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A PHASE TRANSITION IN RANDOM COIN TOSSING

By David A. Levin, Robin Pemantle1 and Yuval Peres2

University of California, University of Wisconsin and Hebrew University

Suppose that a coin with bias θ is tossed at renewal times of a renewal
process, and a fair coin is tossed at all other times. Let µθ be the distribu-
tion of the observed sequence of coin tosses, and let un denote the chance of
a renewal at time n. Harris and Keane showed that if

∑∞
n=1 u

2
n = ∞, then

µθ and µ0 are singular, while if
∑∞
n=1 u

2
n <∞ and θ is small enough, then

µθ is absolutely continuous with respect to µ0. They conjectured that abso-
lute continuity should not depend on θ, but only on the square-summability
of �un�. We show that in fact the power law governing the decay of �un� is
crucial, and for some renewal sequences �un�, there is a phase transition
at a critical parameter θc ∈ �0�1�: for �θ� < θc the measures µθ and µ0
are mutually absolutely continuous, but for �θ� > θc, they are singular. We
also prove that when un = O�n−1�, the measures µθ for θ ∈ 
−1�1� are all
mutually absolutely continuous.

1. Introduction. A coin toss with bias θ is a �−1�1�-valued random vari-
able with mean θ, and a fair coin is a coin toss with mean zero. Kakutani’s
dichotomy for independent sequences reduces, in the case of coin tosses, to the
following.

Theorem A [13]. Let µ0 be the distribution of i.i.d. fair coin tosses on
�−1�1�N� and let νθ be the distribution of independent coin tosses with biases
�θn�∞n=1.

(i) If
∑∞
n=1 θ

2
n = ∞ then νθ ⊥ µ0, where ν ⊥ µ means that the measures ν

and µ are mutually singular.
(ii) If

∑∞
n=1 θ

2
n < ∞, then νθ 
 µ0 and µ0 
 νθ, where ν 
 µ means that ν

is absolutely continuous with respect to µ.

For a proof of Theorem A see, for example, Theorem 4.3.5 of [7].
Harris and Keane [10] extended Theorem A(i) to sequences with a specific

type of dependence. Let ��n� be a (hidden) recurrent Markov chain with initial
state o, called the origin. Suppose that whenever �n = o, an independent coin
with bias θ ≥ 0 is tossed, while at all other times an independent fair coin is
tossed. Write X = �X1�X2� � � �� for the record of coin tosses, and let µθ be the
distribution of X. Let �n = 1��n=o� and denote by

un = P
�n = o� = P
�n = 1�
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the probability of a return of the chain to the origin at time n. The random vari-
ables ��n� form a renewal process, and their joint distribution is determined
by the corresponding renewal sequence �un�; see the next section. Harris and
Keane established the following theorem.

Theorem B [10].

(i) If
∑∞
n=1 u

2
n = ∞, then µθ ⊥ µ0�

(ii) If
∑∞
n=1 u

2
n = �u�2 <∞ and θ < �u�−1� then µθ 
 µ0�

Harris and Keane conjectured that singularity of the two laws µθ and µ0
should not depend on θ, but only on the return probabilities �un�. In partic-
ular, they asked whether the condition

∑∞
k=0 u

2
k < ∞ implies that µθ 
 µ0,

analogously to the independent case treated in Theorem A. We answer this
negatively in Sections 4 and 5, where the following is proved.
Notation. Write an � bn to mean that there exist positive finite constants

C1�C2 so that C1 ≤ an/bn ≤ C2 for all n ≥ 1.

Theorem 1.1. Let 1/2 < γ < 1. Suppose that the return probabilities �un�
satisfy un � n−γ and max�ui� i ≥ 1� > 2γ−1.

(i) If θ > 2γ
max�ui� i≥1� − 1� then µθ ⊥ µ0�

(ii) The bias θ can be a.s. reconstructed from the coin tosses �Xn�� provided
θ is large enough. More precisely� we exhibit a measurable function g so that�
for all θ > 2γ

max�i� i≥1� − 1� we have θ = g�X�µθ-almost surely�

Part (i) is proved, in a stronger form, in Proposition 4.1, and (ii) is contained
in Theorem 5.1 in Section 5, where g is defined.

In Section 4 we provide examples of random walks having return probabil-
ities satisfying the hypotheses of Theorem 1.1. We provide other examples of
Markov chains in this category in Section 8.

For this class of examples, Theorem B(ii) and Theorem 1.1(i) imply that
there is a phase transition in θ: there is a critical θc ∈ �0�1� so that for
θ < θc, the measures µθ and µ0 are equivalent, while for θ > θc, µθ and
µ0 are mutually singular. See Section 3 for details. Consequently, there are
cases of absolute continuity, where altering the underlying Markov chain by
introducing delays can produce singularity.

Most of our current knowledge on the critical parameter

θc
def= sup�θ� µθ 
 µ0�

is summarized in the following table. Choose r such that ur = max�ui� i ≥ 1�,
and let θs = �∑∞

n=1 u
2
n�−1/2∧1. (The arguments of Harris and Keane [10] imply
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that θs is the critical parameter for µθ to have a square-integrable density with
respect to µ0.)

Asymptotics of un Critical parameters

un � n−1/2 0 = θs = θc
un � n−γ� 1

2 < γ < 1 0 < θs ≤ θc ≤ u−1
r 2γ − 1

un = O�n−1� 0 < θs ≤ θc = 1

There are renewal sequences corresponding to the last row for which 0 <
θs < θc = 1; see Theorem 1.4 and the remark following it.

Theorem 1.1(ii) shows that for certain chains satisfying
∑∞
n=0 u

2
n <∞, for θ

large enough, the bias θ of the coin can be reconstructed from the observations
X. Harris and Keane described how this can be done for all θ in the case where
� is the simple random walk on the integers, and asked whether it is possible
whenever

∑
n u

2
n = ∞. In Section 6 we answer affirmatively, and prove the

following theorem.

Theorem 1.2. If
∑
n u

2
n = ∞� then there is a measurable function h so that

θ = h�X�µθ-a.s. for all θ�

In fact, h is a limit of linear estimators (see the proof given in Section 6).
Theorem 1.2 is extended in Theorem 6.1.

There are examples of renewal sequences with
∑
k u

2
k < ∞ which do not

exhibit a phase transition.

Theorem 1.3. If the return probabilities �un� satisfy un = O�n−1�� then
µθ 
 µ0 for all 0 ≤ θ ≤ 1�

For example, the return probabilities of (even a delayed) random walk on
Z2 have uk � k−1.

Remark. The significance of this result is that the asymptotic conditions
on �un� still holds if the underlying Markov chain is altered to increase the
transition probability from the origin to itself.

This result is proved in Section 9. It is much easier to prove that µθ and
µ0 are always mutually absolutely continuous in the case where the Markov
chain is “almost transient,” for example if uk � �k log k�−1. We include the
argument for this case as a warm-up to Theorem 1.3. In particular, we prove
the following theorem.

Theorem 1.4. If the return probabilities �un� satisfy uk = O�k−1� and obey
the condition

n∑
k=0

uk = o
(

log n
log log n

)
�

then µθ 
 µ0 for all 0 ≤ θ ≤ 1.
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Theorem 1.4 is extended in Theorem 8.2 in Section 8, and Proposition 8.5
provides examples of Markov chains satisfying the hypotheses. Then
Theorem 1.3 is proved in Section 9.

Write J = ∑∞
n=0 1��n=o�1��′n=o�, where � and �′ are two independent copies

of the underlying Markov chain. The key to the proof by Harris and Keane of
Theorem B(ii) is the implication

E
�1 + θ2�J� <∞ ⇒ µθ 
 µ0�

To prove Theorem 1.3 and Theorem 1.4 we refine this and show that

E
�1 + θ2�J � �� <∞ ⇒ µθ 
 µ0�

The model discussed here can be generalized by substituting real-valued
random variables for the coin tosses. We consider the model where observa-
tions are generated with distribution α at times when the chain is away from
o, and a distribution η is used when the chain visits o.

Similar problems of “random walks on scenery” were considered by
Benjamini and Kesten in [3] and by Howard in [11, 12]. Vertices of a graph
are assigned colors, and a viewer, provided only with the sequence of colors
visited by a random walk on the graph, is asked to distinguish (or reconstruct)
the coloring of the graph.

The rest of this paper is organized as follows. In Section 2, we provide defini-
tions and introduce notation. In Section 3, we prove a useful general zero–one
law, to show that singularity and absolute continuity of the measures are the
only possibilities. In Section 4, Theorem 1.1(i) is proved, while Theorem 1.1(ii)
is established in Section 5. We prove a more general version of Theorem 1.2
in Section 6. In Section 7, we prove a criterion for absolute continuity, which
is used to prove Theorem1.4 in Section 8 and Theorem 1.3 in Section 9. A con-
nection to long-range percolation and some unsolved problems are described
in Section 10.

