follows:
η�n��t� = β�n��t�� 0 ≤ t < τ

�n�
1 �

η�n��τ�n�1 � = exp�F�Xn
1�� ◦ β�n��τ�n�1 ��

η�n��t� = β�n��t� ◦ β�n��τ�n�1 �−1 ◦ η�n��τ�n�1 �� τ
�n�
1 < t < τ

�n�
2 �

η�n��τ�n�2 � = exp�F�X�n�
2 �� ◦ η�n��τ�n�2 −�(4.4)

and we continue by induction.
For each r ∈ O�M�, we then find that η�n��t��r� satisfies the stochastic

differential equation

g�ηn�t��r�� = g�r� +
∫ t

0
Fig�ηn�u−��r��dBi�s� +

∫ t

0
� ng�ηn�u−��r��du

+
∫ t+

0

∫
Vn

�g�exp�F�x���ηn�u−��r��� − g�ηn�u−��r���Ñ�dx�du�

for all g ∈ C∞�O�M��, where
� n�g��r� = F�b′n�ε��g�r� + aijFiFjg�r�

+
∫
Vn

�g�exp�F�x���r�� − g�r� −F�x�g�r��ν�dx��
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For r ∈ O�M�, we now introduce the horizontal Lévy process �ηr�s� t�� 0 ≤
s ≤ t < α� (where α is an explosion time) which is the solution of the following
stochastic differential equation:

g�ηr�s� t�� = g�r� +
∫ t

s
Fig�ηr�s� u−��dBi�u� +

∫ t

s
� ′

εg�ηr�s� u−��du

+
∫ t+

s

∫
0≤��x��<ε

�g�exp�F�x���ηr�s� u−���−g�ηr�s� u−���Ñ�dx�du��(4.5)

In the sequel we will write ηr�t� for ηr�0� t�.

Theorem 4.1.

lim
n→∞ηn�t��r� = ηr�t� (a�s��

for all r ∈ O�M� and the convergence is uniform on compacts in �0� α�. Fur-
thermore, α = ∞ (a.s.).

Proof. By Whitney’s embedding theorem there exists a smooth embed-
ding ι of O�M� into a closed submanifold of Rb where b > 1

2d�d+1�. Following
the procedure of [1], we express each of the processes �ηn�t��r�� t ≥ 0� and
�ηr�t�� t ≥ 0� in local coordinates in a neighborhood of r and then extend these
to processes satisfying appropriate SDEs in Rb which we write as η̂n�t��r� and
η̂r�t�, respectively. Following [1] again, we see that η̂n�t��r� ∈ ι�O�M�� for all
t ≥ 0 and η̂r�t� ∈ ι�O�M�� for all 0 ≤ t ≤ α (see also [5]). Hence we can
write each η̂n�t��r� = ι�ηn�t��r�� and η̂r�t� = ι�ηr�t��. We can now use the
argument of the Appendix in [2] to conclude that

lim
n→∞ ι�ηn�t��r�� = ι�ηr�t�� (a�s��

and the required convergence follows from the homeomorphism property of ι.
To see that α = ∞ (a.s.), note that �ι�ηn�t��r��� n ∈ N� is a Cauchy sequence
in Rb for all t ≥ 0 (a.s.) and hence �ηn�t��r��� n ∈ N� is Cauchy in O�M� for
all t ≥ 0 (a.s.). However, by the Hopf–Rinow theorem, O�M� is complete and
so �ηn�t��r��� n ∈ N� converges in O�M� for all t ≥ 0 and the required result
follows. ✷

Note. We have not proved that the maps r �→ ηr�t� are diffeomorphisms
(a.s.). In fact, we do not need this result in the sequel but we remark that it
follows from general considerations (see [20]).
The process ηr is a horizontal Lévy process starting at time s = 0 from

r ∈ O�M� with generator � ′
ε and whose jumps are all “bounded by ε.” To

recover the original process R from the process ηr, we must insert the “large
jumps” (compare the SDEs (4.1) and (4.5) solved by R and ηr). We proceed in
a similar way to the above.
So let �σ�m�� m ∈ N� be the interarrival times of the Poisson process

�N�Bε�0�c × �0� t��� t ≥ 0� with intensity ν�Bε�0�c� and let �Zm� m ∈ N� be
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the sequence of random variables

Zm =
∫
Bε�0�c

xN�dx� 	σ�m�
��(4.6)

They are i.i.d. random variables taking values inBε�0�c each with law q̃ where
q̃�C� = �ν�C�/ν�Bε�0�c�� for B ∈ ��Bε�0�c� and independent of all the σ�m�’s.
We now construct a process R̃ as follows:

R̃�t�=ηr�0� t�� 0 ≤ t < σ�1��
R̃�σ�1��= exp�F�Z1�� ◦ R̃�σ�1�−��

R̃�t�=ηR̃�σ�1���σ�1�� t�� σ�1� < t < σ�2��
R̃�σ�2��= exp�F�Z2�� ◦ R̃�σ�2�−�

(4.7)

and so on inductively.
Note that since there are only a finite number of “large” jumps in each finite

time interval, it follows from the above construction that ζ = ∞ (a.s.).
The next proposition follows immediately.

Proposition 4.1. The process R̃ defined by (4.7) solves the SDE (4.1) and
hence is equal to R a.s.

