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ON THE CAUCHY PROBLEM FOR
PARABOLIC SPDEs
IN HOLDER CLASSES

By R. MIKULEVICIUS

Institute of Mathematics and Informatics, Vilnius

We study Cauchy’s problem for certain second-order linear parabolic
stochastic differential equation (SPDE) driven by a cylindrical Brownian
motion. Considering its solution as a function with values in a probability
space and using the methods of deterministic partial differential equations,
we establish the existence and uniqueness of a strong solution in Hélder
classes.

1. Introduction. We consider the second-order linear parabolic SPDE of
the type

1 {ﬁtu =1/2aY9;u+b'du+cu+f+(hu+gW, inRE,
u(0,x)=0, in R?,

where RS = [0, T] x R%, W is a cylindrical Wiener process in some Hilbert
space Y. The coefficients a”/, b’, ¢ and f are real-valued functions, a” is de-
terministic, while 4, g are Y-valued. The matrix A = (a¥) is assumed to be
symmetric and nonnegative. An important example of (1) is the Zakai equa-
tion [see Zakai (1969), Rozovskii (1990)]. It arises in the nonlinear filtering
problem. Assume that the signal process X, is a diffusion process defined by
the It, equation,

t t
Xt=X0+f0 b(Xs)derfO o(X,)dw,,

where w is a one-dimensional Wiener process and X, has a density function
p(x). The observation process is given by

t
Z, = [O n(X,)ds + @,

where w is a Wiener process independent of w. Then for every function ¢ such
that E|(X,)|? < oo, the optional mean square estimate for (X,), ¢ € [0, 1],
given the past of the observations %% = o(Z,, s < t), is of the form

j _ Eel(X)L|77]
' Ep[(,|77]
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where ¢, = exp{ /s M(X,)dZ,—1/2 [; |h(X,)| ds} and dP = {(1)"'dP. Under
some assumptions, one can show that

Esli(X )67 %] = [ v(t, x)(x) dx,

where v(¢, x), referred to as unnormalized filtering density function, is a so-
lution of the Zakai equation

dv = [1/2(c%v),, — (bv),]dt + hv dZ, t >0, v(0,x)= p(x).
So, for u(¢, x) = v(t, x) — p(x) we have

du= [1/2(02u)xx - (bu)x + 1/2(02p)xx - (bp)x] dt
+ (hu + hp)dZ, t>0, u(0,x)=0.

(2)

Since Z is a Wiener process with respect to P, (2) is obviously a particular
case of (1).

The general Cauchy problem (correlated noise case in the nonlinear filtering
problem),

3) { du=1/2a¥ diju + biodu+cu+f+ (a'iuxi +hu+ g)W, in RS,
u(0,x) =0, in R?,

has been studied by many authors. When the matrix (¥ —20 /) is uniformly
nondegenerate there exists a complete theory in Sobolev spaces W™ 2(R?) [see
Pardoux (1975), Krylov and Rozovskii (1977), Rozovskii (1990), Da Prato and
Zabczyk (1992) and references therein] and in the spaces of Bessel potentials
HEY(R?) [see Krylov (1996)].

Equation (1) in Hélder classes was considered first in Rozovskii (1975) re-
garding the unknown function as a deterministic one but taking values in a
probability space. The results in Rozovskii (1975) were not sharp. In this ar-
ticle we adopt the same point of view and use the methods of deterministic
PDEs [see Gilbarg and Trudinger (1983), Friedman (1964), Ladyzhenskaja,
Solonnikov and Uralteseva (1968)]. Using the fundamental solution of the
heat equation we represent a solution of (1) in a convenient form and derive
the Holder estimates for the equation with coefficients independent of space
variables. Our main results are contained in Section 4 (see Theorems 19, 18,
17). By standard methods, we obtain a priori interior Schauder estimates for
the general SPDE. The existence and uniqueness result then follows by conti-
nuity arguments. We show (see Theorem 19 below) that for (a/), b, c, f € C#
and A, g € C*F there exists a unique strong solution u € C**# of (1). So we
generalize the corresponding results for the deterministic parabolic Cauchy
problem [see Friedman (1964), Mikulevicius and Pragarauskas (1992)]. In
Mikulevicius and Rozovskii (1998) the uniqueness and existence of a weak
(soft) C2*A-solution of (3) was proved when a¥, b’, ¢, o, h, g are deterministic
CP-functions.
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We finish this section by introducing several notations to be used through-
out the paper.

Let L,(Q,Y,P)=L,(Q,Y,7,P), p e[1,00] be the space of Hilbert space
Y -valued random variables X on a complete probability space ({2, 7, P) with
finite norm | X|, = X[,y = (EX[)"?, |X]. y = esssup,|X(o)ly. If
Y = R we write simply L ,(Q, P), | X],.

For an open subset D € R, denote D = [0, T] x D; Dy =[0, T] x D.

Let Bf (Dr,Y) be the space of locally bounded L ,(Q,Y, .7, P)-valued F-
adapted functions g on Dy, that is, for each compact subset K C D ||g|lo, : &,
= supg, (E|g(¢, x)|¥)YP < oo, and for each ¢ and xg(t, x) € L,(Q,%,Y,P),
where F = (%) is an increasing right continuous filtration of o-subalgebras
of 7. Let B*(Dy,Y) = {g € Bioo(Dr, Y): ligllo. , = lIgllo, p:7 = I&ll0, p:0, =
supp, (E[g(t, x)|y)"/? < oo}.

For L ,(Q,Y, .7, P)-valued function u on Dy, we denote its partial deriva-
tives in L,(Q,Y,7,P)-sense du = d,u = du/ix;, du = aiixju = 2u/
dx;d xj, ete.;du = du = (d1u, ..., dyu) = gradient of u with respect to x.

Let C™P(Dy,Y) = {g € B{..(Dp,Y): g is m times continuously differen-
tiable in x as L,(Q,Y,%,P)-valued function and its derivatives in
L, (Q,Y,7,P)-sense g =dkg e Bl (Dp,Y) for each k < m}.

C™ P(Dp, Y): the set of functions g in C™ ?(Dp, Y) all of whose derivatives
in L,(Q,Y,7,P)-sense of order less than or equal to m have continuous
extensions to Dy and finite norm || g|,,. , = X< 19¥&llo, -

For B € (0,1), C™*FP(D;,Y) is the set of all g € C™ P(Dy, Y) with finite
norm,

||g||m+ﬁ,p = ||g||m+B,p;T = ||g||m+B, p; Dy = ||g||m,p + [g]m+B,p’

where [g],.1g,, = SUp;, oz, (Bl (1, ) — ™ g(t, Y)I§)V?/|x — yP.

If Y = R we omit Y in the definition of these spaces and write simply | - |
instead of || - ||.

c=C(,...,-),c=c(,...,-) denotes constants depending only on quanti-
ties appearing in parentheses. In a given context the same letter will (gen-
erally) be used to denote different constants depending on the same set of
arguments.

2. Auxiliary results. Let (Q, 7, P) be a complete probability space with
right continuous filtration of o-algebras F = (%),.o. Let W be a cylindrical
Wiener process in a separable Hilbert space Y. This means that we have a
family of continuous martingales W,(v), v € Y, such that

(W), W), =t(v,v)y Vo, v eY.