2. Definitions. Let ϒ = �0�1�∞ be the space of binary sequences. Denote
by �n the nth coordinate projection from ϒ. Endow ϒ with the σ-field �
generated by ���n≥0 and let P be a renewal measure on �ϒ�� ��, that is, a
measure obeying

P
�0 = 1� �n�1� = 1� � � � � �n�m� = 1� =
m∏
i=1

un�i�−n�i−1��(2.1)

where un
def= P
�n = 1�. We let �Tk�∞k=1 denote the inter-arrival times of the

renewal process: if Sn = inf�m > Sn−1� �m = 1� is the time of the nth renewal,
then Tn = Sn − Sn−1. The condition (2.1) implies that T1�T2� � � � is an i.i.d.
sequence. We will use fn to denote P
T1 = n�.

In the introduction we defined un as the probability for a Markov chain � to
return to its initial state at time n. If �n = 1��n=o�, then the Markov property
guarantees that (2.1) is satisfied. Conversely, any renewal process � can be
realized as the indicator of return times of a Markov chain to its initial state.
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(Take, for example, the chain whose value at epoch n is the time until the next
renewal, and consider returns to 0.) Thus we can move freely between these
points of view. For background on renewal theory, see [8] or [15].

Suppose that α�η are two probabilities on R which are mutually abso-
lutely continuous, that is, they share the same null sets. In the coin tossing
case discussed in the Introduction, these measures are supported on �−1�1�.
Given a renewal process, independently generate observations according to
η at renewal times and according to α at all other times. We describe the
distribution of these observations for various choices of η.

Let R∞ denote the space of real sequences, endowed with the σ-field �
generated by coordinate projections. Write η∞ for the product probability on
�R∞�� � with marginal η. Let Qη be the measure α∞×η∞×P on �R∞×R∞×
ϒ�� ⊗ � ⊗� �. In the case where η is the coin tossing measure with bias θ,
write Qθ for Qη. The random variables Yn�Zn are defined by Yn�y� z� δ� =
yn�Zn�y� z� δ� = zn� Finally, the random variables Xn are defined by

Xn = �1 − �n�Yn + �nZn�
The distribution of X = �Xn� on R∞ under Qη will be denoted µη.

The natural questions in this setting are if β and π are two mutually
absolutely continuous measures on R, under what conditions is µβ ⊥ µπ?
Under what conditions is µβ 
 µπ? When can η be reconstructed from the
observations �Xn� generated under µη? Partial answers are provided in
Proposition 4.1 and Theorems 1.1, 5.1, 6.1 and 8.2.

3. A zero–one law and monotonicity. We use the notation established
in the previous section. Let �n be the σ-field on R∞ generated by the first n
coordinates. If µβ and µπ are both restricted to �n, then they are mutually
absolutely continuous, and we can define the Radon–Nikodym derivative ρn =
dµπ
dµβ

��n . Write ρ for lim infn→∞ ρn; the Lebesgue decomposition theorem (see
Theorem 4.3.3 in [7]) implies that for any A ∈ � ,

µπ
A� =
∫
A
ρdµβ + µsing

π �A� =
∫
A
ρdµβ + µπ
�ρ = ∞� ∩A��(3.1)

where µsing
π ⊥ µβ. Thus to prove that µπ 
 µβ, it is enough to show that

1 = µπ
x� ρ�x� <∞� = Qπ
ρ�X� <∞��(3.2)

For any process �, let /n� = ��n� �n+1� � � ��, and let � ��� = ⋂∞
n=1 σ�/n�� be

the tail σ-field.

Lemma 3.1 Zero–one law. The tail σ-field � �Y�Z���� and hence � �X�� is
Qη-trivial� That is� A ∈ � �Y�Z��� implies Qη�A� ∈ �0�1��

Proof. By the Kolmogorov zero–one law, � �Y� and � �Z� are trivial.
The interarrival times �Tn� form an i.i.d. sequence, and clearly � ��� ⊂
� �T1�T2� � � ��, where � is the exchangeable σ-field. The Hewitt–Savage zero–
one law implies that � , and hence � ���, is trivial.
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Let f be a bounded � �Y�Z���-measurable function on R∞×R∞×ϒ which
can be written as

f�y� z� δ� = f1�y�f2�z�f3�δ��(3.3)

By independence of Y, Z and �, and triviality of � �Y�, � �Z�, and � ���, it
follows that

E
f1�Y�f2�Z�f3���� = Ef1�Y�Ef2�Z�Ef3��� = f1�Y�f2�Z�f3��� a�s�

Consequently, for all functions of the form (3.4),

Ef�Y�Z��� = f�Y�Z��� a�s�(3.4)

The set of bounded functions of the form (3.3) is closed under multiplication,
includes the indicator functions of rectangles A×B×C for A�B ∈ � and C ∈
� , and these rectangles generate the σ-field � ×� ×� . Since the collection of
bounded functions satisfying (3.4) form a monotone vector space, a monotone
class theorem implies that all bounded � ×� ×� -measurable functions obey
(3.4). We conclude that � �Y�Z��� is trivial. ✷

Proposition 3.2. Either µπ and µβ are mutually absolutely continuous� or
µπ ⊥ µβ�

Proof. Suppose that µπ �⊥ µβ. From (3.1), it must be that ρ < ∞ with
positive µπ probability. Because the event �ρ <∞� is in � , Lemma 3.1 implies
ρ <∞ µπ-almost surely. Using (3.1) again, we have that µπ 
 µβ. The same
argument with the roles of β and π reversed, yields that µβ 
 µπ also. ✷

We return to the special case of coin tossing here, and justify our remarks in
the introduction that for certain sequences �un�, there is a phase transition.
In particular, we need the following monotonicity result.

Proposition 3.3. Let θ1 < θ2� If µθ1
⊥ µ0� then µθ2

⊥ µ0�

Proof. Couple together the processesX for all θ: at each epoch n, generate
a variable Vn, uniformly distributed on 
0�1�. If � is a renewal process inde-
pendent of �Vn�, define Xθ by

Xθn =


+1� if Vn ≤

1 + θ�n
2

�

−1� if Vn >
1 + θ�n

2
�

(3.5)

Then Xθ1 ≤ Xθ2 for θ1 < θ2, and Xθ has law µθ for all θ ∈ 
0�1�. Thus µθ2

stochastically dominates µθ1
.

Suppose now that µθ1
⊥ µ0. Then (3.1) implies that

µθ1

ρθ1

= ∞� = 1 and µ0
ρθ1
= 0� = 1�(3.6)
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Because the functions

ρn�x� =
∫
ϒ

n∏
k=0

�1 + θxk�k�dP���

are increasing in x, it follows that ρ is an increasing function and the event
�ρ = ∞� is an increasing event. Because µθ2

stochastically dominates µθ1
, we

have

µθ2

ρθ1

= ∞� = 1�(3.7)

Putting together (3.7) and the second part of (3.6) shows that we have
decomposed R∞ into the two disjoint sets �ρθ1

= 0� and �ρθ1
= ∞� which

satisfy

µ0
ρθ1
= 0� = 1 and µθ2


ρθ1
= ∞� = 1�

In other words, µθ2
⊥ µ0. ✷

Consequently, it makes sense to define for a given renewal sequence �un�
the critical bias θc by

θc
def= sup�θ ≤ 1� µθ 
 µ0��

We say there is a phase transition if 0 < θc < 1. The results of Harris and
Keane say

∑
u2
n = ∞ implies θc = 1 and there is no phase transition. In

Section 4, we provide examples of �un� with
∑
n u

2
n <∞ having a phase tran-

sition. In Section 8, we provide examples with
∑
n u

2
n < ∞ without a phase

transition.

4. Existence of phase transition. In this section, we confine our atten-
tion to the coin tossing situation discussed in the Introduction. In this case,
α and β are both the probability on �−1�1� with zero mean, and π is the
probability with mean θ (the θ-biased coin). The distributions µβ and µπ are

denoted by µ0 and µθ, respectively. Let Un
def= ∑n

k=0 uk.

Proposition 4.1. Let �un� be a renewal sequence with
n∑
k=0

uk = Un � n1−γl�n��

for 1
2 < γ < 1 and l a slowly varying function. If

�1 + θ�max�ui� i ≥ 1� > 2γ

then µθ ⊥ µ0.

Remark. The conditions on θ specified in the statement above are not
vacuous. That is, there are examples where the lower bound on θ is less than
1. There are random walks with return times obeying un � n−γ, as shown in
Theorem 4.3. By introducing delays at the origin, u1 can be made to be close
to 1, so that 2u1 > 2γ.
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Proof. Let E denote expectation with respect to the renewal measure P
and let Eθ denote expectation with respect to Qθ. Let ur = max�ui� i ≥ 1�
and assume for now that r = 1. Let b = 1

2�1 + θ� and k�n� = ��1 + ε� log2 n�,
where ε is small enough that �1 + ε��− log2 u1b� < 1 − γ. Define Anj as the
event that at all times i ∈ 
jk�n�� �j+1�k�n�� there are renewals and the coin
lands “heads,” that is,

Anj
def=

k�n�−1⋂
l=0

��jk�n�+l = 1 and Xjk�n�+l = 1��

Let Dn
def= ∑n/k�n�

j=1 1Anj , and

c�n� def= Qθ
Anj � �jk�n� = 1� = b�u1b�k�n�−1 = u−1
1 �u1b�k�n��

Note that we have defined things so that c�n� � n−p, where p < 1 − γ. Then

EθDn =
n/k�n�∑
j=1

ujk�n�b�u1b�k�n�−1 = c�n�
n/k�n�∑
j=1

ujk�n��(4.1)

We need the following simple lemma.

