26

The deviations are evidently too large (0 —w is 4-2-4, —14, —22, —10, 4-2¥)
to be due to the use of round numbers; the sum of the squares is also
2208 instead of 3 4 V8,
consequently, no doubt, an over-adjustment.
The special adjustment of the second dogres, 4% =0, V4® = 0, snd J* =2, gives

for », and its differences:
116 194 2902 410 548

78 98 118 138
The deviations 0 — % == . 04, —04, —0-2, 00, 402

nowhere reach §, and may consequently be due to the use of round numbers; the sum of

the squares 48 instead of 3+ VG
also agrees very well. Indeed, a constant subtraction of 004 from w would lead to
(84)%, (4-4)%, (5:4), (6:4)%, and (7-4), from which the example is taken.

Exsmple 3. "Between 4 points on a straight line the 6 distances

013y Oy 0y
Og3+ 044
Og4 «
are measured with equal exactness without bonds. By adjustment we find for instance
$s == $0,5+ 3(0,5—043) + 1014 —044);

we notice that every scale = §. It is recommended actually to work the example by a
millimeter scale, which is displaced after the measurement of esch distance in order to
avoid bonds.

XII. ADJUSTMENT BY ELEMENTS.

§ 51. Though every problem in adjustment may be solved in both ways, by
correlates as well as by elements, the difficulty in so doing is often very different. The
most frequent cases, where the number of equations of condition is large, are best suited
for adjustment by elements, and this is therefore employed far oftener than adjustment
by correlates.

The adjustment by elements requires the theory in such a form that each obssrva-
tion is represented by ome equation which expresses the mean value 2, (o) explicitely as
linear functions of unknown values, the “dements”, z, y, ... 3:
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M2

................................... (83)

where the p, g, ... r are .theoretically given. All observations 2xe supposed to be
unbound.

The problem is then first to determine the adjusted values of these elements
Z, §, ... z, after which each of these equations (83), which we call “equations for the
observations”, gives the sdjusted value w of the observation.

Constantly assuming that A,(0) is known for each observation, we can from the
system (85) deduce the following normal equations:

o) = ]+ [l -+ [l - )

(5] = Wl lfll+ -+ Bl - Bl

rd, (o r re ro

(o] = sl =+ sl -+ [l = Ll
the rule of formation being apparent from the left hand terms. Of these normal equations
we can prove, first that they, m in number, are suited for the determination of the m
clements, 8o far as these, on the whole, can be determined by the equations (85), and
then that the functions of the observations, which form their left hand terms are free of
all the theoretical conditions of the problem, so that, as indicated by the last sign of
equality in the normal equations, they can und must be determined by the directly

" observed values o, ... o,.

For if we assume, ss to the first proposition; that any of the normal equations
can be deduced from the others, so that all the elements cannot be determined by these
equations, then there must be m coefficients A, k, ... I, so that

/.[%"]Jr.k[%_”]-g-...q.z[.'f.’]ao
A et

s e o

-0
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(A everywhere used for A4(0)); but if we multiply these again respectively by &, &, ... ! and

add,
e Gkl g
4(0) ’

so that not only the normal equations, but the very equations for the obaervations can,
consequently, all be written w:th m—1 or a smaller number of elements.

But further, the system of functions represented by the normal equations is free
of every one of the conditions of the theory. The latter we can get by eliminating the
elements 2, y, ... ¢ from thesequations of the observations (85). But elimimation of an
¢*sment, say for instance x, leads to the functions p,2,(0r) — p2d,(0), and among the
linear functions of these must be found the functions from which not only » bui all the
other :lements are eliminated, and, consequently the conditional equations of the theory.
But it is easily seen that the functions

that is

are mutually free. The latter is the left hand side of the normal equation which is parti-
cularly aimed at the element z; it is formed by multiplying the equations (85) by the

coefficient of = in each, and has the sum of the squares 3 Bt the coefficient of this

element; it has thus been proved to be free of all the conditions of the theory, and must
therefore in the adjustment be computed by the directly observed values, for which reason

wa have been able in the equations (88) to rewrite the function as [ 1?(: )] In the same
i

way we prove that all the other normal equations are ;ree of the theory, each through
the elimination from (85) of its particularly prominent element. While, in the adjustment
by correlates, we exclusively made use of the equations and functions of the thoory, we
put all these aside in the adjustment by elements, in order to work only with the empiri-
cally determined functions which the normal equations represent.