For an F-adapted Y-valued function f such that fé |fs|% ds < oo P-a.s. for all
t, we can define Ito’s stochastic integral denoted

/OtfdeS=/0tfsWsds.
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It is a real-valued local martingale such that ([; f,dW,), = [i |f,|% ds.
2.1. Estimates of stochastic integrals.

LEMMA 1. Let (u,) be a measurable family of o-finite measures on a mea-
surable space (A, 7). Let [, g be Y-valued ¥, ® o/-adapted functions on

[0,T] x Q x A such that [, | [, &(s,a) puy(da)l} ds < oo and [ [,|f(s,a)
ly| ms| (da)ds < oo P-a.s. Then for each p > 2 there exist C independent of T
such that

T
‘ [ [ s(s.my(da) W, ds
0 JA
4)

T 1/2
<Csuplg(s.all,( [ Iu(AFds)
p s,a

[ ), . tdayds

T
<sup|f(s.a)l, [ |ul(A)ds.
p s, a

PROOF. If p > 2 we have by Minkowsky inequality | [, g(s, a) uy(da)|3 <
(/4 18(s, a)ly| 1sl(da))? and the second inequality in (4). Using Doob’s and
again Minkowsky’s inequalities, we obtain

i/OT/Ag(s, a)y(da) W, dsiPSCI/OTI/A 2(s, a) py(da) ids)l/z

p

<] [/ ([, s oy @) sy
T 1/2
c([ 1] let @lyluldards)

1/2

=c([ ([ Vet lul(da)) ds) .

COROLLARY 2. Let the assumptions of Lemma 1 be satisfied. Assume that
there is a nonnegative o-finite measure da on (A, o7) such that p,(da) =

p(s,a)da. Then
= [ ([, tete @lpts. rda) as)

T 1/2
<Cswpleal, [ ([ e?ds)  da.

p

1/2

'/OT/Ag(s, a)u,(da) W, ds

We will need some estimates for singular stochastic integrals. Assume we

are given two deterministic functions H g”;)(x), m=12s < t,x € R% For
B € (0,1) we will need the following assumptions A(m)(m =1, 2,):

(a) For all t,

[([]E20]021 A1y )" ds < oo,
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(b) There is a constant C, such that for all t, x,

(/o = @[ ds)l/m = Gyl ™.

(¢) There is a constant Cy such that for all ¢, x,

¢ 1/m
([ 1ot ds) < Colal .
0

(d) For each vy € (0, 1) there is a constant C5 such that for all ¢t,6 > 0, |x|

< s,
/Ot

If A (1) is satisfied, we can define the operator on C? ?(R%),

[, HR @] ds=c,

t
(5) At x) = [ [ Hix = )(F(s. 9) — F(s. %)) dyds.
If A (2) is satisfied, we can define an operator on C# ?(R%, Y),
t .
©  2fx)= [ [HE = 9)(F (s, 3) ~ fls, 2)dy W, ds.

LEMMA 3. Let A(m), m = 1,2 be satisfied. Then #'f € CPP(R%), m =
1, 2, and there is a constant C independent of T such that

[#'F1y. i < C(Cr4 Co + C3)[f g, pir-

PROOF. (i) Estimate of [#" ] ,. Fix any x, &, t. Writing 6 = |x — &|, £ =
1/2(x + i), we consequently obtain by subtraction

A, x) - A, x) =1+ I+ I3+ 1,

where the integrals I,,i = 1,2, 3, 4, are given by
¢
L= [ HD@-lf(sy) - f(s.2)]dyds.
0 JBs(¢)
t
L=—[ [ HYGE-ylf(s.y) - (s D)]dyds,
0 JBs(£)
t
L= [ HOE (s~ f(s. 0)]dyds.
0 JBs(é)°

L=[ [ (H -y~ B E - y)F(s. )~ f(s. )] dyds.
0 JBs(¢)°
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By Lemma 1,

! | 271 |
Dy 1Ll = CUF Yy p [ [, [HE o= )] = o dy ds

=CCy [ Jx— oy dy = CC18°IFlp

35/2(X

Applying Lemmas 1 and 4 again,

t
Zsl, < CUf1p. p0° |

[, = 9)db|ds = CC31f 1y

If % is an arbitrary point on the segment joining x and x and |£ — y| > §,
then %|§ -y =X -y > %|§ — y|. Therefore by Lemma 4,

[14]p = C [f]ﬁ»l’/ol /ot /|§—y|25

= CCodI gy |,

axHﬁ (rxe+(1-r)x—y) l |x — y|ﬁdy dsdr

Jeo & -y B dy < Cc2aﬁ[f]ﬁ,p'

(ii) Estimate of [H2f]5,p. Denoting 6 = |x — x|, £ = %(x + X) we obtain by
subtraction H2f (¢, x) — H2f(t, %) = I, + Iy + I35 + 1, where

I = /t/ HPf (x — y)f(s, y) — f(s,x)]dy W ds,
0 /Bs(&)
52_/7m HP(Z - y)[f(s,y) — f(s, &) dy W ds,
0By
Iy= /t/ HP) (& — y)[f(s, %) — f(s, x)]dy W ds,
0 JBye "

L= tf (HP) (x — y) = H) (% — y)f (s, ¥) — f(s, x)]| dyW ds.
0 JBs(¢)°

By Lemmas 1 and 4,

t
|Il|p+|12|p < C[f]B,P</O </B (%)
35/2(X

L@ b2
([ #2-ypds)  1x=ylPdy

- 2 1/2
B = )|l =P dy) ds)

< Clfls., [

335/2(95)

<Clflp,Co [ lx=y P dy < CCilflp, .

35/2(X

Again by Lemmas 1 and 4,

¢ 2 1/2
I,], < Co" HY (% - d)d)
Taly = Cof 1L, (f ([, HONE =) dy) ds
= CC35B[f]B,p-
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If x is an arbitrary point on the segment joining x and x and |£ — y| > §,
then %|§ -yl =2 —-yl = %|§ — ¥|. So by Lemmas 1 and 4 we achieve the
estimate

1 t
2 _
Ly =0ty [ ([ ([ 1B+ 0= )
2 \1/2
|x—y|ﬁdy> ds) dr

1 t 1/2
@) .= . _ 2
<Colfls, |, /lg_y>5( [ o Hrz + A=)z = y)| ds)
|x — y|P dy

= C5[fla., [

e dy < COP T 0

2.2. Inequalities for the fundamental solution of heat equation. Consider
a heat equation in (0, T') x R¢,

(7 du = %aij d?ju —\u,
where a = (aij ), t € (0, T') is a measurable nonnegative symmetric matrix and
A > 0. The summation convention that repeated indices indicate summation

from 0 to d is followed here as it will throughout. It will be assumed that
there exist Ay, K > 0 such that

(8) lal < K,al &&= lé?  VE=(&y,..., &) € R
Let A, , = (/! a¥ dr)i<; j<a- The function
1
A _
Gi,s (¥) = (2m)72(det A, )12

exp{—1/2(A;18x, x)—A(t—s)}, s <t,

satisfies (7) for each x, ¢ > s d¢-a.e. Obviously, G} ; (x) = exp —A (¢ — S)G?,S(x).
Define

Bt},Ls(x) = G?—&-h, s(x) - G?, s(x)
9)

t+h 1 ..
= /t 5@ PG (x)dr.

REMARK 1. Let (8) be satisfied. Then:

(a) For k > 0 there exists a constant C = C(Ag, K, k, m,d) such that for
each t > s, x,
(10) 9@, ()] = C(t — 5)" D/ expl—clx[2/(t - 5)}.