4.2. Interlacing in M. In this section, Ô will denote the natural action
of � �d� on C∞�O�M�� given by Ôg�r� = g�rO� for each O ∈ � �d� and g ∈
C∞�O�M��. Let R be an isotropic horizontal Lévy process in O�M�, then by a
similar argument to Proposition 4.3 of [1], we deduce that Ô� n = � n for each
n ∈ N and each O ∈ � �d� from which we can easily deduce that each bn = 0,
that �aij� = aI with a > 0 and that ν is isotropic in the above interlacing
argument.
We can now easily constructX as an interlaced process by projection of the

above construction.
First we need some more notation and conceptual structure. For each n ∈ N,

define γ�n��t� = π�β�n��t� for all t ≥ 0 where β�n� is defined by (4.3) with
b�n� = 0 and �aij� = aI. Then each γ�n� is a Brownian motion starting at p
with generator 1

2a�.
Let r be a frame at p; then since r is a linear isometry it follows that

r�Bε�0�� = Ur
ε�p� is an open neighborhood of 0 in Tp�M� and r�Vn� = Vr

n�p�
gives rise to a sequence of Borel sets in Tp�M� such that Vr

n�p� ↑ Ur
ε�p� as

n → ∞.
Since ν is isotropic, we obtain a field of Lévy measures 	νp� p ∈ M
 defined

on each Tp�M�. For each n ∈ N, consider the sequence of random variables
�X�n�

m � m ∈ N� defined above in (4.2), then the prescription X
�n�
m �p� = r�X�n�

m �
defines an i.i.d. sequence of random variables taking values in Vr

n�p� whose
laws are independent of the choice of frame r satisfying π�r� = p. We can sim-
ilarly associate to the sequence �Zm� m ∈ N� introduced in (4.6), a sequence
of i.i.d. random variables �Zm�p�� m ∈ N� taking values in Ur

ε�p�c.
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We construct X as follows. First for each n ∈ N, we interlace the process
γ�n� with jumps from the field of sequences �X�n�

m �p�� m ∈ N� p ∈ M� [by
projection of the scheme in (4.4)] so that the jump at the time τ�n�m is along the
geodesic Exp�X�n�

m ��γ�n��τ�n�m ��. By Theorem 4.1 and continuity of π, we deduce
that this construction gives rise to a sequence which converges uniformly on
bounded intervals (a.s.) to a Lévy process X̃ on M with generator ˜� where
for f ∈ C∞�M�� p ∈ M,

˜� f�p� = 1
2a�f�p� +

∫
Ur

ε�p�
�f�Exp�y��p�� − f�p��νp�dy�

We can now construct X by interlacing X̃ with jumps from the field �Zm�p��
m ∈ N� p ∈ M� [by projection of the scheme in (4.7)] so that the jump at the
time σ�m� is along the geodesic Exp�Zm��X̃�σ�m�−��.

4.3. Example: symmetric spaces. Let �G�K� be a Riemannian symmetric
pair (see [13], page 209) so that G is a connected Lie group, K is a closed
subgroup, the group AdG�K� is compact and there exists an involutive ana-
lytic diffeomorphism σ of G such that K lies between the set of fixed points
of σ and its identity component; then M = G \ K is a Riemannian globally
symmetric space. Furthermore (see [18]) if we assume that G acts effectively
onM then G is bundle isomorphic to O�M� and hence the structure group K
is isomorphic to O�d�. In this case, as is discussed in [1], the horizontal Lévy
process in O�M� is (up to isomorphism) a Lévy process in G in the sense of
[3]. Now let ρ be an isotropic Lévy process inM as described above and let αt

be the law of each ρ�t� for t ≥ 0. We say that the process ρ is spherical if

αt�τ�k�A� = αt�A�

for all t > 0� k ∈ K and A ∈ ��M�, where τ is the natural action of G onM�
that is,

τ�g�hK = ghK

for all g�h ∈ G. It was shown in [2] (see also [11], [12]) that ρ is spherical if
and only if its generator is of the form

� f�p� = 1
2a�f�p� +

∫
Tp�M�−	0


(
f�Exp�y��p�� − f�p�)νp�dy�

where a ≥ 0 and each Lévy measure νp is spherically symmetric. Now it
is easy to see that the requirement that νp is spherical is precisely that ν is
isotropic. Hence we deduce that the most general isotropic Lévy process
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is spherical. Note that we do not have to make a compactness assumption
onM in this case since non-explosion in a finite time interval (a.s.) follows in
this case from the corresponding non-explosion of the process in G (see [3]).
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[1] Applebaum, D. (1995). A horizontal Lévy process on the bundle of orthonormal frames over
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[4] Bertoin, J. (1996). Lévy Processes. Cambridge Univ. Press.
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flows. J. Math. Kyoto Univ. 31 99–119.

[11] Gangolli, R. (1964). Isotropic infinitely divisible measures on symmetric spaces. Acta Math.
111 213–246.

[12] Gangolli, R. (1965). Sample functions of certain differential processes on symmetric spaces.
Pacific J. Math. 15 477–496.

[13] Helgason, S. (1978). Differential Geometry, Lie Groups and Symmetric Spaces. Academic
Press, New York.

[14] Hunt, G. A. (1956). Semigroups of measures on Lie groups. Trans. Amer. Math. Soc. 81
264–293.

[15] Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Pro-
cesses. North-Holland, Amsterdam.
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feomorphisms. In Itô’s Stochastic Calculus and Probability Theory (N. Ikeda, S. Wan-
tanabe, M. Fukushima and H. Konita, eds.) 197–212. Springer, Berlin.



184 D. APPLEBAUM AND A. ESTRADE

[21] Malliavin, P. (1997). Stochastic Analysis. Springer, Berlin.
[22] Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion. Springer,

Berlin.

Department of Mathematics
Department of Statistics

and Operational Research
Nottingham Trent University
Burton Street
Nottingham NG1 4BU
England
E-mail: dba@maths.ntu.ac.uk

MAPMO - UMR 6638
Department de Mathematiques
Universite D’Orleans
B.P. 6759
45067 Orelans Cedex 2
France
E-mail: estrade@ns.labomath.univ-orleans.fr