Lemma 4.2. For all r ≥ 0�

ur + ur+k + · · · + ur+mk ≤ u0 + uk + · · · + umk�(4.2)

Proof. Recall that u0 = 1. Let τ∗ = inf�j ≥ 0 � �r+jk = 1�. Then

E

[
m∑
j=0

�jk+r � τ∗
]
= �1 + uk + · · · + u�m−τ∗�k�1�τ∗≤m�

≤ u0 + uk + · · · + umk�
Taking expectation proves the lemma. ✷

By this lemma,

n/k�n�∑
j=0

ujk�n� ≥
1
k�n�

n∑
j=0

uj =
Un
k�n� �(4.3)

and thus
n/k�n�∑
j=1

ujk�n� ≥
Un
k�n� − 1 � Un

k�n� � n1−γ l�n�
k�n� �(4.4)

Combining (4.1) and (4.4), we find that

EθDn ≥ C1n
−pn1−γ l�n�

k�n� = C1n
1−γ−p l�n�

k�n� �

Since 1 − γ − p > 0, it follows that EθDn → ∞.
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Also,

EθD
2
n =

n/k�n�∑
i=1

Qθ
Ani � + 2
n/k�n�∑
i=1

n/k�n�∑
j=i+1

Qθ
Anj � Ani �Qθ
Ani �

= EθDn + 2
n/k�n�∑
i=1

n/k�n�∑
j=i+1

c�n�uk�n��j−i−1�+1c�n�uk�n�i

≤ EθDn + 2c�n�2
n/k�n�∑
i=1

uk�n�i
n/k�n�∑
j=0

uk�n�j+1

≤ EθDn + 2c�n�2
n/k�n�∑
i=1

uk�n�i
n/k�n�∑
j=0

uk�n�j

(4.5)

≤ EθDn + 2c�n�2
n/k�n�∑
i=1

uk�n�i
n/k�n�∑
j=1

uk�n�j + 2u0c�n�EθDn(4.6)

≤ EθDn + 2c�n�2
( n/k�n�∑

i=1

uk�n�i

)2

+ 2u0c�n�EθDn

≤ C�EθDn�2�
(4.7)

(4.5) follows from Lemma 4.2, and the last term in (4.6) comes from the con-
tributions when j = 0.

If An is the event that there is a run of length k�n� after epoch k�n� and
before n, then (4.7) and the second moment inequality yield

Qθ
An� ≥ Qθ
Dn > 0� ≥ �EθDn�2
EθD2

n

≥ 1
C
> 0�

Finally, we have

Qθ
lim supAn� ≥ lim supQθ
An� > 0�

and by the zero–one law (Lemma 3.1) we have that Qθ
lim supAn� = 1. A
theorem of Erdős and Rényi (see, e.g., Theorem 7.1 in [21]) states that under
the measure µ0,Ln/ log2 n → 1, where Ln is the length of the longest run
before epoch n. However, under the measure µθ, we have just seen that we
are guaranteed to, infinitely often, see a run of length �1 + ε� log2 n before
time n.

If u1 �= max�ui� i ≥ 1�, consider the renewal process ��nr�∞n=0 and the
sequence �Xnr�∞n=0, where ur = max�ui� i ≥ 1�. Apply the proceeding argu-
ment to this subsequence to distinguish between µθ and µ0. ✷

Proposition 4.3. There exists a renewal measure P with un ∼ Cn−γ for
1/2 < γ < 1.
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Proof. For a distribution function F to be in the domain of attraction of a
stable law, only the asymptotic behavior of the tails F�t��1−F�−t� is relevant
(see, for example, Theorem 8.3.1 in [4]). Thus if the symmetric stable law with
exponent 1/γ is discretized so that it is supported on Z, then the modified law
F is in the domain of attraction of this stable law. Then if � is the random walk
with increments distributed according to F, Gnedenko’s local limit theorem
(see Theorem 8.4.1. of [4]) implies that

lim
n→∞ � nγP
�n = 0� − g�0�� = 0�

where g is the density of the stable law. Thus if �n
def= 1��n=0�, then ��n� form

a renewal sequence with un ∼ Cn−γ� ✷

For a sequence to satisfy the hypotheses of Proposition 4.1 and 1.1, we also
need that max�ui� i ≥ 1� > 2γ−1. By introducing a delay at the origin for the
random walk � in Proposition 4.3, u1 can be made arbitrarily close to 1. Thus
there do exist Markov chains which have 0 < θc < 1.

An example of a Markov chain with Un � n1/4 will be constructed by
another method in Section 8.

5. Determining the bias �. In this section we refine the results of the
previous section and give conditions that allow reconstruction of the bias from
the observations.

For a ≥ 1, let

<∗�a� def= lim
m→∞

− log2 P
T1 + · · · +Tm ≤ma�
m

�(5.1)

(<∗�a� = ∞ for a < 1 (since each Ti ≥ 1), hence we restrict attention to when
a ≥ 1.)

Because ETi = ∞, Cramér’s theorem (see, e.g., [6]) implies that <∗�a� > 0
for all a. Since lima↑∞P
T1 ≤ a� = 1, it follows that lima↑∞<∗�a� = 0. Also,
<∗�1� = − log2 u1.

It is convenient to reparameterize so that we keep track of ϕ def= log2�1+θ�
instead of θ itself. Let

ψ̂�ϕ� ξ� def= ξ · �ϕ− <∗�ξ−1�� and ψ�ϕ� def= sup
0<ξ≤1

ψ̂�ϕ� ξ��(5.2)

Observe that limξ→0 ψ̂�ϕ� ξ� = 0. For ε > 0 small enough so that <∗�ε−1� < ϕ
2 ,

ψ̂�ϕ� ε� > ε
(
ϕ− ϕ

2

)
= εϕ

2
> 0�

Hence, the maximum of ψ̂�ϕ� ·� over �0�1� is attained, so we can define

ξ0�ϕ� def= inf�0 < ξ ≤ 1� ψ̂�ϕ� ξ� = ψ�ϕ���
We show now that ψ̂�ϕ� ξ0� > ψ̂�ϕ�1�, a fact which we will use later (see the
remarks following Theorem 5.1). Let l = min�n > 1� fn > 0�, and note that



RANDOM COIN TOSSING 1647

f1 = u1. If in the interval 
0� k�1+�εl��� there are k−�εk� interrenewal times
of length 1 and �εk� interrenewal times of length l, then in particular there
are at least k renewals. Consequently,

P
T1 + · · · +Tk ≤ k�1 + εl�� ≥
(
k

�εk�
)
f
k−�εk�
1 f

�εk�
l �(5.3)

Taking logs, normalizing by k, and then letting k→ ∞ yields

−<∗�1 + εl� = lim
k→∞

k−1 log2 P
T1 + · · · +Tk ≤ k�1 + εl��

≥ h2�ε� + log2 f1 + ε log2�fl/f1��
where h2�ε� = ε log2 ε

−1 + �1 − ε� log2�1 − ε�−1. Therefore,

ψ

(
ϕ�

1
1 + εl

)
− ψ�ϕ�1� = 1

1 + εlϕ− 1
1 + εl<

∗�1 + εl� − ϕ− log2 f1(5.4)

≥ 1
1 + εl�−ε�lϕ+ log2�fl/f1�� + h2�ε���(5.5)

Thus for ε bounded above, the left-hand side of (5.4) is bounded below by
C1�h2�ε� − C2ε�. Since the derivative of h2 tends to infinity near 0, there is
a positive ε where the difference is strictly positive. Thus, the maximum of
ψ̂�ϕ� ·� is not attained at ξ = 1.

Finally, ψ is strictly increasing: let ϕ < ϕ′, and observe that

ψ�ϕ′� = ψ̂�ϕ′� ξ0�ϕ′�� ≥ ψ̂�ϕ′� ξ0�ϕ�� > ψ̂�ϕ� ξ0�ϕ�� = ψ�ϕ��

Theorem 5.1. Recall that

P
Xk = 1 � �k = 1� = 2−1�1 + θ� = 2ϕ−1 for ϕ
def= log2�1 + θ��

Let

Rn = sup�m� Xn+1 = · · · =Xm+n = 1�
and

R̂�X� = lim sup
n

Rn�log2 n�−1�

Suppose that 1
2 < γ < 1 and l is a slowly varying function. If Un � n1−γl�n��

then

R̂�X� = 1 − γ
1 − ψ�ϕ�

∨
1�

where ψ is the strictly monotone function defined in (5.2).
In particular, for ϕ > ψ−1�γ� �equivalently, θ ≥ 2ψ

−1�γ� − 1�� we can recover
ϕ �and hence θ� from X:

ϕ = ψ−1
(

1 − 1 − γ
R̂�X�

)
�
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Remark. Suppose u1 = max�ui� i ≥ 1�. Since ψ�ϕ� > ψ̂�ϕ�1� (see the
comments before the statement of Theorem 5.1) we have that

ψ�ϕ� > ϕ+ log2 u1�(5.6)

Substituting ψ−1�γ� for ϕ in (5.6) yields

ψ−1�γ� < γ − log2 u1�

Thus

2ψ
−1�γ� − 1 < 2γ−log2 u1 − 1�(5.7)

The right-hand side of (5.7) is the upper bound on θc obtained in Proposition 4.1,
while the left-hand side is the upper bound given by Theorem 5.1. Thus this
section strictly improves the results achieved in the previous section.