(b) For k = 0,1 there exists a constant C = C(Aq, K, k, m, d) such that for
each s <t, h >0,
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t+h
B () <C [ (r = 8) @D exp{—c|x[?/(r — )} dr
t

< Clx|O(F(|x|/VT=5) = F(|x|/Vt + 1 = s)),

v

where F(s) = [§ rét*~1exp{—cr?}dr.

REMARK 2. Let (8) hold. Then:

(a) For k > 0,m > 1, m(d + k) > 2 there exist a constant C = C(Ay, K, k,
m, d) such that for all t > 0,

t
/ |0*GY  (2)|™ dr < Cla| ™R (|x]/V)
A :

< C|x|—m(d+k)+2’

(12)

where F(s) = [ rmd+h=3 exp{—cr?} dr.

(b) For k = 0, 1 there exists a constant C = C(Ay, K, k, m, d) such that for
each s <t, h >0,

t
(13) /0 |0 B! (x)|™ ds < Cmin{|x| (@HRImTLRL2 || mmldrR) )

PROOF. Indeed, we have by (10),
t ¢
[ 16, (o)lmdr < € [ (1) @D expl—clxl/(t — 5)} ds

< C|x|_m(d+k)+2F(|x|/\/Z)

and (12) follows.
Now for £ =0,1, 2,

t
/0 7% Bl ()™ ds

< C|x|~™d+h) /Ot (F(|x|/\/t —s)— F(lx|/Vt+h— s))m ds

1 1
Jt—s Jt+h-—s

t
< Cmin{|x|—(d+k)m+1/ (
0

and (13) follows. O

) ds, |x|_m(d+k)h}

LEMMA 4. Let (8) hold. Then:

(a) Form =0, k> (2/m+1-d)Vv1,y e (0,1)thereexist C = C(ry, K, &, vy,
m, d) such that for each s < t,a > 0, |x| < va,



82 R. MIKULEVICIUS

f

m

dr

[ Gl (vdy
lx+y|za '

-/ [ 76 =

(b) For m = 1,2,k = 0,1,y € (0,1) there exist C = C(Ay, K, k,y,m,d)
such that for each s < t,a > 0, |x| < ya,

Lt
(15) =/ t /|x+y|§a "Bl (y)dy

< Cmin{a'™*"n'2 q=*mp}.

(14)

m
dr < Ca? "k,

m

dr

[ BL(y)dy
|x+y|>a ’

dr

PrOOF.  (a) Ifk > 1, [9*G}, (y)dy = 0. So,

|
(16) !/ &kG?,r(y)dy! = | (?kG?,r(y)dy!-
| /a4 y1<a |

[ | Jlxt+ylza

Denoting B(r) the right side of (16) we have by (12) (Remark 2),

B G} d )m
. = ([ G 0y
< CP((1+ a/VT— )" (6= r) ",

where F(s) = [; p?~1 exp{—cp?} dp. On the other hand, it follows from (16)
and (12) (Remark 2),

B ey d
=( [, 10 0l d)

<CF((1—y)a/Vt—r)™(t —r) ™2,

where F(b) = F(c0) — F(b). Let F(b) = min{F((1 — v)b), F((1 + y)b)}. So
by (17), (18)

(18)

B(r) < CF(a/vt —r)"(t —r) ™2,
Thus,

t ¢t
/ B(r)dr<C / Fla/NE—r)"(t — r)"™*2 dr.
0 s
Introducing a new variable of integration 7 = a/+/t — r we have
t oo _
/ B(r)dr < Ca?™* [ F(F)ym k=3 dF.
s 0

Since F(b) < Cb?, if b < 1, and F(b) < Ce=" for large b, the inequality
follows.
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(b) Since [ 1a’d*%,G% (y)dy = 0, the first equality in (15) follows. Denote

D(r)= | /‘ e %aif&kﬂ?jGi’,s(y)dy‘
(19) x+y|<a

— ‘ / %aij&ka?jG(r),s(y)dy‘.
[x+y|>a
By Remark 1 and using the first equality, we have

D(r)=<C (r —s) D2 exp{—c|y|*/(r — 5)} dy
[y|=(1+y)a

< CF(a/r —s)(r —s) *k+2/2,

where F(s) = félﬂ)s p?~1exp(—cp?)dp.
On the other hand, by Remark 1 and the second equality in (19),

D(r)<C (r —s) 22 exp{—c|y|*/(r — 5)} dy
[¥|=(1=y)a

= CF(a/Jr —s)(r—s) k22,
where F(s) = Ja s p?Lexp(—cp?)dp. Let F(s) =min{F(s), F(s)}. Then

- | [ &kBMy)dy)
|x+y|<a ’

[ *Bl(ydy
jerslza

t+h
X C/ F(a/Nr—=s)(r—s) 22 g
t

< CaMG(a/Vt—35)— Gla/Vi+ h—s)],

where G(s) = [; F(u)u*"'du is a bounded and boundedly continuously dif-
ferentiable function. Then for m =1, 2,

/(:[G(a/\/t —8)— G(a/Vt+h—s)|"ds
< Cmin{ah'?, h}.
Thus,

/

m t m
[ akB?,.<y)dy] ar=[|[  #Bdy| ar
|x+y|>a ’ s | J|x+y|<a ’

< Cmin{a*"hY2 a=*mp}. i

3. Linear equation with constant coefficients. Let (), 7,P) be a
complete probability space with right continuous filtration of o-algebras F =
(Z;)o<:- Let W be a cylindrical Wiener process in a separable Hilbert space Y.
This means that we have a family of continuous martingales W,(v), v € Y,
such that

(W), W), =t(v,v)y Vo, v eY.
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For an F-adapted Y-valued function f such that fot |fs|% ds < oo P-a.s. for all
t, we can define Itd’s stochastic integral, denoted

/OtfdeF/othWsds.

It is a real-valued local martingale such that ([; f,dW,), = [i |f,|% ds.
We start with the equation

(20) {(9tu =1/2 aij diju — Au+f + gW, in Dy,
u(0,-)=0, in D,

where a;’ are measurable deterministic functions on [0, T'], A > 0 and a¥ = o/
for all i, j. The summation convention that repeated indices indicate summa-
tion from 0 to d is followed here as it will be throughout. It will be assumed
in this section that the following condition holds.

Al. There exist Ay, K > 0 such that

la| < K,al &¢; > Ao|é]? for each é = (&1, ..., £;) e R and ¢ € [0, T].

DEFINITION 5. Let f € Bf.(Dr), g € Bi,.(Dy,Y). We say that (20) holds

for u € C%>P(Dy) or u € C*>P(Dy) is a solution of (20) if for each (¢, x) € Dy
P-as.,

¢ .. t .

21 u(t,x)= / (%agf &%J-u(s, x) — Au(s, x) + f(s, x))ds + / g(s,x)Wyds,
0 0

where [; g(s, x) W,ds = [; g(s, x)dW,.