The coefficients of the elements in the normal equations are, as it will be seen,
arranged in a remsrkably symmetrical manner, and each of them has a significance for
the problem which it is easy to state.

The coefficients in the diagonal line, which are respectively multiplied by the
olemont to which the equation particularly refers, are as sums of squares all positive, and
each of them is the square of the mean error for that function of the observations in
whose equation it occurs. We have for instance

=[5 -] = )
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The coefficients outside the diagonal line are identical in pairs, the coefficient of =,

[2{] in y's particulsr equation, is the same as the coefficient of y, PTq in 2's particular

equation. They show immediately if some of the functions [%—o]. [%], . [';] shonld happen
to be mutually free; if for instance z's function [-?] is to be free of y's function [7—;—].
we must have [-{-1;- 1,(0)] - [%1] - 0.

§ 52. If now the elements have been selected in such a convenient way that ail
these sums of the products vanish, and the normal equations consequently appear in the

R

[%] vy = [%] ®7)

then they offer us directly the solution of the problem of adjustment. The.adjusted values
for the elements are

.. ’f‘thigl’[?]' Rl b H I S @)
4(z) = [?]—'. L) - [1}]_'. e A@) = [%]", (89)

and from these we can then compute both the adjusted value and its A, for every linear
function of the. elements, because these are mutually free functions. In particular from
the equations (85),
= px4qy+ ... + 12,

we can compute the adjusted values u, of the observations, then from (35) the squares of
the mean errors 2, (u,), and also the law of errors for every function of observations and
slements.

§ 53. In ordinary cases & transformation of the system of elements is required.
It is required for the solution of the normal equations in order to find the values of the
oloments; but we must remember that we have here a double problem, as it is also our
object to free the transformed elements so that they may be used for determinations of
the mean errors. The transformation therefore cannot be selected so arbitrarily as in
snalogous problems of pure mathematics; yet there is a multiplicity of possibilities, and
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in many special cases radical changes can lead to very beautiful solutions (see §62). The
first thing, however, is to secure a method which may be always applied; and this must
be selocted in such a way that the elements are eliminated one by one, so that the later
oomputation of them is prepared, and moreover, constantly, in such a way that freedom

is attained.
This can, if we commence for instance by eliminating the element z, be attained

in the following way. The normal equation which particularly refers to z,

er), 4 [P} i, - |2

[+ [5]o+ - + ] = [B]: 0
and which will be put aside to be used later on for the computation of z, is multiplied

by such factors, viz. @ - [g] H [1—;‘-’]. e @ = [%)][}lfl. that x vanishes when the

products are respectively subtracted from the other normal equations; but it must be
remembered that we are not allowed to multiply the latter by any factor. The equation
for z can then be written

,f—x+¢y+,..+mz—l%‘3]:[‘—?—)l 1)
whore 1,06) — [2] -
The functions in the other equations
ol - 20 - (-] -
become, by this means, not cnly independent of = but also free of I‘%’] or of &, for
1710 - ]

The equations which in a double sense have been freed from z, get exactly the
same characteristic functional form as the normal equations had. If we write
ﬁ—ql_f’p(' ":_rl"“_'Pa' (92)
00 that the equations for the observations become
pétayt ...tz =u,
we net only get, as we see at once,
1] - [2 vz] ﬁ_['_'e_[m]
1 - l— -~ 1 4 e 2 2 w 2 ) (93)
u
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(-t - -t
)~ Aoz ] - -2

Hence we proceed exactly in the same way from this first stage of the transformation of

the normal equations
[Etfs -+l - [%]

but also

...................... heeeaaae (95)
rq ryY '
[+ 4[5 - 2

using, for instance, the first of them for the elimination of the element y. If
= 9] .12
¢ [ 1 ] ' [.a ]
y is replaced by
7= y+.. ot = [T [2F]. (9%6)
which is free of the element &, and for which we have
Lip - [%’—']"- ©7)
By means of &' and corresponding coefficients we have, analogously ta (93) snd (94),
) ) g0 e rr [re
[ - [4--1) - [~ -1

which are independent of any special computation of the coefficients +”.