Proof. Let ζ = �1−γ�/�1−ψ�ϕ��. We begin by proving that R̂�X� ≤ ζ∨1,
or equivalently, that

∀c > ζ ∨ 1�Qθ
Rn ≥ c log2 ni�o�� = 0�(5.8)

Fix c > ζ ∨ 1. If k�n� c� = k�n� def= �c log2 n�, then it is enough to show that

Qθ
[
lim sup

n
�Xn+1 = · · · =Xn+k�n� = 1�

]
= 0�(5.9)

Let En be the event �Xn+1 = · · · =Xn+k�n� = 1�, and define

Fn
def= inf�m > 0 � �n+m = 1�

as the waiting time at n until the next renewal (the residual lifetime at n).
We have

Qθ
En� ≤ Qθ
En � Fn > k�n�� +
k�n�∑
m=1

Qθ
En � Fn =m�Qθ
Fn =m��(5.10)

Notice that

�Fn =m� = ��n+1 = · · · = �n+m−1 = 0� �n+m = 1�
and consequently we have

Qθ
En � Fn =m��n+m+1� � � � � �n+k�n��
= 2−k�n��1 + θ�1+�n+m+1+···+�n+k�n� �

(5.11)

Taking expectations over ��n+m+1� � � � � �n+k�n�� in (5.11) gives that

Qθ
En � Fn =m� = 2−k�n�E
�1 + θ�1+�n+m+1+···+�n+k�n� � �n+m = 1�
= 2−k�n�E
�1 + θ�1+�1+···+�k�n�−m��

(5.12)
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The equality in (5.12) follows from the renewal property, and clearly the right-
hand side of (5.12) is maximized when m = 1. Therefore the right-hand side
of (5.10) is bounded above by

2−k�n� + �Un+k�n� −Un�Qθ
En � �n+1 = 1��(5.13)

We now examine the probability Qθ
En � �n+1 = 1� appearing on the right-

hand side of (5.13). LetN
i� j� def= ∑j
k=i �k be the number of renewals appear-

ing between times i and j. In the following, N = N
n + 1� n + k�n��. We
have

Qθ
En � �n+1 = 1� = 2−k�n�E
�1 + θ�N � �n+1 = 1�
= E
2k�n��−1+ϕN/k�n�� � �n+1 = 1��

(5.14)

By conditioning on the possible values of N, (5.14) is bounded by

k�n�∑
m=1

2k�n��−1+ϕm/k�n��P
T1 + · · · +Tm ≤ k�n���(5.15)

By the superadditivity of logP
T1+· · ·+Tm ≤ma�, the probabilities in the sum
in (5.15) are bounded above by 2−m<∗�k�n�/m�. Consequently, (5.15) is dominated
by

k�n�∑
m=1

2k�n��−1+m/k�n��ϕ−<∗�k�n�/m��� ≤
k�n�∑
m=1

2k�n��−1+ψ̂�ϕ�m/k�n���

≤ k�n�2k�n��ψ�ϕ�−1�

Hence, returning to (5.13),

Qθ
En� ≤ 2−k�n� + �Un+k�n� −Un�k�n�2−k�n��1−ψ�ϕ��

≤ 2n−c + 2k�n��Un+k�n� −Un�n−c�1−ψ�ϕ���
(5.16)

Let q = c�1 − ψ�ϕ��, and since c > ζ ∨ 1, we have that q + γ > 1. Letting
m�n� = n+ k�n�, since m�n� ≥ n, we have

L∑
n=1

k�n�Un+k�n�n−q ≤
L∑
n=1

k�m�n��Um�n��m�n� − k�n��−q

≤
L∑
n=1

k�m�n��Um�n��m�n� − k�m�n���−q

≤
L+k�L�∑
m=1

k�m�Um�m− k�m��−q�

(5.17)
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Then, using (5.17), it follows that
L∑
n=1

k�n��Un+k�n� −Un�n−q ≤
L∑
n=1

k�n�Un��n− k�n��−q − n−q�

+
L+k�L�∑
n=L+1

k�n�Un�n− k�n��−q�
(5.18)

Since a−q−b−q ≤ C�b−a�a−1−q, and Un ≤ Cn1−γ, the right-hand side of (5.18)
is bounded above by

C1

L∑
n=1

k�n�n1−γk�n��n− k�n��−q−1

+C2k�L�k�L+ k�L���L+ k�L��1−γ�L− k�L��−q�
(5.19)

We have that (5.19), and hence (5.18), is bounded above by

C3

L∑
n=1

k�n�2n−�q+γ� + o�1��(5.20)

Since q + γ > 1, (5.20) is bounded as L → ∞� We conclude that (5.16) is
summable. Applying the Borel–Cantelli lemma establishes (5.9).

We now prove the lower bound, R̂�X� ≥ ζ ∨ 1.
It is convenient to couple together monotonically the processes Xθ for dif-

ferent θ. See (3.5) in the proof of Proposition 3.3 for the construction of the
coupling, and let �Vi� be the i.i.d. uniform random variables used in the con-
struction.

First, using the coupling, we have that R̂�Xθ� ≥ R̂�X0� = 1. Hence,

µθ
x� R̂�x� ≥ 1� = 1�

It is enough to show that if c < ζ, then

Qθ
Rn ≥ k�c� n�i�o�� = 1�

Fix ϕ, and write ξ0 for ξ0�ϕ�.
Let τi = τni be the time of the �ξ0k�n��th renewal after time ik�n� − 1. The

event Gni of a good run in the block Ini = 
ik�n�� �i + 1�k�n� − 1� ∩ Z+ occurs
when:

1. there is a renewal at time ik�n�: �ik�n� = 1,
2. there are at least ξ0k�n� renewals in Ii� τi ≤ �i+ 1�k�n� − 1,
3. until time τi, all observations are “heads” : Xj = 1 for ik�n� ≤ j ≤ τi,
4. Vj ≤ 1/2for τi < j ≤ �i+ 1�k�n� − 1.

The importance of the coupling and the last condition is that a good run in
Ii implies an observed run (Xj = 1∀j ∈ Ii).

Let Ni =N
Ii�. The probability of Gni is given by

Qθ
Gni � = 2−k�n��1 + θ�ξ0k�n�piuik�n��(5.21)
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where pi
def= P
Ni ≥ ξ0k�n� � �ik�n� = 1� is the probability of at least ξ0k�n�

renewals in the interval Ii, given that there is a renewal at ik�n�. Note that
pi ≡ p1 for all i, by the renewal property.

Following the proof of Proposition 4.1, we define Dn = ∑n/k�n�
j=1 1Gnj , and

compute the first and second moments of Dn. Using (5.21) gives

Eθ
Dn� = 2−k�n��1 + θ�ξ0k�n�p1

n/k�n�∑
j=1

ujk�n��(5.22)

Since c < ζ = 1−γ
1−ψ�ϕ� , we also have for some ε > 0 that

c <
1 − γ

1 + εξ0 − ψ�ϕ�
�(5.23)

By definition of <∗, we can bound below the probability p1: For n sufficiently
large,

p1 = P
N1 ≥ ξ0k�n� � �k�n� = 1�
= P
T1 + · · · +Tξ0k�n� ≤ k�n��
≥ 2−ξ0k�n��<∗�ξ−1

0 �+ε��

(5.24)

where ε > 0 is arbitrary. Thus, plugging (5.24) into (5.22) shows that for n
sufficiently large,

Eθ
Dn� ≥ 2−k�n��1 + θ�ξ0k�n�2−ξ0k�n��<∗�ξ−1
0 �+ε�

n/k�n�∑
j=1

ujk�n�

= 2k�n��−1−εξ0+ϕξ0−ξ0<
∗�ξ−1

0 ��
n/k�n�∑
j=1

ujk�n�

≥ 2−1n−q
n/k�n�∑
j=1

ujk�n��

(5.25)

where q = �1+εξ0−ψ�ϕ��c. By (5.23), 1−γ−q > 0. Using (4.4),
∑n/k�n�
j=1 ujk�n� �

l�n�
k�n�n

1−γ, in (5.25), gives that for n large enough,

Eθ
Dn� ≥ C3
l�n�
k�n�n

1−γ−q n→∞−→ ∞�

We turn now to the second moment, which we show is bounded by a multiple
of the square of the first moment,

Eθ
D2
n� = 2

n/k�n�∑
i=1

n/k�n�∑
j=i+1

Qθ
Gni ∩Gnj� +Eθ
Dn��(5.26)
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We compute the probabilities appearing in the sum by first conditioning on
the renewal process,

Qθ
Gni ∩Gnj � �� =
(
2−k�n��1 + θ�ξ0k�n�

)2
1�Ni≥ξ0k�n���ik�n�=1�

×1�Nj≥ξ0k�n�� �jk�n�=1��
(5.27)

