EDITORIAL

The Interdependence of Sampling and Frequency
Distribution Theory

The object of the theory of sampling is to describe the phe-
nomena exhibited by all the samples that can possibly arise from
a parent population of known characteristics. In some cases the
desired description can be obtained directly by employing elemen-
tary operations of combination theory, in others it is either ex-
pedient or necessary to use the indirect attack of the statistical
theory of sampling. These two methods are quite different in
application, and it is advisable to illustrate the respective peculi-
arities of the two methods.

Example 1. An auction bridge hand may be regarded as a
single sample withdrawn from a parent population of 52 cards.
The number of different hands that can be selected equals the
number of combinations of 52 things taken 13 at a time, namely,
(72 ) =635 013 559 600. Of these

1)+ - Fl2)= ;;?2)( 'g)

will contain exactly Z cards of any specified suit. Therefore if
in this expression we successively place Z equal t0o 0, 1, 2, ... 13
we shall obtain the frequency of all possible samples ranked ac-
cording to the number of cards of the specified suit contained in
each sample. The results are presented in the following table.
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TABLE 1

=z f(z Pe= F(z)/N
0 8 122 425 444 01279
1 50 840 366 668 .08006
2 130 732 371 432 20587
3 181 823 183 256 28633
4 151 519 319 380 .23861
5 79 181 063 676 12469
6 26 393 687 892 04156
7 5 598 661 068 00882
8 740 999 259 00117
9 58 809 465 .00009
10 2 613 754 .00000
11 57 798 .00000
12 507 00000
13 1 .00000
Total 635 013 559 600 .99999

In this illustration, combination theory has yielded a perfect
solution. The frquencies are exact, and the sum of the fre-
quencies between any two limits may likewise be obtained exactly
by a simple addition.

Example 2, The bidding strength of hands in auction bridgc
is often approximated by counting each Jack, Queen, King and
Ace as 1, 2, 3 and 4 points, respectively. The total count of a
single hand may range, therefore from 0 to 37 inclusive. Re-
quired the frequency distribution of all pnssible hands when they
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are classified according to count.

Unlike the preceding problem, we cannot obtain a simple
expression for the general term, /5 , of the required distribution.
But after rather involved computations the following solution
may be obtained:

TABLE II

C%\mt F}e(qlzlsncy Cozlrmt Fr}q}ugn)cy
0 2 310 789 600 19 6 579 838 440
1 5 006 710 800 20 4 086 538 404
z 8 611 542 576 21 2 399 507 844
3 15 636 342 960 22 1 333 800 036
4 24 419 055 136 23 710 603 628
5 32 933 031 040 24 354 993 864
6 41 619 399 184 25 167 819 892
7 50 979 441 968 26 74 095 248
8 56 466 608 128 27 31 157 940
9 59 413 313 872 28 11 790 760
10 59 723 754 816 29 4 236 588
11 56 799 933 520 30 1 396 068
12 50 971 682 080 31 388 196
13 43 906 944 752 32 109 156
14 36 153 374 224 33 22 360
15 28 090 962 724 34 4 484
16 21 024 781 756 35 624
17 14 997 080 848 36 60
18 10 192 504 020 37 4
Total | 635 013 559 600
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Example 3. If the mean and the standard deviation of the
weights of a group of 200,000 men be 140 lbs, and 20 lbs., re-
spectively, and if in addition it be known that the higher standard
moments of this distribution be

"'3;1 =-5 0‘/5:" 4'43

aiac” 317 < g,x>17.97.

what is the chance that the mean weight of }000 men chosen at
random from the 200,000 will exceed 141 pounds?