Continuing in this way, till we have obtained s set consigting only of free func-
tions, we find, consequently, just a system of elements, £, y, ¢, which ‘possess the above-
mentioned desired property, its normal equations being of the same form as (87), viz.:

[%]e =17
1 =13

(98)



247

With these elements the equations for the' adjusted values of the several observations
become

AR AR PR S AL NN (99)
and for the squares of their mfean errors
-t a') RO WY
»t [L;B] g ['1 A‘I] o4 [’ A,"] -l (100)

If we want to compute adjusted values and mean errors for the original elements or func-
tions of the same, the means of so doing is given by the equations of transformation
zt+ey+ .. towz=7%
e 2 -
y+ ... +o Y (1o1)

z =
or by (90), the first equation (95) and the last of (98), being identical with (101). For not
only the original elements z, y, ... z are easily computed by these, but also the coef-
ficients in the inverse transformation

2= Etag+ ... +7C
y= g+t l
¢

2 -

(102)

Now, if F is a given linear function of z,y, ... #, then by obvious numerics!
operations we get an expression for it,
F o at+by+ ... +d¢,
and for the square of its mean error we get

() = a'[';-’!]"+ b'[%i] o4 d-["T'.’].

If for special criticism we want the computation of A,(%) for many observations,
wo may take advantage of transforining the equations of observations, computing their
coefficients by (42), or

Q= qG—9P - 7 =1, —wp,
7 - 'y
but we remember that g', ... r" are quite superfiuous for the “coefficients of (85).

§ 54. In the theory of the adjustment by elements we must not overlook the
proposition concerning the computation of the minimum sum of squares for the benefit of
the sumnmry ﬂit’i«-ism as well as for checking our computstion. We are able to compute
the sum [ "*"1 | which is to approach the value w —m, as s00p a3 we bave found

anly the elements, without being obliged to know the adjusted values for the separste
ne



248

observations. And this computation can be performed, not only for the legitimate adjust-
ment, but for any values whatever of the elements. It is easiest to show this for trans-
formed elements, &, »,, ... {,. The values for the observations corresponding to these
must be computed by (99)

pE gt A0 =
From this we get

] - e -ofn - o[

(103)
fgle+ s+ e |
If we here substitue for {%o], [%—o]. [r—;g] their values in terms of the elements §,

. {, of the legitimate adjustment, we find from the equations (98)
0—)? !l V)
[( ] =[5+ [ o+ |2 - [ 0= a0m
It is evident from this that the condition of minimum is & =€, 5, =y, { ={ The
minimum sum of squares is therefore obtained only by the determination of the functions
that are free of the theory, by means of their directly observed values. And for this

minimum
) = 5]~ Pl ] o e = o
- [%9]..[11)9]5 - [gl],,'- e - '7?]( - (108)
[""] [ ] _[%_?I —_— - ':_0]' (107)

oI I =
Jl i
1t deserves to be noticed that the middle one of these expressions holds good, in unchanged
form, also of the original, not transformed elements and coefficients. We have

(o—u)? 0o] _ [po qo _|ro

o | =[5 -[Fl=[5]e =[5 aos
which is easily proved by substituting in (106) the values obtained from (101). The
equation is particulerly valuable as a check on the accuracy of our computation.

§ 55. In going through the theory of adjustment by elements here developed, it
will be seen that a very essential part of the work, viz. the computation of the trans-
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formed values of the coefficients in the equations for the several observations, may nearly

always be dispensed with. The sums of the squares, [9;2]. and the sums of the products,
[g;]. must be transformed; but they are in themselves sufficient for the determination of
the transformations, and by their help we find values and mean errors for the elements,
first the transformed ones, but indirectly also the original ones. The adjusted values
%, ... u, of the observations can, consequently, also be computed without any knowledge;
of ¢/ ... # ...7.. Only for the computation of ,(w) ... A,(us), consequently for a
special criticism, we cannot escape the often considerable work which is necessary for
the purpose. '

For the summary criticism by [ = n—m4 VZ(n—m), we can even, as
we have seen, dispense with the aftar-con:putation of the several observations by means
of the elements. We ought, however, to restrict the work of adjustment so far only, when
the case is either very difficult or of slight importance, for this minimum sum of squares
is generally computed much more sharply, and always with much greater certainty, directly
by o4, %, and 2, (o), than by the formule (105), (106), and (107).