Taking expectations of (5.27), if d�n� = 2−k�n��1 + θ�ξ0k�n�, then

Qθ
Gni ∩Gnj� = d�n�2P
[
Nj ≥ ξ0k�n�� �jk�n� = 1

and Ni ≥ ξ0k�n�� �ik�n� = 1
]

= d�n�2p1P
[
�jk�n� = 1 �Ni ≥ ξ0k�n�� �ik�n� = 1

]
p1uik�n�

= d�n�2p2
1uik�n�P

[
�jk�n� = 1 �Ni ≥ ξ0k�n�� �ik�n� = 1

]
(5.28)

Summing (5.21) over i < j shows that
∑n/k�n�
i=1

∑n/k�n�
j=i+1 Qθ
Gni ∩Gnj� equals

d�n�2p2
1

n/k�n�∑
i=1

uik�n�
n/k�n�∑
j=i+1

P
[
�jk�n� = 1 �Ni ≥ ξ0k�n�� �ik�n� = 1

]
�(5.29)

Let σ = �i+ 1�k�n� − τi. For m = n/k�n�, write
m∑

j=i+1

P
�jk�n� = 1 �Ni ≥ ξ0k�n�� �ik�n� = 1� σ�(5.30)

as

E

[
m∑

j=i+1

�jk�n�

]
τi < �i+ 1�k�n�� σ�(5.31)

Then observe that (5.31) is bounded above by

uσ + uσ+k�n� + · · · + uσ+mk�m��(5.32)

We can apply Lemma 4.2 to bound (5.32) above by
∑m
j=0 ujk�n�. To summarize,

m∑
j=i+1

P
�jk�n� = 1 �Ni ≥ ξ0k�n�� �ik�n� = 1� σ� ≤
m∑
j=0

ujk�n��(5.33)

Taking expectation over σ in (5.33), and then plugging into (5.30) shows that

n/k�n�∑
i=1

n/k�n�∑
j=i+1

Qθ
Gni ∩Gnj� ≤ d�n�2p2
1

n/k�n�∑
i=1

uik�n�
n/k�n�∑
j=0

ujk�n�

≤ �EθDn�2 + u0EθDn�

(5.34)

where we have used the expression (5.22) for EθDn. Finally, using (5.34) in
(5.26) yields that

Eθ
D2
n� ≤ C3�Eθ
Dn��2�
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Now, we have, as in the proof of Proposition 4.1, that

Qθ
lim sup�Dn > 0�� ≥ lim sup
n→∞

Qθ
Dn > 0� ≥ C−1
3 > 0�

Using Lemma 3.1 shows that Qθ
lim sup�Dn > 0�� = 1. That is, the events⋃n/k�n�
i=1 Gni happen infinitely often. But since a good run is also an observed

run, also the events

�∃ j� 1 ≤ j ≤ n/k�n� with Rjk�n� ≥ k�n��
happen infinitely often. However, if Rjk�n� ≥ k�n�, then certainly Rjk�n� ≥
k�jk�n��. Thus, in fact the events

�∃ j ≥ k�n� with Rj ≥ k�j��
happen infinitely often. That is,

Qθ
Rn ≥ k�c� n� i�o�� = 1�

We conclude that ζ ≤ R̂�X�. ✷

6. Linear estimators work when un are not square-summable.
Before stating and proving a generalization of Theorem 1.2, we indicate how a
weak form of that theorem may be derived by rather soft considerations; these
motivated the more concrete arguments in our proof of Theorem 6.1 below. In
the setting of Theorem 1.2, let

�n
def=

∑n
i=1 uiXi∑n
i=1 u

2
i

�

It is not hard to verify that Eθ�n = θ and supn varθ��n� < ∞. Since ��n� is
a bounded sequence in L2�µθ�, it has an L2-weakly convergent subsequence.
Because the limit � of this subsequence must be a tail function, � = θ
a.s. Finally, standard results of functional analysis imply that there exists a
sequence of convex combinations of the estimators �n that tends to θ in L2�µθ�
and a.s.

The disadvantage of this approach is that the convergent subsequence and
the convex combinations used may depend on θ; thus the argument sketched
above only works for fixed θ. The proof of Theorem 6.1 below provides an
explicit sequence of estimators not depending on θ.

We return to the general setting described in Section 2. A collection G of
bounded Borel functions on R is called a determining class if µ = ν whenever∫
Rψdµ = ∫

Rψdν for all ψ ∈ G.
The following theorem generalizes Theorem 1.2.

Theorem 6.1. If
∑∞
k=0 u

2
k = ∞� then for any bounded Borel function ψ�

there exists a sequence of functions hN� RN → R with the following property:
for any probability measure η on R� we have

hN�X1� � � � �XN� →
∫
ψdη a.s. with respect to µη�
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Thus the assumptions of the theorem imply that for any countable deter-
mining class G of bounded Borel functions on R, a.s. all the integrals
�∫ ψdη�ψ∈G can be computed from the observations X, and hence a.s. the
measure η can be reconstructed from the observations.

Proof. Fix ψ ∈ G, and assume for now that α�ψ� = ∫
Rψdα = 0. Without

loss of generality, assume that �ψ�∞ ≤ 1. Define

w�n� = wn def=
n∑
i=0

u2
i and w�m�n� def=

n∑
i=m+1

u2
i �

For each pair mi < ni, let

Li = Li�ψ� =
1

w�mi�ni�
ni∑

j=mi+1

ujψ�Xj��

Let �εj� be any sequence of positive numbers. We will inductively define
�mi�� �ni� with mi < ni, so that

w�mi�ni� ≥ w�mi� for all i and Cov�Li�Lj� ≤ εi for all j > i�(6.1)

We now show how to define �mi+1� ni+1�, given ni, so that (6.1) is satisfied.
Observe that

cov�Li�Ll� =
∑ni
k=mi+1

∑nl
s=ml+1 ukusη�ψ�2�ukus−k − ukus�
w�mi�ni�w�ml�nl�

= η�ψ�2
w�mi�ni�w�ml�nl�

ni∑
k=mi+1

u2
k

( nl∑
s=ml+1

usus−k − u2
s

)
�

(6.2)

Fix k, and write m�n for ml�nl, respectively. We claim that

n∑
m+1

usus−k − u2
s ≤ k�(6.3)

Assume that
∑n
m+1 usus−k−u2

s > 0; if not (6.3) is trivial. Applying the inequal-
ity a− b ≤ �a2 − b2�/b, valid for b ≤ a, yields

n∑
s=m+1

usus−k − u2
s ≤

�∑n
s=m+1 usus−k�2 −w�m�n�2

w�m�n� �(6.4)

Then applying Cauchy–Schwarz to the right-hand side of (6.4) bounds it by

w�m�n�w�m− k�n− k� −w�m�n�2
w�m�n� ≤ w�m− k�n� −w�m�n�

= w�m− k�m�
≤ k�
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establishing (6.3). Using the bound (6.3) in (6.33), and recalling that �ψ� ≤ 1,
yields

cov �Li�Ll� ≤
1

w�mi�ni�w�ml�nl�
ni∑

k=mi+1

u2
kk ≤ ni

w�ml�nl�
�(6.5)

Pick mi+1 large enough so that

w�mi+1� ≥
ni
εi
�(6.6)

and let ni+1
def= inf�t� w�mi+1� t� ≥ w�mi+1��. Then for any l ≥ i + 1, since

w�ml�nl� ≥ w�ml� ≥ w�mi+1�, (6.6) and (6.5) yield that cov�Li�Ll� ≤ εi.
Observe that E
Li� = η�ψ�, and

E

[( ni∑
j=mi+1

ujψ�Xj�
)2

]
= 2η�ψ�2

ni∑
j=mi+1

ni∑
k=j+1

ujukujuk−j

+
ni∑

j=mi+1

E
ψ�Xj�2�u2
j

≤ �ψ�2
∞

{
2

ni∑
j=mi+1

u2
j

ni∑
k=j+1

ukuk−j +w�mi�ni�
}
�

(6.7)

Fix i, let m =mi� n = ni. For j fixed, using Cauchy–Schwarz yields

n∑
k=j+1

ukuk−j ≤
√
w�j�n�wn−j ≤ wn�(6.8)

Plugging (6.8) into (6.7), and recalling that �ψ�∞ < 1, gives that

E

[( ni∑
j=mi+1

ujψ�Xj�
)2

]
≤ 2w2

ni
+wni�(6.9)

Thus,

E
L2
i � ≤

2w2
ni
+wni

w2
ni
/4

= 8 + 4
wni

≤ B�

Choosing, for example, εi = i−3, one can apply the strong law for weakly
correlated random variables (see Theorem A in Section 37 of [19]), to get that

Gn�ψ� def= 1
n

n∑
i=1

Li�ψ� → η�ψ� a�s�(6.10)

For general ψ, define Hn�ψ� = Gn�ψ − α�ψ�� + α�ψ�. From (6.10), it follows
that

Hn�ψ� → η�ψ− α�ψ�� + α�ψ� = η�ψ��(6.11)
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To finish the proof, define hN�X1� � � � �XN� def= Hk�N��ψ�, where k�N� is the
largest integer k such that nk ≤N. ✷

7. Quenched large deviations criterion. Recall that ρn = dµη
dµα �n

, the

density of the measure µη restricted to �n with respect to the measure µα
restricted to �n.