3.1. Representation formula. As a part of the preparation for the regular-
ity and existence considerations, we will derive some representation formulas.
Let

1

A —
s (¥ = Gy (det A, )72

exp{—l/Z(Azlsx, x)—A(t—3s)}, s <t,

where A, ; = ( fst a¥ dr)i<i, j<q¢- The verification of the following relations for

s < t is straightforward:

02 9,G}  (x)=1a7 % G} [ (x) = AG} , (x), dt-ae., t>s,
9,G; ((x)= —% a¥ ﬁ?jG?’ (%) + )\Gﬁ" < (x), ds-a.e., s <t

The following statement follows easily by the Ito formula, (22) and (21).
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LEMMA 6. Assume (20) holds for u € C*P(Dy), f € BL.(Dr), g €

loc

BY (Dp,Y). Then forr <t,x,y € D,t >0, ¢ € C*(D) we have P-a.s.,

G}, (x, y)u(r, y)e(y)
=[G40 9F 5 26 + G (. M), e (IW,
(23) +1/2a{9, (d;u(s, )G} (%, »)e(¥))
— 9y, (u(s, )3y G (x, 9)e(¥)) = 3y, (u(s, )Gy, (x, ¥)d j0(¥))

+2u(s, )0, G, (%, 1)0i0(y) + u(s, )G, (x, 1)L ()} | ds.
Here we derive a representation of a solution to (20) in D.

LEMMA 7. Assume (20) holds for u € C>?(Dy), f € BY (Dr), g € BY (Dr,

loc loc

Y). Then for ¢ € C3°(D) such that ¢(x) =1and t > 0 P-a.s.,

ult ) = /ot/G?’s (x = ¥)(f(s, y)e(y)dyds
+ /Ot/ G (x—¥)g(s, y)e(y)dy W, ds

t .. 2
+1/2 /0 fa;’u(s, WG (x = 1) 0(y)

—-239;G} (x — y)d;0(y)} dy ds.

PrROOF. Applying Lemma 6 to u, f, g, ¢ and integrating with respect to y,
we get

[ G = putr e dy=[ [1G}, (= »f (s, 9)e()
24) +Gi s (x = 5)8(s, Y)e(NW,
+1/2a u(s, Y){G s (x — y)350()
~ 20,61, (x — )3ie(3)} ds dy

for each r < t. We see immediately that

[ ] Gl = s o) dyW, ds
(25)

= _//;: Gi‘,s(x - y)g(S, y)@(y) Wstdy
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Indeed, since ¢ € C°(D) and g € B .(Dy, Y) we have

loc

sup |g(s, 1)),y +sup [ la(s, y)e()l3 y dy
s<T,y s<T

(26)
< sup [g(s, (W3 y + Sup/|g(3, MeWN3 y dy < oo.
s<T,y s<T

Let M,(y) = [y G1 < (x~5)8(s, )e(y) W, ds,and N, = [7 [ G} . (x—y)&(s, ¥)
o(y)dyW . ds. Inequality (26) guarantees that for each yN,, M,(y), N, =
[ M,(y)dy are well defined. We have

EM, (9 =E [ |G}, (x— »)g(s. el ds
= [ Gl (x = Y Elg(s, i e(r) ds,
BN =E [ [|[ 61, (x~ n)gs, e dy| ds

-/ [ G 9 GE (x— 9B, 9), &(s, )y

x o(¥)e(y)dydyds.
Since M ,(y) has a compact support in y and Gf: s (x—y) is uniformly bounded

for s € [0, r] N, is well defined. Also,
EM,()M,(3) = [ G, (x =) G, (x ~ E(g(s. 9). 8(s.)y

< o()e() ds,
2
ENZ = B( [ M,()ay )

=[[[ G- G- 9E(gs. 5. 865 9)y
< e()e(y)dsdydy.
E([M,0)dN,) = [ [ ] 6= 3G e = 9B(e(s. 50 206 3)y

X e(¥)e(y)dydsdy.

So, E(N, — N,)? = 0 and (25) holds. It means we can interchange integrals
in (24). Passing to the limit as r — ¢, we obtain the representation of u(¢, x).
O

From this statement follows easily the uniqueness result for the Cauchy
problem,
@7 { dyu=1/2 aijﬁiju —Au+f+gW, in RY,
u(0,x) =0, in R?.
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THEOREM 8. Assume (27) holds for u € C>?(R%) N BP?(R%), f € BP(RY),
g € BP(R},Y), p > 2. Then for each (t, x) € R} we have P-a.s.,

u(t,0) = [ [ G = )1, ) dyds

+/t/G)‘ (x - y)g(s, y) dy W, ds.
0 t, s > S

PROOF. Let ¢ € CP(R?) be such that 0 < ¢ < 1, ¢(x) = 1, if |x| < 1,

¢(x) = 0, if |x| > 2. Define ¢, (x) = ¢(x¢), € > 0 and apply Lemma 7. For
|x| < &' we have, P-a.s.,

u(t, x) = /ot/G?,s (x — ¥)f(s, ¥)e.(y)dyds
+ /Ot/ G (x—y)&(s, y)e (y)dy W, ds

6o 5
+1/2 /0 /a?u(& NG o (x = y)750.(y)

—20,G}  (x — y)d;0.(y)} dy ds.

Using the boundedness of f, g, u we obtain the representation by passing to
the limit, as e — 0. O

3.2. Interior Holder estimates. Introduce the operators R*: BP(R%) —
BP(R$), R*: BP(R%,Y) — BP(R%) defined by stochastic integrals,

R = R\f(tx) = [ [Gh, (e~ 0)f (s »)dyds, (%) € B,
feBrRE), =2,
Rlg=R'g(t.0)=[ [ G}~ als y)dyW,ds, (1, %) € R,
g€ BP(R%,Y), p=>2.

Indeed, for each (¢, x) € R% applying Lemma 1 with u (da) = G} (x—y)dy,
we have

. T
R (e, )l = Csuplle(e. )l ( [ wB9)ds),
Sy

T
R (1. 0], < Csup|f(s. ), [ (R ds,
S

and obviously uy(R?) = [ G} ,(y)dy < C [exp{—c|y*} dy < .

Now we show that Hélder continuity in the L ,({), 7, P)-sense of f, g im-
plies differentiability and Holder continuity in the L ,(Q, 7, P)-sense of R*f
and R'g.
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LEMMA 9. Let f € CPP(R%), g € C'*BP(R4,Y), p > 2. Then R'f, R'\g ¢
C?>P(R$), and for each (¢, x) P-a.s.,

AR = [ [ 26, (= Df (s 3) - f(s, 0)]dyds,
AR ) = [ [ 3,60, (v~ 9o 865, 9) - 3,805, ) dy W, ds,
GR (60 = [ [ 3,6~ DU 3 ~ f(s, )] dyds
= [ [5G = Df (s vy s,
R gt = [ [ Gl (e N 865 9) — igs, 2)] dy W, ds
+ fo 9;8(s, x) W, ds = fo t f Gl (x — ¥)9; g(s, y) dyW , ds.

PrROOF. For r < t we define
Atrx)= [ [ Gl (x= (s, y) dyds,
B(t.r.x)= [ [ Gl (x~ )&(s. y)dy W, ds.
By virtue of the estimates (10) for each £ > 0,
AL, 7, x) = / / G (x — y)f (s, y)dyds,
0 .

S B(E, 7, x) = /Or/ak G, (x — y)g(s, y) dyW, ds.
Since for £ > 1, [9*G} ;(x — y)dy = 0 we see immediately that for each
t, J,
FAE T = [ [5G (x = 95, ) ~ (s, ))dy s,
#B(trx) = [ [0;G), (= )0 (5. 9)
—0,8(s, x))dy W, ds.