It is clear that it would be physically impossible to solve this
problem by employing a direct attack by combination theory, even
though the weights of each of the 200,000 men were available,
Moteover, it is likewise evident that in statistical problems cor-
responding to the illustrations of examples 1 and 2, the number
of individuals in both the parent population and éach sample is
considerably larger than 52 and 13 respectively, ana consequently
the calculation of either a single frequency or the sum of any
large group of consecutive frequencies by the direct method is
quite out of the question,

Let us now consider the three examples above from the point
of view of the indirect attack. The parent populations for the
first two examples may be interpreted as

Variates x 0o - 1
Frequencies frx) % - B3

and

Variates . . ax ., . 0
Frequencies . . Fffx). . 36 4 4 4 ¢4

respectively.
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For the first, the mean is at a = 1/4, and the moments
about the mean of the parent population are obviously

M= f'_—s;, [6"*3(—/)" ]

For the second, the mean is at x = 10/13, and corres-
pondingly the moments of this parent population are

/ » » »n ” n
M, =50 |(10)+3 416 +29 vaz

If 8 and r denote the number of individuals in the parent
population and each sample respectively, then the moments of the
distri!mtion of all samples that can arise from this parent popula-
tion may be obtained from those of the parent population hy
means of the relations

( Mg=r-Mx
Py My S(PPs)
Han* Myx SR~ 3P + 2Py
Hya® P SO TR P 6R) 3, - S(F-2py 2 )

My g™ PSP 1Py +30p, - 60p, ¢ 24 04)
FI0st g, £y " (PP +Tpg - 2p)

My g M. 8(p, -3ip, +r100p, -390 4, +360p, vlmp‘)
* Syt 3Py Oy ¢ 190, - 180, + 8p;)
"/0/1.:‘ ) 3.(P."P,*IJP4 ~2p, "4/’¢)

(2)*1

L TI5p, S py-3pet 34, A)
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where

e lr=I)r-2) - to i factors
/q‘ S(s-Ifs-2) "to 1 factors

Since the moments ¢, . for each of these three examples
are now known, and according to the conditions of the problems
the values of ( r, s) are (13, 52), (13, 52), and (1000, 200000)
respectively, it follows that the moments of the desired distribu-
tions of samples are as follows:

Function Example 1 Example 2 Example 3
Mg 13/4 10 P 4140 Ibs.
My 507/272 290/17 Tg =~ 630874 Ibs,
My 6591,/13600 288/17 wy.x* 0156927,
Max 53591421/5331200. 17441114/29155 o 4.5~ 3.0001357
Mea 9339447/1066240 2262240/833 «4.p=~ 1569051
Moz 71781968037/801812480 | 2684384074 /39151 o~ o:2= 15.026638

It will be observed that the indirect procedure has yielded
the moments of the required distributions rather than their fre-
quency functions, and the next step therefore is to obtain with the
aid of these moments approximate expressions for the desired
frequency functions. In this connection it should be borne in
mind that we are not concerned with questions regarding the
probable errors of the moments which we are employing, since
the moments computed for the distributions of samples are neces-
sarily exact, and their probable errors are therefore zero. For

1See Annals, Vol. I, page 104,
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this reason arguments tending to limit the number of terms that
may be employed in either a Gram-Charlier series, or in the de-
nominator of Pearson’s differential equation are not to the point
so far as our illustrations are concerned. These remarks hold
even for the third example, since if the moments of the parent
population are as given, then the moments of the distribution of
samples may be determined with any desired degree of accuracy.

Since it is evident that the solution of our problems now
depends upon our obtaining approximate expressions for these
distributions whose moments are known, we shall at this point
develop a general method of representing discrete distributions
which is essentially due to the researches of Charlier., Although
the results that we shall obtain are practically those that have
also been obtained by Gram, Edgeworth and others, the method
that we shall employ is that used by Charlier in “Die Strenge
Form des Bernoullischen Theorems.”

Let f(.x) be the frequency function for a discrete dis-
tribution ranging from ac=7/ to x=<4 . If the ordinates
be equidistant at intervals of A , the total frequency of the dis-
tribution is

BYN=FL)e (1 +h)+ -+ [lash) s Hx )+ Moot ) s 4 [ (1)
Z, ftx).