We make the additional assumption that

r =
∫
R

(dη
dα

)2
dα =

∫
R

dη

dα
dη <∞�(7.1)

For two binary sequences δ� δ′, define J�δ� δ′� = ��n� δn = δ′n = 1��, the number
of joint renewals.

Lemma 7.1. If E
rJ����′� � �� <∞� then µη 
 µα�

Proof. Let x�y� z� δ�n = znδn + yn�1 − δn�. We have

EQη
ρn�X� � � = δ� =
∫
R∞

∫
R∞
ρn�x�y� z� δ��dα∞�y�dη∞�z��(7.2)

and expanding ρn shows that (7.2) equals∫
R∞

∫
R∞

∫
ϒ

n∏
i=1

[
dη

dα
�x�y� z� δ�i�δ′i + 1 − δ′i

]
dP�δ′�dα∞�y�dη∞�z��(7.3)

Using Fubini’s theorem and the independence of coordinates under product
measure, (7.3) is equal to∫

ϒ

n∏
i=1

∫
R

∫
R

[
dη

dα
�x�y� z� δ�i�δ′i + 1 − δ′i

]
dα�y�dη�z�dP�δ′��(7.4)

If

I
def=

∫
R

∫
R

[
dη

dα
�x�y� z� δ�i�δ′i + 1 − δ′i

]
dα�y�dη�z��

then we have that

I =



1� if δ′i = 0�∫ dη
dα

�y�dα�y� = 1� if δ′i = 1� δi = 0�∫ dη
dα

�z�dη�z� = r� if δ′ = 1� δi = 1�

(7.5)

Plugging (7.5) into (7.4), we get that

EQη
ρn�X� � � = δ� =
∫
ϒ

n∏
i=1

rδiδ
′
i dP�δ′�

≤
∫
ϒ
rJ�δ�δ

′� dP�δ′�

= E
rJ����′� � � = δ��
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Applying Fatou’s lemma, we infer that EQη
ρ�X� � �� <∞, whence

Qη
ρ�X� <∞� = 1�

The Lebesgue Decomposition (3.2) implies that µη 
 µα. ✷

8. Absence of phase transition in the almost transient case. In this
section, we apply the quenched moment generating function criterion estab-
lished in the previous section.

Let N
m�n� be the number of renewals in the interval 
m�n�, and write
Nm =N
0�m�. Let Um = U�m� = ENm = ∑m

k=0 uk.

Lemma 8.1. For any integer A ≥ 1� we have P
Nm ≥ AeUm� ≤ e−A�

Proof. For A = 1, the inequality follows from Markov’s inequality.
Assume it holds for A − 1. On the event E that Nm ≥ �A − 1�eUm, define
τ as the time of the (�A− 1�eUm)th renewal. Then

P
Nm ≥ AeUm � E� ≤ P
N
τ�m� ≥ eUm � E� ≤ P
Nm ≥ eUm� ≤ e−1�

Consequently,

P
Nm ≥ AeUm� ≤ P
Nm ≥ AeUm � E�e−�A−1� ≤ e−A� ✷

Theorem 8.2. Suppose that the renewal probabilities �un� satisfy
U�ek� = o�k/ log k��

and also uk ≤ C2k
−1� If η
 α and dη

dα
∈ L2�α�� then µη 
 µα�

Proof. In this proof the probability space will always be ϒ2, endowed with
the product measure P2, where P is the renewal probability measure. Let

J
m�n� = ��n ≤ k ≤m� �k = �′k = 1��
be the number of joint renewals in the interval 
m�n�.

First we show that

∀ C� T1 + · · · +Tk ≥ eCk eventually�(8.1)

Observe that

P
T1 + · · · +Tk ≤ eCk� = P
N�eCk� ≥ k� ≤ exp
(
− k

eU�eCk�
)
�(8.2)

Our assumption guarantees that k/eU�eCk� ≥ 2 log k eventually, and hence the
right-hand side of (8.2) is summable. Consequently, for almost all �, there is
an integerM =M��� such that

∑k
j=1Tj > e

Ck for all k > M���. Equivalently,
N
0� exp�Ck�� < k when k > M. To use Lemma 7.1, it suffices to show that∑

n

snP
J
0� n� ≥ n � �� <∞ a.s. for all real s�
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We have∑
n

snP
J
0� n� ≥ n � �� ≤ C2��� +
∞∑
n=M

snP
J�eCn�∞� ≥ 1 � ���(8.3)

Observe that

E
J�eCn�∞�� =
∞∑

k=exp�Cn�
u2
k ≤ C3e

−Cn�(8.4)

since we have assumed that un ≤ C2n
−1. Thus the expectation of the sum

on the right in (8.3), for C large enough, is finite. Thus the sum is finite �-
almost surely, so the conditions of Lemma 7.1 are satisfied. We conclude that
µη 
 µα. ✷

We now discuss examples of Markov chains which satisfy the hypothesis of
Theorem 8.2.

Lemma 8.3. Given two Markov chains with transition matrices P�P′ on
state spaces � and � with distinguished states x0� y0� respectively� construct
a new chain M = �X�Y� on � ×� with transition matrix

Q��x1� y1�� �x2� y2�� =
{
P�x1� x2�P′�y1� y2� if y1 = 0,
P′�y1� y2� if y1 �= 0� x1 = x2.

Let A�s� = ∑∞
n=1 fns

n be the moment generating function for the distribution
of the time of first return to x0 for the chain with transitions P� and let B�s� be
the corresponding generating function but for the chain P′ and state y0� Then
the generating function for the distribution of the time of the first return of M
to �x0� y0� is the composition A ◦B�

Proof. Let S1� S2� � � � be the times of successive visits of M to � × �yo�,
and Tk = Sk−Sk−1. Observe that Y is a Markov chain with transition matrix
P′, so �Tk� has the distribution of return times to y0 for the chain P′.

Let τ = inf�n ≥ 1� XSn = x0�. Note that �XSn�∞n=0 is a Markov chain with
transition matrix P, independent of �Tn�. Hence τ is independent of �Tn�,
and

T = T1 + · · · +Tτ
is the time of the first return of M to �x0� y0�. A standard calculation (see, e.g.,
XII.1 in [8]) yields that the generating function EsT is A ◦B. ✷

Let F�U be the moment generating functions for the sequences �fn� and
�un�, respectively. Define L� �0�∞� → �1�∞� by L�y� = 1 − 1

y
, and note that

F = L ◦U. Denote W�y� = U ◦ L�y� = L−1 ◦ F ◦ L. When F3 = F1 ◦ F2, it
follows that W3 =W1 ◦W2.

We use the following Tauberian theorem from [16], Theorem 2.4.3.
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Proposition 8.4. Let �an� be a sequence of nonnegative reals� A�s� =∑∞
n=0 ans

n its generating function� W�y� def= A�1 − y−1�� α ≥ 0 a constant�
and l a slowly varying function� The following are equivalent�

(i) A�s� � �1 − s�−αl��1 − s�−1� for s < 1 near 1�
(ii) W�y� � yαl�y� for large y.
(iii) An =

∑n
k=0 ak � nαl�n�.

We now exhibit Markov chains with no phase transition.

Proposition 8.5. There is a Markov chain that satisfies Un � log log n�
and un ≤ Cn−1�

Proof. For simple random walk on Z2, we have

U�s� �
∞∑
n=1

n−1s2n = − log�1 − s2��

Thus, W�y� � log y. Consequently, W ◦W�y� � log log�y� corresponds to the
chain in Lemma 8.3 with both P and P′ the transition matrices for simple
random walk on Z2. Proposition 8.4 implies that Un � log log n. Finally,

un ≤ P
Xn = 0� ≤ Cn−1�

since X is a simple random walk on Z2. ✷

In conjunction with Theorem 8.2, this establishes Theorem 1.4.
Lemma 8.3 can be applied to construct Markov chains obeying the hypothe-

ses of Proposition 4.1 and Theorem 5.1. Take as the chains X and Y the sim-
ple random walk on Z. The moment generating function U
1� for the return
probabilities un of the simple random walk is given by U
1��s� = �1 − s2�−1/2

(see XIII.4 in [8]). Then W
1��y� = U
1� ◦L�y� = � y
2−y−1 �1/2 satisfies W
1��y� ∼

�y/2�1/2 as y → ∞. Hence W�y� = W
1� ◦W
1��y� � y1/4, and by Proposition
8.4, Un � n1/4.

The last example is closely related to the work of Gerl in [9]. He considered
certain “lexicographic spanning trees” �d in Zd, where the path from the origin
to a lattice point �x1� � � � � xd� consists of at most d straight line segments,
going through the points �x1� � � � � xk�0� � � � �0� for k = 1� � � � � d in order. Gerl
showed that for d ≥ 2, the return probabilities of simple random walk on �d
satisfy u2n � n2−d−1; after introducing delays, this provides further examples
of Markov chains with a phase transition (0 < θc < 1).