Also, obviously,

0Bt r.x) = [ [3,G},(x = y) g(s. ) dy W, ds
= [ [ Gl(x =9 (s, 5) — i (s, ) dy W, ds

+ /r 9;8(s, x) W,ds.
0
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Consider
Ao, 0 = [ [ G- D3 ~ (s 0) 1 dyds,
Blt.v, )= [ [9;GL, (6= 3101 805 9) — ds8(s, )] dy W, .

By Lemmas 1 and 4 these functions are well defined and |A(¢, v, x)|, < C(t—
v)P/2,|B(¢, v, x)|, < C(t — v)P/2,
Thus the first two equalities follow by uniform convergence:

sup |A(t, r, x) — R (8, x)|, + |B(t, 7, x) — Rg(t, x), >0 asr—t,

0% A(t, T, x) — A(2,0,x)|, < |A(t, 7, 2)|, <C(t—1)P? > 0 asr—¢,
0% B(t, r,x) — B(t,0,x)|, < |B(t,r,x)|, <C(t—r)f* >0 asr—t.
Similarly we prove that dA(¢, r, x), dB(r, t, x) converge uniformly to the right-

hand sides of the last two equalities of this lemma. So the statement follows.
O

Now we can prove that the formula for u given in Theorem 8 defines a
solution of the Cauchy problem (27).

THEOREM 10. Let f € CPP(R%), g € C*AP(RE,Y), p > 2. Then u =
RMf + R g is a solution of the Cauchy problem (27).

ProOF. Denote for s < ¢,
It 5,%) = [ GL,(x = 9)f (s, y)dy,
It 5,%) = [ G}, (x = )g(s, y) dy.
Then for s < ¢, £ > 0 we have P-a.s.,
JhJ(t, s, x) = /ﬁngs (x = ¥)f(s, y)dy,
Pt s, %)= [ G, (x = y)a(s, y) dy.
By the estimates (12), Remark 1,

B (b5, %)= [ EGL, (x = Yf (s, ¥) — F(s.0)]dy ds,

(28)
It 5, %)= [0, G}, (x = ¥ &(s, y) — d:8(s, ©)] dy.
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By Lemma 1, and 4 and (28),

t
[ 182I(r,5,%)|, dr < CIF 1, (¢ = )72,

(29) N
[ 15T 5. ) dr = Clogly (¢ - )P,

Then for each s < ¢,

t ..
J(t,8,x)=f(s, x) —i—/ (1/2a’rfo7?jJ(r, s, x)— AJ(r,s, x))dr,
~ t .. ~ ~
J(t,s,x)=g(s,x)+ / (I/Za;J&?jJ(r, s, x)— Ad(r,s, x))dr.
Since u(t, x) = fot J(t, s, x)ds+ f(f J(t, s, x) Wds, we have for each ¢t P-a.s.,
t ¢ .
u(t,x) = / f(s,x)ds +/ g(s, x)W,ds
0 0
ot 3 tot . ,
—i—/o /S 1/2a’rfo7?jJ(r, s, x)drds —1—/0 fs 1/2a’rfﬁ?jJ(r, s, x)dr Wds
t ot £t .
—/\/0 / J(r, s, x)drds — A/O / J(r,s, x)dr W, ds.
By (29) and stochastic Fubini’s theorem,
t t .
u(t,x)= [ f(s,x)ds+ [ g(s,x) W,ds
0 0
t L. pr t .. ~ .
+/0 1/21:1&‘,1/0 &?jJ(r, s, x)dsdr+/0 1/2a’ﬂ/0 z?lsz(r,s, x)Wdsdr
t or t or .
—)\/O /0 J(r,s, x)dsdr—)\/o /0 J(r,s, x) Wdsdr.
Now the statement follows immediately by (28) and Lemma 9. O

The following two lemmas are crucial for the Cauchy problem and interior
Holder estimates.

LEMMA 11. Let f € C#P(R}), g € C**B-P(R%,Y), p > 2. Then R f, R'\g ¢
C*F-P(R) and

[R*flasp.p < CLf g, ps

[R*glasp,p < ClIg]p, ps
|R/\f|0,p S/AAT) | o, ps
|R*glo, , < C(LNX AVT)|gllo, -



CAUCHY PROBLEM FOR PARABOLIC SPDEs 91

PROOF. (i) Estimate of |[R*g|, ,, |R*flo, ,- By Lemma 1,
- ¢ 1/2
Rt 0, = C( [[([ 6L = )l (o) )P ds)
: 1/2
< Clalo (| exp(-22 (¢~ 9)ds)
A ! A
R (), < [ [ G (x =)l F(s. 3], dyds

<1Fl [ exp(-A (¢t~ ) ds.

(ii) Estimates of [R"fly, 5 ,, [R"&]s. ,- Denoting w = 7% “RM, = % R'g
we have by Lemma 9 for any x«, ¢,

w(t, v) = [ [ 3G, (0= (s 3) ~ f(s 0] dyds,
it 0) = [ [ 2,61~ )0 8, 9) ~ 7ig(s ) dy W, ds.
Now the statement follows by Lemma 3, Remark 2 and Lemma 4. O
LEMMA 12. Let B’ = Bpg(xy), B = Bygr(xy) be two concentric balls, f €

CPP(R}), g € CYHAP(RE,Y), p > 2, be such that f(t,x) =0, g(t, x)—Ozf
x¢ B,0<t<T.Then

|*R o, p: B, < C(RP[fg, piB, + | [ lo, s B,)
|2 R*glo, p: 5, < C(RP[38g, 1. B, + 1980, s B,)-
PROOF. By Lemma 9 for (¢, x) € B}, we have 2R f(t, x) = I; + I, where
v= [ [ AGh = (Fs 3) ~ f(s 2 dyds,
- _/ / PG (x — ¥)f (s, x) dy ds.

By Lemmas 1 and 4,
111, < CRP[fg, p; By

Lol <€l flo pm [ | [, G (= )dy|ds <CIF o

By Lemmas 9 for (¢, x) € B}, we have 3?R*g(¢, x) = I, + I,, where
t .
L= [ 3,6}, (x=y)2:8(s, y) — dig(s, x)) dy W, ds,
0 /B

t
—_— . /\ — . i
== [ [ 9,6}, (x = y)ig(s.x)dy W, ds.
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By Lemmas 1 and 4,
: 2\ 1/2
1y = Ol 2lspn, ([ ([, 1068 = 0l = vy ) ds)
= CRB[ﬁ g]B,p;BT’
: 2 \1/2
Laly = Ol glo s, ([ ([, 2160 =00 dy) ds) = Claglopmy. O

Using the interior representation formula and the last two lemmas, we
prove now the basic result needed for the interior Holder estimates.