X

where our interest is focused on a typical ordinate at x-x, .
If we now set up the function

{ s . .
.2: ferye ™ ~fexp+ Frame i feg)e *
P )i’ 1
*f(r,-,h)e(x g TN f(;,’}c bt
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where ¢ =/-7 , and multiply each side by e “X,@é o that

. €, .
.-, é we hoi
e “"g: Fim)e™ s ) s Flmosh)e " Flrsth)a -

(€% )i -2hewi )i

-Hewe (A
+f((;)'e +f(;-b)-eh + Iz, -2) e +tllle

we obtain by integrating both members with respect to «w be-

tween the limits «="T and w= 2

h h
" -x,wi % Xeoi '1'!
/ e {.Z f@)e }dw=/ fx,) oo,
'E .{' -”
h h
since the integral of all other terms of the right hand member will
vanish as follows:

4 :
[g f(.r,+m/r)~em»"’3!a: » f(.r,+m.h) .
3

4

N
/.g [cos mbhew +é sin m/)w] dw=O

( m is an integer.)
It follows therefore that

14
F_ &
@ Flxpef [, e {2, fore™ fatw

8-('
[
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Moreover, since

)i bewi -(b+th)ax -awi
-~Qtdé + - -
e @ +e +--4e we, € €
e ~hm4_/

we see that the sum of all the consecutive frequencies from
x=a to ax=b may be expressed as the definite integral

b -(b+h)wi -awe , f . .
5y 0 feo=£ fe < { Zf f(x).f"‘}dw
e

xa -# "Il‘.’i _/ x.c

The changing of the order of integration is permitted since the
limits are all finite,

Ordinarily frequency distributions are expressed as develop-
ments of the integral (4), and the sums of consecutive frequen-
cies obtained by applying the Euler-Maclaurin Sum-Formula to
these results. It seems at first sight that it might be well to place
a little more emphasis upon the evaluation of (5), since this as
it stands affords an exact expression for the sum of any group
of consecutive frequencies. For the case of continuous variates
we need only permit A to approach zero, replace the sign of
summation by the sign of integration, etc., and after justifying
the change in the order of integration for the resulting infinite
limits obtain

(6)‘[;(.ﬂdx. '/. o.‘::;'c-.m'{/” ';‘(')"xmdx}du
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We shall now attempt to evaluate the definite integral (4).
Let us first ohserve that the quantity within the parenthesis is a
function of < , since the finite integratioh with respect to a
and the subsequent replacing of .ac by the limits will cause this
distribution variable to disappear.

For reasons which will develop later, let us write

, . Y4
Z{F xwi b,(wi)szc%z-‘,iz 4 Cx-b,) e - ‘.’:!;.‘,l

ftxe -=e : fex)e ~
x:{ .x-(,

If in Leibnitz’ formula
D uv =DV +(7)Du- D" 've (2) D' D™

se* az

we place «=e and v.e , and note that

270
then
|
n o lf ™ r? a2 2
(7)De ,-L‘:a"o;j_?c bf‘i"oa b+ 2353la  be-

where n’. nln-IXn-&) - - - . . to i factors.
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Thus we may write

p, o
(x-b)ex-b %2 o 03
‘Z’l/(.r)-e " =N[c,*c'(ui)-oc,(‘z—-f,?+c, “"T,—;—fj
*q

and employing the notation

R
7
2, @b w=Nu;,
we obtain from (7)

®) { carpi-b,

. ool . fad . ) .
CRVIEY oY WO -« WASRY - T e
Formula (4) may therefore be written, dropping the sub.
script on &,

h e
©) fa-ng /{ o R b’

[ 1t c (wi)+ Gy (gg[)‘... .. ] dw
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Placing

(10) 9(x)=3l-,,/ﬁ e

h

it follows that the nth derivative with respect to ,a is

Y24 2
[ b, W
¢ i -_r-bl Wi - —8—
(1) 6 "()_,,),éL”/ (wi) e "X2) 7 dw;
-z

h

so finally-

1) f@)-N-b [660- G 6%+ S 6% 526"+

E(x).