9. Absence of phase transition in Z2. The results in [10] (as summa-
rized in Theorem B of Section 1) show that for simple random walk on Z2,
which moves in each step to a uniformly chosen neighbor, the measures µθ and
µ0 are mutually absolutely continuous for all θ. The argument does not extend
to Markov chains which are small perturbations of this walk. For example, if
the walk is allowed to remain at its current position with some probability,
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the asymptotic behavior of �un� is not altered, but Theorem B does not resolve
whether µθ 
 µ0 always. In this section, we show that for any Markov chain
with return probabilities that satisfy un = O�n−1�, the measures µθ and µ0
are mutually absolutely continuous.

Recall that T is the time of the first renewal, and T1�T2� � � � are i.i.d. copies
of T. Also, �n = ∑n

j=1Tj denotes the time of the nth renewal. Recall from
before that �n is the indicator of a renewal at time n, hence

�Sn = k for some n ≥ 1� = ��k = 1��
Let S′

n and T′
n denote the renewal times and interrenewal times of another

independent renewal process. Recall that J is the total number of simultane-
ous renewals: J = ∑∞

k=0 �k�
′
k. If �k is the sigma-field generated by �Tj� 1 ≤

j ≤ k�, then define

qn = P
J ≥ n � �� = P
[ � ��i� j�� Si = S′

j� �≥ n � �∞
]
�(9.1)

In this section, we prove the following:

Theorem 9.1. When un = O�n−1�� the sequence �qn� defined in (9.1) decays
faster than exponentially almost surely� that is�

n−1 log qn → −∞ a.s.

Consequently, the quenched large deviations criterion Lemma 7.1 implies that
if η
 α and dη

dα
∈ L2�α�� then µη 
 µα�

We start by observing that the assumption un ≤ c1/n implies a bound for
tails of the interrenewal times:

∃ c2 > 0 P
logT ≥ t� ≥ c2t−1�(9.2)

Indeed, by considering the last renewal before time �1 + a�n,

1 =
�1+a�n∑
k=0

ukP
T ≥ �1 + a�n− k�

≤
an∑
k=0

ukP
T ≥ n� +
�1+a�n∑
k=an+1

uk

≤ �2 + c1 log an�P
T ≥ n� + 2c1 log
1 + a
a
�

Choosing a large yields (9.2).
Let ω�n� be any function going to infinity, and denote

m�n� �= n log nω2�n��
Below, we will often write simply m for m�n�.

From (9.2) it follows that

P
Sm�n� ≤ enω�n�� ≤
(

1 − c

nω�n�
)m�n�

≤ n−cω�n��
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This is summable, so by Borel–Cantelli,

n−1 logSm�n� → ∞(9.3)

almost surely.

Proof of Theorem 9.1. Define the random variables

Jm
def= ���i� j�� i ≥m� j > 1 and Si = S′

j��

and let Qm
def= P
Jm ≥ 1 � �∞�.

Let

rn
def= P

[
���i� j�� i ≤m�n� and Si = S′

j�� ≥ n
∣∣∣�∞

]
�

Clearly,

qn ≤ Qm�n� + rn�(9.4)

Write Q∗
m

def= E
Qm � �m� = P
Jm�n� ≥ 1 � �m�. Then

Q∗
m ≤ E
Jm�n� � �m� ≤

∞∑
k=1

ukuk+Sm ≤
∞∑
k=1

c1
k

c1
k+Sm

≤ c3
logSm
Sm

�

By (9.3), we see that n−1 logQ∗
m�n� → −∞ almost surely.

Since Q∗
m = E
Qm � �m�, we see that P
Qm ≥ 2nQ∗

m� ≤ 2−n, hence

Qm ≥ 2nQ∗
m finitely often

and it follows that n−1 logQm�n� → −∞. It therefore suffices by (9.4) to show
that

log rn
n

→ −∞ a.s.(9.5)

Let 
m�n�� def= �1�2� � � � �m�n��. We can bound rn above by∑
A⊂
m�n��
�A�=n

P
∀ i ∈ A� ∃ j ≥ 1 so that S′
j = Si � �∞ � ≤

(
m

n

)
Rn�(9.6)

where

Rn
def= max

A⊂
m�n��
�A�=n

P
∀ i ∈ A� ∃ j ≥ 1 so that S′
j = Si � �∞ ��

We can conclude that

log rn ≤ log
(
m

n

)
+ logRn�(9.7)
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Notice that
(
m
n

) = eO�n log log n� when ω�n� is no more than polylog n; for conve-
nience, we assume throughout that ω2�n� = o�log n�. Hence, if we can show
that

logRn
n log log n

→ −∞ a.s.�(9.8)

then by (9.7), it must be that (9.5) holds.
For any n-element set A ⊂ 
m�n��, we use the following notation:

A = �x1 < x2 < · · · < xn�, and m′ def= xn.
For any k ≤m′, let I�k� be the set of indices i such that �Ti�i∈I�k� are the

k largest interrenewal times among �Ti�i≤m′ .

For i ≤ n, let M�A� i� def= max�Tj� xi−1 + 1 ≤ j ≤ xi�.
We have

P
∀ xi ∈ A� ∃ j ≥ 1 so that S′
j = Sxi � �∞ � =

n∏
i=1

uSxi−Sxi−1
�

where S0
def= 0. Recalling that un ≤ c1/n, we may bound the right-hand side

above by

n∏
i=1

c1
Sxi −Sxi−1

=
n∏
i=1

c1∑xi
j=xi−1+1Tj

≤ R�A� def=
n∏
i=1

c1
M�A� i� �(9.9)

To summarize, we have

Rn ≤ max
A⊂
m�n��
�A�=n

R�A� = max
A⊂
m�n��
�A�=n

n∏
i=1

c1
M�A� i� �(9.10)

To see where this is going, compute what happens when A = 
n�. From the
tail behavior of T, we know that

lim inf
n→∞

logR�
n��
n log n

> 0�

To establish (9.8), we need something like this for Rn instead of R�
n��.
In what follows, k0�n� def= 10�log nω�n��2.

Lemma 9.2. Almost surely, there is some �random� N so that if n > N�
then for all n-element sets A ⊆ 
m�� providing k satisfies m′ ≥ k > k0�n�� at
least kn/�6m′ log log n� values of i satisfyM�A� i� ∈ �Tj� j ∈ I�k���

Assuming this for the moment, we finish the proof of the theorem. The
following summation by parts principle will be needed.
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Lemma 9.3. Let H�k� be the k largest values in a given finite set H of
positive real numbers� Suppose another setH′ contains at least εk members of
H�k� for every k0 < k ≤ �H�� Then∑

h∈H′
h ≥ ε ∑

h∈H\H�k0�
h�

Proof. Let H = �hj� j = 1� � � � �N� in decreasing order and let hN+1 = 0
for convenience. Write

f�j� def= 1�hj∈H′� and let F�k� = f�1� + · · · + f�k��
Then

N∑
j=1

f�j�hj =
N∑
j=1

�F�j� −F�j− 1��ej =
N∑
k=1

F�k��hk − hk+1�

≥
N∑

k=k0+1

F�k��hk − hk+1� ≥
N∑

k=k0+1

εk�hk − hk+1�

= ε
{
�k0 + 1�hk0+1 +

N∑
k=k0+2

hk

}
≥ ε

N∑
k=k0+1

hk

= ε ∑
h∈H\H�k0�

h�

This proves the lemma. ✷

Lemma 9.4. Write �Ti�ni=1 in decreasing order�
T�1� ≥ T�2� ≥ · · · ≥ T�m��

Then

lim inf
m→∞

1
m logm

m∑
i=k0�n�+1

logT�i� > 0�

Proof. It suffices to prove this lemma in the case where un � n−1, because
in the case where un ≤ cn−1, the random variables Ti stochastically dominate
those in the first case.

Let Yi
def= logTi; then Yi are i.i.d. random variables with tails obeying

P
Yi ≥ t� � t−1�

Write Y�i� for the ith largest among �Yi�ni=1. From [5], it can be seen that

lim
n→∞

1
n log n

( k0�n�∑
i=2

Y�i� − n log log n
)
= 0�(9.11)
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From Theorem 1 of [20], we can deduce that

lim inf
n→∞

1
n log n

n∑
i=2

Y�i� > 0�(9.12)

Combining (9.11) and (9.12) yields

lim inf
n→∞

1
n log n

n∑
i=k0�n�+1

Y�i� > 0� ✷

Recall that

R�A� =
n∏
i=1

cM�A� i�−1�

From Lemma 9.2 we see that almost surely there exists an N so that, for all
n > N and k0�n� < k ≤ m′ the set �M�A� i�� 1 ≤ i ≤ n� includes at least
kn/�6m′ log log n� of the k greatest values of �Tj�m

′
j=1 Therefore by Lemma 9.3

(applied to the logs of the denominators), we see that for n > N and all
A ⊂ 
m�n��,

− logR�A� ≥
�n/m′�∑m′

i=k0�n�+1 log�T�i�/c�
�6 log log n� �

Since �m′ logm′�−1 ∑m′
i=k0�n�+1 log�Ti/c� has a nonzero lim inf by Lemma 9.4,

we see that log log n logRn
n log n is not going to zero, from which follow (9.8) and the

theorem. ✷

It remains to prove Lemma 9.2. Define the event Gn�m′ to be the event

For all n-element sets A ⊂ 
m�n�� with maximal element m′, and
k obeying m′ ≥ k > k0�n�, at least kn/�6m′ log log n� values of i
satisfy

M�A� i� ∈ �Ti� i ∈ I�k���

Then define Gn
def= ⋂m�n�

m′=n Gn�m′ . The conclusion of Lemma 9.2 is that

P
Gn eventually� = 1�(9.13)

If we can show that

P
Gcn�m′ � ≤ n−3�(9.14)

then by summing over m′ ∈ 
n�n�m��, we can conclude that P
Gcn� ≤ n−2, and
hence by Borel–Cantelli, that (9.13) holds.