LEMMA 13, Let (20) hold for u € C>P(Dy), f € CPP(Dy), g € CP?(Dy., Y)
and p > 2. Let B' = By(x,), B?2 = Byg(x,) be concentric balls in D, B, C D.
Then

|%ulo, p;BL = C<R_2|u|o, pies + RP(flg pigz + 1 flo, pi2
+ Rﬁ[ﬁg]ﬁ,p;Ba + 198 llo, p; B2 + Rilﬂ;[g];a, p; B2
+R7lglo. 3 )
[ulp, iy = C(R™Flulo, s + [Flo. piss + RP1Flo, i
+ (0815, p 5z + RP198ll0, pi52 + R85, 1 2

+B P gl 3 )-

PROOF. Fix ¢ € CP(R?) such that 0 < ¢ < 1, ¢(x) = 1, if |x| < 3/2,
¢(x) =0, if |x| > 2. Define ¢(x) = ¢((x — x)/R) for some x, € D. Obviously
for each £ > 0,

(30) | (x)| < C(R)R™*.
By Lemma 7 for each (¢, x) € BL P-a.s.,

w0 = [ [ G = 9)f (s Dely)dy ds
[ ] Ghax 980 Vel dy W, ds

t .. 9
+1/2 [ [alu(s, »{GL, (x = 9)de(y)

—20,;G;  (x — y)d;0(y)} dy ds.
Denote the last integral E(¢, x). We have by estimates on B, for each £ > 0,

¢ .
Bt x)=1/2 [ [alu(s. [, (x — »Fe(y)

—20%9,G}, (x — y)d;0(y)} dy ds.
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So by Lemma 1, (30) and Lemma 4 for each x € By, k > 2,

t
I*E(t, x)|, <Clu 2// I*Gr (x — y)|R2
B, = Cludopy [ [, (4G =)

+ %3G} (x — y)IR7Y)
x dyds < CR™*|uly, . ps.
We have obviously
[®Els,, < CR™Pluly . 53.

Now the inequalities follow by Lemmas 11 and 12. Indeed, denoting w =
RN f o), w = d*?R*(ge) we have

[w]B,p;B; = C[f@]ﬁ,p;B% = C([f]ﬁ, p;BZT + R7B| f |0, p;B%)?
|w|0, p;BlT = C(Rﬁ[f¢]ﬁ, p;B%w + | f§0|0, p;B%w)
< C(RP[flg, pm2 + | flo, p;B2)>
[w]B, p;BlT = C[&(ggo)]ﬁ, p;BZT
< C([08]g, sz + R7P198llo, py 52 + R7'[&)p, p52 + B Pl Zll0, s 52)-
|0, p: By, < C(RP[I(&¢)] g, B2 + 19(&¢)l0, p; 52)
< CRﬂ[ﬁg]B,p;BZT + 198 llo, p; B2 + R71+B[g]/3, pB2 Tt R*1||g||0, P B2
Now the statement follows. O
For x, y € D let us write d, = dist (x,dD)A1,d, , = d, A d,. We de-

fine for u € C™ P(Dy,Y), C™F-P(Dyp, Y) the following quantities which are
analogous of the global Holder seminorms and norms:

”u”;kn,p = ”u”jn,p;DT = ”u”O, p;Dp + [u]*m,p;DT

= llwllo, pipy +sup d'|o™ u(t, ©)],,
T

Nulltpp = 1lip. pipy = 12l o+ [uTlip.p
where
[wliyipp = [0 ull ,
o™ w(t, x) — o™ u(t, y)| ,dry”
t, x#y |x - y|/3

If Y = R, we write simply | - [* instead of | - [|*. We note that |ull;, ,.p.
Il +p, p:p, are norms on the subspaces of C™ ?(Dy), C™*+B-p(Dy), respec-

tively, for which they are finite. It is convenient here to also introduce the
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quantities
(k) - ik o)
181w, pi o, = 2= supdi ™[0’ g(, x)ll
j=0 Dr
I (k) _ (k) drtktB ) gm _ am _uIB
g||m+B,p;DT_||g||m,p;DT+tsu;ép vy o™ gt x) =" g(t, y)l p/1x — vl
XAy

(k) (k)
= ”g”m,p;DT + [g]m,p;DT'

If Y =R, we use |- |*) instead of || - |¥) again.
We notice also that if D = R?, then d, = 1 for each x € D and lwllsp, » =

(k) (k)
1ellmrp, o Nl p = Neellm, pole)imsip, p = [Wlmip, ps 1&lmp = 11&lIm, ps 1 &llmip, »

= 118llm+p, p-
THEOREM 14. Let (20) hold for u € C*P?(Dy), f € CPP(Dy), g € C1*A:-P
(Dp,Y), p>2. Then

(2 (€Y
wlai8, pp, = CUttlo,pin, + 1 F 1 pn, + 1811555 pny )

where C = C(Ay, K) and Ay, K are constants in Assumption Al.

PrROOF. For x € D, R = 1d,, B' = Bp(x), B> = Byg(x), we have by
Lemma 13,

d?c|é)2u(t> x)|p = (3R)2|(?2u|0, p;BlT
= C(|u|0, p;BZT + R2|f|0, p;B%w + R2+B[f]B, p;B%.

+ R2+Bﬁ[ag]3, p;BZT + R2||é)g||0, p; BZT + R1+B[g]3, p;B%.

+R||g”0, p;B%)
(2) (1)
< Clulo, gy + 115 o + €155 5 0,).
Hence we obtain
* <C (2) (1)
|u|2, p;Dp = (|u|0, p;Dp + | f |B,p;DT + ||g||1+B,p;DT)‘

To estimate [u]5, 5 . p, Welet x, y € D with d, < d,. Then by Lemma 13,
dZE\Pu(t, x) — FFu(t, )| ,/1% — yIP
< BR)*P[Puly,
+8P(3RY2(%ut, %), + |7%u(t, ¥)],)
< C(|ulo, ;g2 + R*P[fg, pimz + B2\ f lo, p: 52
+ R2+B[¢9g]3, pBL T R2||¢9g||0, pBL T R1+B[g]ﬁ,p;B2T + R gllo, p;B2T)

(2) 1)
+6[uly p.p, = Clo, p;p, + 1 f g pn, + 181156, 0y )-
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The estimate now follows. O

We finish this section with a result concerning a regularity of R*f, R*g in
time variable.

LEMMA 15. Let f € CPP(R%), g € C**FP(R%,Y), p > 2, k < 1. Then
there exists a constant C = C(\g, A, K, k, B, T') such that for each (t, x) € R‘%,
h>0,t+v=<T,

R+ 0,) = RGO, o + 1R +0,) = B8 aig, s
< Cv'"?(Iflg. pr + 18ll14p, pi7)-

PROOF. Since R f = e MRf, R'"g = e *Rg, it is enough to consider
the case A = 0. If £ = 0, the inequality follows immediately by Theorem 10
and Lemma 11. If £ = 1, we use the representations of JR°f, JR’g given by
Lemma 9. According to it,

w(t,x) =R f(t+ v, x) — IR°f(¢, x)
t
= [ J@0GY (x = ) = 9G? (x = ([ (5 ¥) = f(s. x)) dyds
t+v 0
[ 0GR = ) (F(s.9) = fls, 2))dy ds Ayt )
+ AQ(t, x)
Also by Lemmas 9 and 1,

w(t, x) =R g(t +v,x) — IR%g(t, x)

= [ (G = )= G5 = 1) (5. 3) = 05 dy s
[ [ G = ) et ) - dgts, ) dy ds

t+v .
+/ dg(s, x)Wds
t
= Bl(ta x) + BZ(ta x) + B3(t7 x)

Applying Lemmas 3 and 4 and Remark 2, we obtain

[Ailg. p < Cv?[f1p, pir>
[Bl]ﬁ,p = Cvl/z[ag]ﬁ, p; T
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For £ =0,1,2, m =1, 2, we have for all ¢, v (see Remark 1),
t+v B
[ 16l ds

t+v
31) < C|x|7m(d+k)+m72/ (t +v— S)f(me)/2 ds
t

< C|x|—m(d+k)+m—2vm/2.