Let us now investigate the function

o, ove
<l “byw 72 .
O&x) 2,,,/1;6 [co.s(.z b)w
n
~{sin(x ~b,)w]da)

F o_, .2
e bae0 /ecas(x-b,)wdw

_._2_1”/-11
h
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“b,w78

[since e sin(x +b,)w is an odd function of w]

bl 2
o [ " eontn by atw
o
- 2
= ;% /‘r e 4y /zcos(ar -b)wdw
A

_d -(x-8)° b w¥e
Wi g -,—,—’,/ze cos(x-b,) wd w
A

s dx)- £, .
o 2 =  -mY4a*
[/e ’as“cas mxdxs -g e ]
L]
Likewise we may write
- -5, w e
n) (n) ’ / ”» .
6w=-¢ ®-8&,, E,,<',;Iwe dew
n

By successive integration by parts it can be shown that

. e,
/.t"e i‘dx- -e ¥ {x"“(n-l)x »-3

(13) +(n-tfn-9x"% ot (mtfn-3) - (. n-&'os);ﬁ”}*f" .

2
E; «(n-i)n-3) w(v-Zc'd)f.x > ¥ dx
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80 we have that

Ia

. (E) .
L . 2 (-l h
09 By, (B)7eF Lot (e 2AER(2)]

So far we have said nothing concerning the values of the
parameters b, and b, . Referring to formula (8) it is seen
that if the origin of ac be taken at the mean of the distribution
in question, and b, equal the second moment about the mean
of this distribution, ¢, = ¢ 2+ 0, and consequently if the
valyes of A, may be neglected, the equation of the distribution
expressed in standard units becomes

) £s)
as) f)-n2 {¢(t)-%"§ ¢ lo+ gf ¢ o)- %‘¢m+...}

f'

where tsﬁ’z 1-5'_‘7 ’ ¢(f)_'/3[7;e i ) and
3
1 As""a

61
As =vs-10~,

Ao = %o-15, +30

n (z) &) ” )

n
L - 2 — -, [ S
An""» 2.1 "'n-z*za-a! Frg-e 233!

n-é
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By employing the Euler-Macléuyin Sum-Formula we can

write
f(a)+ f(a*/))*f(ath)‘....+f{b_h)*f(b)
17
(17) eyt
! Y @ ’ (a) ) -
- N[/¢(t)df-4,¢lt)*/l, Bct)-A, Pce)+ Agdle) - ] orn
K ALl
where
/
r = ﬁ
Ao 20
hZ
A' 1202
r.o%
A,' .
(18) b e he
-'31—— hT
A ’ te 7?; T 7Z0a*
1 ks losy, B %-3 K =
A4 726 t & <8 * ot 7;
L A %.-/5~4-f30 w‘-/o.,,,s‘ ha 3§ he

720 240  o% 288 30240¢°

In some cases it may be more convenient to employ a mean
and a standard deviation of the generating function that differs
somewhat from that of the distribution for which the representa-
tion is desired. In this event the coefficients of the first and second
derivatives in (15) will not vanish. However, the extra effort
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expended in increasing the number of significant terms may be
more than offset by the fact that a rather arbitrary choice in the
valuesof b, and b, may result in simpler values for

‘- x-b,
2

which in turn may occasionally eliminate difficult interpolations
when dealing with tabulations of the generating function and its
derivatives.

Formulae (17) and (18) may be regarded as a sort of apol-
ogy for the fact that the definite integral of formula (5) has
never been developed. The need of a satisfactory expression for
the sum of any number of consecutive variates is indeed acute.

By permitting A in the foregoing theory to approach zero,
one can obtain corresponding formulae for the ordinates and
areas of distributions of continuous variates. However, it should
be noted that for this case the limits for the integrals in the
vicinity of formula (4) are now

lm T
h-o0 hH-7

and consequently the changing of the order of. integration must
be justified.

In conclusion we.may state:

I. Answers to problems of statistical sampling are usually
expressed as finite or infinitesimal integrals under a function
whose moruents only are known. If known, the function is gen-
erally of but little value.

II. It is necessary to approximate the desired integrals by
emploving frequency functions.
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III. Present methods are unsatisfactory from the point of
view that remainder or limit of error terms are not available,
The X'etest, though helpful, does not meet the issue in question,