We prove (9.14) for m′ = m, the argument for other values of m being
identical. The values T1�T2� � � � are exchangeable, so the set I�k� is a uniform
random k-element subset of 
m� and we may restate (9.14) (with m′ =m).
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Let

I�k� = �r1 < r2 < · · · < rk�
be a uniform k-subset of 
m�n��; then the event Gn�m has the same probability

as the event G̃n�m, defined as:

For all n-element sets A = �x1 < · · · < xn = m� ⊆ 
m� and k
satisfying m ≥ k > k0�n�, at least kn/�6m log log n� of the intervals

xi−1 + 1� xi� contain an element of I�k�.

Equivalently, G̃n�m is the event that:

For all n-element sets A = �x1 < · · · < xn = m� ⊆ 
m� and
k satisfying k > k0�n�, at least kn/�6m log log n� of the intervals

ri� ri+1 − 1��1 ≤ i ≤ k contains an element of A.

Finally, G̃n�m can be rewritten again as the event:

For k obeying m ≥ k > k0�n�, no kn/�6m log log n� − 1 of the inter-
vals 
ri� ri+1 − 1� together contain n points.

Proving inequality (9.12) is then the same as proving that

P
G̃n�m� ≥ 1 − n−3�(9.15)

For 0 ≤ j ≤ k let Dj denote rj+1−rj where r0 �= 0 and rk+1
def= m+1. For any

B ⊆ 
k�, let W�B� denote the sum
∑
j∈BDj. Then define the events G̃n�m�k

to be:

For all sets B ⊂ 
k� with �B� < kn/�m log log n�, we haveW�B� < n.

We have that G̃n�m = ∩mk=k0�n�+1G̃n�m�k.
Set ε = n/m = �log nω2�n��−1, and set δ = ε/�6 log log n�, so that

δ log
1
δ
= ε

6
log�1/ε�
log log n

≤ ε
5

for sufficiently large n. We now need to use the following lemma.

Lemma 9.5. Let p�k�m� ε� δ� denote the probability that there is some set
B of cardinality at most δk such thatW�B� ≥ εm� Then for ε sufficiently small
and δ log�1/δ� ≤ ε/5�

p�k�m� ε� δ� ≤ e−kε/2�

The proof of this will be provided later.
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Now applying Lemma 9.5, we have that for fixed k so that m ≥ k > k0�n�,

P
G̃n�m�k� ≥ 1 − n−5�

since kε
2 ≥ n−5. Summing over k gives that

P
G̃n�m� ≥ 1 − n−3�

To prove Lemma 9.5, two more lemmas are required.

Lemma 9.6. Let B ⊆ 
k� and W �= ∑
j∈BDj. Then for 0 < λ < 1�

EeλkW/m ≤
(

1
1 − λ

)�B�
�(9.16)

Proof. The collection �Dj� 0 ≤ j ≤ k� is exchangeable and is stochas-
tically increasing in m. It follows that the conditional joint distribution of
any subset of these given the others is stochastically decreasing in the values
conditioned on, and hence that for any B ⊆ 
k�, and λ > 0,

E exp
( ∑
j∈B
Dj

)
≤ ∏
j∈B

E exp�Dj� = �E exp�D0���B��(9.17)

The distribution of D0 is explicitly described by

P�D0 ≥ j� =
(

1 − j
m

)
· · ·

(
1 − j

m− k+ 1

)
�

Thus

P�D0 ≥ j� ≤
(

1 − j
m

)k
≤ e−kj/m�

In other words, kD0/m is stochastically dominated by an exponential of mean
1, leading to EeλkD0/m ≤ 1/�1−λ�. Thus by (9.17), E exp�λkW/m� ≤ �1−λ�−�B�,
proving the lemma. ✷

Lemma 9.7. Let �B� = j and let W = ∑
j∈BDj as in the previous lemma�

Then

P
(
W

m
≥ t
k

)
≤ e−t

(
et

j

)j
�(9.18)

Proof. Use Markov’s inequality,

P
(
W

m
≥ t
k

)
≤ EeλkW/m

eλt
�
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Set λ = 1 − j/t and use the previous lemma to get

P
(
W

m
≥ t
k

)
≤

(
1 − λ

)−j
e−λt

=
(
t

j

)j
ej−t�

proving the lemma. ✷

Proof of Lemma 9.5. We can assume without loss of generality that j �=
δk is an integer and that n �= εm is an integer. By exchangeability,
p�k�m� ε� δ� is at most

(
k+1
j

)
times the probability that W�B�/m ≥ ε for any

particular B of cardinality j. Setting t = kε and plugging in the result of
Lemma 9.7 then gives

p�k�m� ε� δ� ≤
(
k+ 1
j

)(
εk

j

)j
ej−εk

=
(
k

δk

)
�εδ�δke�δ−ε�k�

The inequality
(
a
b

) ≤ �a/b�b�a/�a − b��a−b holds for all integers a ≥ b ≥ 0
(with 00 �= 1) and leads to the right-hand side of the previous equation being
bounded above by (

1
δ

)δk( 1
1 − δ

)�1−δ�k(ε
δ

)δk
e�δ−ε�k�

Hence p�k�m� ε� δ� ≤ ekr�ε�δ� where

r�ε� δ� = δ�log ε− 2 log δ+ log�1 − δ�� − log�1 − δ� + δ− ε�
Since log ε and log�1 − δ� are negative, we have

r�ε� δ� ≤ 2δ log�1/δ� − ε+ δ+ log�1/�1 − δ���
For sufficiently small ε, hence small δ, we have δ+ log�1/�1 − δ�� < �1/2�δ×
log�1/δ�, hence

r�ε� δ� < �5/2�δ log�1/δ� − ε ≤ ε/2 − ε = −ε
2
�

by the choice of δ. This completes the proof. ✷

10. Concluding remarks. A Markov chain � with state-space � and
transition kernel P is transitive if, for each pair of states x�y ∈ � , there
is an invertible mapping M� � → � so that M�x� = y, and P�y�M�z�� =
P�x� z� for all z ∈ � . Random walks, for example, are transitive Markov
chains. When the underlying Markov chain � is transitive, our model has
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an equivalent percolation description. Indeed, given the sample path ��n�,
connect two vertices m� l ∈ Z+ iff

�m = �l but �j �= �m for m < j < l�
A coin is chosen for each cluster (connected component), and labels are gen-
erated at each x ∈ Z+ by flipping this coin. The coin used for vertices in the
cluster of the origin is θ-biased, while the coin used in all other clusters is
fair. The bonds are hidden from an observer, who must decide which coin was
used for the cluster of the origin. For certain � (e.g., for the random walks
considered in Section 4), there is a phase transition: for θ sufficiently small, it
cannot be determined which coin was used for the cluster of the origin, while
for θ large enough, the viewer can distinguish. This is an example of a one-
dimensional, long-range, dependent percolation model which exhibits a phase
transition. Other one-dimensional models that exhibit a phase transition were
studied by Aizenman, Chayes, Chayes, and Newman in [2].

In Sections 4 and 8, we constructed explicitly renewal processes whose
renewal probabilities �un� have prescribed asymptotics. Alternatively, we
could invoke the following general result.

Kaluza’s Theorem [14]. If u�0� = 1 and u�k − 1�u�k + 1� ≥ u2�k� for
k ≥ 1, then �uk� is a renewal sequence.

See [14] or [1], Theorem 5.3.2, for a proof, and [18] for a generalization.
An extended version of the random coin tossing model, when the underlying

Markov chain is simple random walk on Z, is studied in [17]. Each vertex
z ∈ Z is assigned a coin with bias θ�z�. At each move of a random walk on Z,
the coin attached to the walk’s position is tossed. In [17], it is shown that if
��z� θ�z� �= 0�� is finite, then the biases θ�z� can be recovered up to a symmetry
of Z.
Some unsolved problems. Recall that � and �′ denote two independent and

identically distributed renewal processes, and un = P
�n = 1�. The distribu-
tion of the sequence of coin tosses, when a coin with bias θ is used at renewal
times, is denoted by µθ.

1. Is the quenched moment generating function criterion in Lemma 7.1 sharp?
That is, does E
r∑∞

n=0 �n�
′
n � �� = ∞ for some r < 1 + θ2 imply that µθ ⊥ µ0?

2. Does µθ1
⊥ µ0 imply that µθ1

⊥ µθ2
for all θ2 �= θ1?

3. For renewal sequences exhibiting a phase transition at a critical parameter
θc, is µθc ⊥ µ0?
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