Also, for £ =0,1, m =1, 2, |x| < ya we have

/-t+v
t
m

t+v |
32 <c / | / (t+v—8) @D 2expl cla?|/(t+v—s)tdy| ds
t | /1y[=(1~y)a

m

ds

[ COL

t+v
< C/ (t+v-— s)*mk/2 ds < Cv™2,
¢

By Lemma 3 and inequalities (31), (32),

[As5]p p < CY*[f g pir
[BZ]B, p = Cvl/z[ag]/%, p; T

Estimating directly,
[B3]B,p = CU1/2[‘9g]B, p; T d

4. Linear equation with variable coefficients. Throughout this sec-
tion we consider the equation

du=1/2a"0,;u+b'd;u+cu—Au+f+(hu+g)W, in Dy,
(33) u ! .
u(0,x) =0, in D,

where A > 0 and a = (a¥) is symmetric. It will be assumed in this section
that a¥ are deterministic measurable locally bounded functions on D;, and
b, c are L. (Q,P)-valued, F-adapted locally bounded functions on Dy, h is
L (Q,Y,P)-valued F-adapted locally bounded function on D.

DEFINITION 16. Let f € Bf (D), g € Bl (Dy,Y). We say that (33) holds

1 1
for u € C>P(Dy) or u is a sgclution of (33)Ocif for each (¢,x) € Dy we have

P-as.,

u(t,x) = /(:[1/2 a'(s, x) d;u(s, x) + bi(s, x)d;u(s, x) + c(s, x) u(s, x)
—Au(s, x)+ f(s, x)+ (h(s, x) u(s, x) + g(s, x))Ws] ds.
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Our first objective now is the derivation of the Schauder interior estimates
for the solutions of (33).We introduce the following additional interior semi-
norms and norms in the spaces C™ ?(Y, Dy), C™*#P(Y, Dy). For 7 a real
number and m a nonnegative integer we define

(7) T
[V p:D, = Sup dy oV (2l
T
m m
) _ remip 9" V(%) ="V (L, )l
[V]m+6,p;DT - t,S:cl;Ey dx,gr/n |x — y|B O B = 1
(7) (7) (7)
”V“m,p;DT = [V]O, p; Dy + [V]Im p;Dp>
(m) (7) (1)
||V||m+B,p;DT = ”V”m,p;DT + [V]m+B, p;Drp*
In particular, we notice
(1) (2) (1)
(34) IVIIyig, pioy = 19V lg p, + 11V 1o, p: 0y
Indeed,
(1) (1) (2) 2)
IViies, p:or = 1V o, 50, 19V N6, 5Dy + [0V ]g 50y
If Y = R we write | - | instead of || - |. Here again we notice that if D =

R? (d, = 1 in this case) we have simply the usual global Hélder norms.
REMARK 3. Let F € CP>*(Dy), G € CP-P(Y, Dy). It is easy to verify that
[FGI5 b, <[F15 w0, [GW sy + [FI s, G i,
(35) [FGI b, = [F1 0, G5 iy

(t+71") (1)
IFGI b, <Pl in, |Gl b,

Let & € (0,1/2). Fix ¢ € C(R?) such that 0 < ¢ < 1, ¢(x) = 1, if |x| < 1
and ¢(x) = 0, if |x| > 2. For z € D define n* = n*°(x) = ¢((x — 2)/ed,). So
’flz(x) = 07 if x ¢ B® = BZadZ(Z)'

REMARK 4. (a) One can notice easily that for each integer m there exists
C =C(m,d) such that for 7> 0, ¢ > 0,

(36) sup d, Iﬁmnz(x) — 3" n*(y)|
x#yeD lx — y|P

< C(1+2e)drmBemP,

In particular,
(37) [0 715" p, < Ce™ P

(b) Let U € C?*F-P(Y, Dy). Then there exists a constant C = C(e, 8, d) such
that

(38) Ulsip. 0, = 2580 10U, 5, + ClULs, i,
ze



98 R. MIKULEVICIUS

Indeed, let x,y e Dand d, =d, ,. If [x — y| > %adx, then

072U(t5 x) - U(ta y)lp
lx — y|P

21l
dxj_f = 4B/8B |U|;, p;Drp*

If |lx —y| < %adx, we take z = x. So

d2+,3|z92U(t x) —2U(t, y)|, d2+,3|z92(nZU(t x) = UL, y)l,
lx — y|# lx — y|#

>

and the statement follows using interpolation inequalities.

4.1. Schauder estimates. We now establish the basic Schauder interior
estimates.

THEOREM 17. Let D be an open subset of R". Assume that f € B} .(Dy),
g€ Bloc(DT7 Y), p > 2, and the coefficients satisfy the following conditions.
There are positive constants Ay, K such that

Vg8 z Mlél®  V(t,x) e Dr, £ €R”
and
0) i (D) (2) 1) (2) (1)
lalg”s 16%1p,o0: Dy 1€1g. o Dp> 12158, 000y = K [F lg pin, + 1811118, pipy < 00
Then if (33) holds for u and |ul5, g ). p, < 00, we have the estimate

(2 (eY)
wl518, p;p, = CUlo, p, + 1 F 1 pin, + 18l156, mp: 0, )

where C = C(d, Ay, K, B).

PROOF. Let u? = n*u. Then we have

(39) du* =1/2a"(t, 2)0%u® — \u® + f* + gW,  in Dy,
u?(0,x) =0, in D,

where
f2(t, x) = 1/2(a¥(t, x) — a¥(t, z))o7 u(t, x)n?(x) + b (t, x)9;u(t, x)n?(x)
+ c(t, x)u(t, x)n*(x) + f(¢, x)n*(x) — u(t, x)c?ljnz(x)a”(t, x)
a’(t, x)d;u(t, x)d jn*(x) = i Al(t, x)

=1

and

g%(t, x) = h(¢, x)u(t, x)n°(x) + g(t, x)n’(x) = Al(t, x)+ A2(t, x).
Thus, we have by Theorem 14 applied to (39),

2) 1)
(40) [u*l31 6, p:np < Cttlo, psp, + 117 |g pip, + 11871155, pi0y)-
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We notice here, that from (35) and (37) follows

2 (2) (1) (1)
(41) |A (t’ x)|B p;Dp = |a u|B p;DT|nzbi|B,oo;DT
1 1 0 _ 1
<1051l 0y 181l s 2y 1171 i by < Co P13l
By the same arguments and (36),
31(2) (2) (0) (0) - (0)
| A%, p: Dy =16l se: 11715 s D, 12, pipy = CE7PlUlg iy
4,(2) (0)
(42) |A |B,p;DT |f|ﬁ pDT| Z|B,00;DT’
2 0 i71(0 2 _ 0
|A5|;3 )P Dy = =|u |23 )P;DT|aU|23,)OG§DT|(? |;3 33O;DT =Ce™ B|u|§3 )P;DT’
2) 1 ij1(0) (1) -1- 1
|A6|B p;Dp — |07 u|B p;DTlalJ|B,oo;DT|[9jnZ|B,oo;DT = Ce ! 'B|[9u|3,p;DT‘
If |x — 2| < 2ed,, then d, > (1 — 2¢)d, and
0
a(t, %) — a(t, 2)| < (1 LA
Thus by (35) and (36) there exists C = C(¢) such that
9 2¢e 2 _ 2
(43) AYP ) < W[(ﬂu]};fp;m +CePdPuly b,
According to (34),
Al(D Al A2
1A, p: oy = I1A%N0, iy + I0AN g pipyr L =1,2.

. = 1 1
Obviously 3 | A0, p, < 116 s b, |2lo, ps by + 18115, e - By (35) and (36),

A1(2) (0) (2) (0)
19A MG ., < 1lgp, 19PN g o, D, 1171 s
1) 1 (0)
+ |‘?u|[3,p;DT||h||B,oo;DT|nZ|B,oo;DT
(0) 1) (1)
+ |u|B,p;DT||h||B,oo;DT|07nz|ﬁ,oo;DT

(44) 0 o
<C(e™Plulg pip, + &P l0uly )

721(2) @) (0 o b
||¢9A2||B p:0r 19815 50,1171 oo 0y T 11811 g 0,197 | c0: D
_1- (1)
<Ce Pl gliis. pin,-

Now choosing ¢ such that 4¢/(1 — 2¢) < 1/2 we have the desired estimate
by (38), (40), (43), (41), (42), (44). O

If D = R? we have in (33) the usual Cauchy problem and Theorem 17 gives
an a priori estimate of its solution. Now we will solve this problem in Hoélder
spaces.
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4.2. Cauchy problem. Consider (33) for D = R?, that is, we have

du=1/2a¥d;u+bdu+cu—Au+f+(hu+g)W, inRE,

(45) { u(0,x) =0, in RY,

where A > 0, a = (a¥) is symmetric and positive. We assume that a is a de-
terministic locally bounded function on D, and &', ¢ are L. ((, P)-valued,
F-adapted locally bounded functions on Dy, h is a L (Q, Y, P)-valued F-
adapted locally bounded function on D.

THEOREM 18. Assume that f € B, .(Dyp), g € BL..(Dy,Y), p > 2 and the

loc
coefficients of (45) satisfy the following conditions. There are positive constants

Ao, K such that
aVE € = Nlé)P Y(t,x) e Dy, £€R”
and
|a|B,oo;T’ |bi|B,oo;T’ |C|B,oo;DT’ ||h||1+B,oo;T <K, |f|B,p;T + ||g||1+B,p;T < 00.
Then if (45) holds for u and |uly. g ,. 7 < 00, we have the estimate

|wlosp, pir < CUF g, pir + 1 8ll14p, 57 )

where C = C(Ay, K, d, B, T, p). Moreover, there is a constant C = C(Aq, K, k,
d,B,T, p, \) such that for each t,v >0, t+v<T, x € R?,

lu(-+v,-) = u(, Vigp, pir < CO"*(| Flg, pir + 18 l14p, pi7)-
PrOOF. By Theorem 17 in Section 4.1,

(46) lulorg, pyr < CUulo, pir + | Flg, i + 18148, p7)s
where C = C(Ay, K, B,d, T, p). Fix an arbitrary z € R%. Then

47 { deu =1/2a7(t, 2)d%u — Au+ f* + g°W,  inR{,
u?(0,x) =0, in R,
where
F2(t, x) = 1/2(a”(¢, x) — a”(t, 2))75u(t, x) + b'(t, x)J;u(t, x)
+e(t, x)u(t, x)+ f(¢t, x)
and

g%(t, x) = h(¢, x)u(t, x) + g(¢, x).
Now by Theorem 10, Lemma 11 and (46),
lulo, pir < CAATIV AT Y2)(Julo, i + | F gy + 18ll1sp, i1 )-
Thus, if C(A™! v A71/2) < 1/2, that is, for A > M = M()\y, K, B,d.p, T),

lwlo, pir < CU f |, pir + 181115, pi7)>
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and the estimate of [u|y, g ,. 7 follows for A > M by (46). If A < M, it is enough
to notice that & = e "'u is a solution of (45) for A + y. Since u satisfies (47)
the last inequality of our statement follows by Lemma 15. O

Using standard continuity arguments [see Theorem 5.2 in Gilbarg and
Trudinger (1983)], Theorems 10 and 18, we derive the existence and unique-
ness result for the Cauchy problem (45).

THEOREM 19. Assume that f € BY (D), g € BE (D7, Y), p > 2, and the

loc loc
coefficients of (45) satisfy the following conditions. There is a positive constant

Ao such that
a’&;€; > Mlé? V(t,x) € Dy, £ €R”
and
|a|[3, 00; T |bi|B,oo;T7 |C|B, 00; Dp> ||h||1+[3,oo;T7 |f|B,p;T> ||g||1+3, p T < 0.
Then there exists a unique solution u € C**#P(R%) of (45). Moreover,

[ulorp, pir < CUf lg, pir + 18145, p:7)

and

lu(-+s,) = uC, igp, pr—s < Cs"*(| f g, p:r + 118ll148, pi 1) k<1,
where the constants C depend on Ay, B, p, d, T ,A and the constant K bounding
the norms |a|B,oo;T’ |bL|B,oo;Ta |C|B,oo;DT’ ”h”lJrB,oo;T'
PROOF. Let Lu =1/2a" d;;u + b'd;u + cu — Au, Mu = hu, 7 € [0, 1],
L.u=1Lu+(1-1)Au, M. u=1Mu,

where A is Laplacian in x. We introduce the space C’2+B’p(R‘%) of functions
u € C**# P(R%) such that for each (¢, x) P-a.s.,

t t .
u(t, x)=/0 Fs, x)ds+/0 G(s, x) W, ds,

where F ¢ CF P(R%), G € C'*F-P(R%, Y). It is a Banach space with respect
to the norm

|u|~2+B,p;T = |tloyp, pir + 1 Flg, psr + 1Gllisp, pir-

Let 757 be a Banach space of all pairs I = (f,g), f € CPP(R%) g ¢
C*F P(R%, Y) with the norm

|Z|B,p = |f|[3,p;T + ||g||1+[3,p;T'
Consider the mappings 7',: C2*#-?(R%) — 75 P defined by

¢ ¢ .
ult, x)=/0 F(s, x)ds+/0 G(s,x) W,ds — (F — L.u, G — M,u).
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Obviously, for some constant C independent of 7,
T ulg,p < C|u|~2+B,p'

On the other hand, there is a constant C independent of 7 such that for all
u € C2F-P(RE),

(48) |u|~2+5,p < C|T ulg,p-
Indeed,

u(t,x) = /Ot F(s,x)ds+ /Ot G(s,x) W ds

- /Ot(LTu +(F—L.u))ds+ /Ot(MTu +(G - M,u) W, ds.

By Theorem 18 there is a constant C independent of 7 such that
lulorp, » <CIT ulg, ,

=C(F ~ Lulg,, +11G ~ Mul1sp,,).

(49)

Thus

lorp.p = ltlzrp, p + 1 Flg p + |Glliip p < lulzip, p
+|F = L.ulg p + |G — M|y, , + |Lru

o T IIM ulliigp,
< C(|ularp, p +1F = Loulg p + |G — Miulli1, )
= C(|F - L7u|B,p + ”G - Mru||1+/3,p) = C|T7u|,8,p

and (48) follows. According to Theorem 8 and Lemma 11, T'; is an onto map.
Now by Theorem 5.2 in Gilbarg and Trudinger (1983) all the T, are onto maps
and the statement follows. O
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