Add to this, that the special criticism does not exclusively rest on 2,(w) and the
A, (u)

Aq (0
to the more :n(- :ess essential circumstances of the observations, are even s main point in
the criticism. Systematical errors, especially inaccuracies or defects in hypotheses and
theories, will betray themselves in the surest and easiest way by the progression of the
errors; regular variation in o — » as a function of some circumstance, or mere absence of
frequent changes of signs, will disclose errors which might remain hidden by the check

. (0 —u)? Ag (%)
according to L 2’(1-—1:(0)
know, even be used to indicate how we ought to try to improve the defective theory.

§ 56. By series of adjustment (compare Dr.J. P. Gram, Udjevningsrekker, Kjaben-
havn 1879, and Crelle's Journal vol. 94), i. e. where the theory gives the observations in
the form of a series with an indeterminate (infinite) number of terms, each term being
multiplied by an unknown factor, an element, and where consequently adjustment by
elements must be employed, the criticism gets the special task of indicating how many
(or which) terms of the series we are to include in the adjustment. Formula (107) fur-
nishes us with the means of doing this.

(o—w)*

scales 1 — . but that the very deviations o, — u,, when they are arranged according

); and such progression in the errors may, we

S
i



250

For the m terms in the series, which is here indicated by 2, correspond, each of them, to
an element, consequently to one of the terms of the series of adjustment. For eagch term
we take into this, the right side of the equation of criticism is diminished by about a
unity; the result of the criticism, consequently, becomes more favourable if we leave out

all the terms for which [fl—‘-’]'~ [if —‘< 1. If we retain any terms which essentially fall

under this rule, the adjustment becomes an under-adjustment; if, on the other hand, we

T -
leave out terms for which [?] . [r—‘—;f] l> 1, we make ourselves guilty of an over-

adjustment.

Example 1. The five-place logarithms in a table are looked upon as mutually
unbound observations for which the mean error is constantly V7y of the fifth decimal
place. The ‘“observations”, log 795, log 796, log 797, log 798, log 799, log 800, log 801,
log 802, log 803, log 804, and log 805, are to be adjusted as an integral function of the
second degree

log (800 +-¢) == 2/ y't + 3¢t.

In order to reckon with small integral numbers, we subtract before the adjustment
2:90309 - 0-00054 ¢, both from the observations and from the formule. Taking 000001 ss
our unity, we have then the equations for the observations:

—2 = z—5y+252
—2 == 2—4y-{ 162
—1 =2z—3y+ 92
~1=2z—-2y4 42
0=z—1y+ 1z
0=z
0=2+1y+4 1=
0=z42y+ 43
le=z+3y+4+ 92
1l=2+44y-+162
1 = z+5y+ 252

From this we get [07"] == 156, and the normal equations:

— 36 = 132z4+ Oy 1320s
420 = 0z + 1320y + 0z
— 540 = 132024, Oy 234962.

The element y is consequently immediately free of =z and z, but the latter must be made
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free of one another, which is done by multiplying the first equation by 10 and subtracting
it from the third. The transformation into free functions then only requires & ==z 4103
substituted for x, and we have:

— 36 = 132¢,
420 = 1320y,
—180 = 10296z,

consequently,
£ == —02727, 2,(8) = 1: 132 == 390:51480 = -007576
y = 03182, A,(y) = 1: 1320 = 39:51480 = ‘000758
z w= —00175, 2,(2) = 1:10296 == 5:51480 = -000097.

The mean error of y is consequently - 0-0275, and that of z 4-0:0099. The element z
is found by z = &--102 = —0-0977, to which corresponds 1, (z) = 1, (£) + 1004, (2)
= 00173 == (0-1315)%. For log 800 we find thus 2-9030890 -4 00000013, and the
corresponding difference of the table is 54:318 4- 0-028.
For the sum of the squares of the deviations we have, according to (105)—(107),
(o—u)*
4,(0)
which shows that the term of the second degree contributes somewhat to the goodness of
the adjustment. This sum of squares ought, according to the number of the observations
and the elements, to be 11 —3 == 8, with & mean uncertainty of - 4.
The best formula for computing the adjusted values of the several observations
and their mean errors is w; = &yt 2(*—10), which gives:

- 156 — 982 — 13364 — 315 = 939,

u o—u (0—u)* Ay(4%) Beale
log 795 = 29003688 12 ‘0144 | 300 39254 5.225 — 2490 0484 -419
log 796 = 29009136 —-36 1206 | 3904-39-16 4 5. 36 = 1194 -0232 722
log 797 = 29014580 20 -0400 | 390 }+-39. 945. 1 — 746 -0145 826
log 798 == 29020019 — 19 0361 | 390+ 39. 44 5. 36 = 726 -0141 -831
log 799 — 29025467 43 ‘1849 | 3904 39. 14 5. 81 — 834 0162 806
log 800 = 2:9030890 -+ 10 0100 | 3904-39. 0-4-5.100 — 890 0173 -792
log 801 = 29036321 —-21 0441 | 390439. 1+5. 81 — 834 -0162. ‘806
log 802 == 29041747 —-47 2209 | 390439. 4 +5- 36 = 1726 -0141 -83}
log 803 = 29047170 30 0800 | 390+39- 9+5- 1 = 746 0145 826
log 804 == 2:9052590 - -10 0100 | 3904 39-16--5. 36 — 1194 -0232 722
log 805 = 2:9058006 — 06 0036 | 3904 89-25-45.225 ~ 2490 0484 419

*7836 12870 8000
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Both the checks agree: the sum of squares is 12 > 0-7836 = 9-40, and the sum
of the scales is 11—3.

It ought to be noticed that the adjustment gives very accurate results throughout
the greater part of the interval, with the exception of the beginning and the end. The
exactness, however, is not greatest in the middle, but near the 1** and the 3w quarter.

Example 2. A finite, periodic function of one single essential circumstance, an angle V,
is supposed to be the object of observation. The theory, consequently, has the form:

0y = ¢y+c, co8 V48, sinV4c,cos2V4 3,82V ...
We assume that there are n unbound, equally exact observations for a series of values of V,
whose difference is constant and == 2;". for instance for 1" =0, 60°, 129°, 180°, 240°, 300°.
Show that the normal equations are here originally free, and that they admit of an exceedingly
simple computatién of each isolated term of the periodic series.

Example 3. Determine the abscisse for 4 points on a straight line whose mutual
‘distances are measured equally eéxactly, and are unbound. (Cmp. Adjustment hy Uorrelates,
Example 3, and § 60).

Example 4. Three unbound observations must. according tv theory, depend on two
elements, so that

0, =z, l400,) = 1
0y == zY, A0,) = }
05 =yt A(0)) = 1.
The theory, therefore, does not give us equations of the linear form. This may be produced
in several ways, most simply by the common method of presupposing approximate values
of both elements, the known a for z and b for y, and considering the corrections ¢ and!y
to be the elements of the adjustment. We therefore put x = a + ¢, and y = b+ o
Rejecting terms of the 2* degree, we get the equations of the observations:
0,—at = 2a¢
0,—ab = bé+ap
0,— bt = 2by,
where the middle equation has still double weight. The normal equations are:
2a(0, — a*) 4 25(0y —ab) = (4a*- 20%) & -1 2aby
2a(0y — ab) + 2b(0, —b?) = 2ab & 4 (4b* 4 2a%) 3 ;
& is consequently not free of », but we find
b2 (b0, — 2abo, -} a®o,)
(a*+0%° !
8 (h2 — 2, A 14
by = 0y b* — all ol(aa?:bbz;j-a %) v A (y) = '%%ZT)?‘

at - 2b?

20z = 0, a* — Ay (z) =
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Por the aijusted value w, of the middle observation we have
1 a'4-b¢
(08w, == ablo, + (@' + b0, +a%boy . dylus) = s
If we had transformed the elements (comp. § 62) by putting
&= al—bv
7 - b+ av,
z = a(l+2)—bv
y = b(14+0) +av,
we should have obtained free normal equations
2(a%, + 2abo, -+ b%0,) — 2(a" 451 = 4(a*+ ¢
2(— abo, + (a*—b%)0, - aboy) - 2(a%4 %),
If we had placed absolute confidence in the adjusting principle of the sum of
tquares as & minimum, a solution might have been founded on
(04 — %) + 2(0y — ab)? + (0, — bY)* == min.

The éonditions of minimum are:

or

% 4%‘%“3 = (0, —a%)a+ (0, —ab)b = 0

1 dmin
4 db
The solution with respect to a and b is not very difficuit. We see for instance
immediately that

= (0g—ab)a + (05— %) b = 0.

(0,—a%) (0,—b*) = (0,—ab)*

or
0,05 — 0. = b, — 2abo, + a%o,.
Still better is it to introduce s* == a*--5%, by which the equations become
(0,—8%) 3+ 0,0 = 0
048 + (0,—5%)b == 0,
consgquently,

84— 35 (0, +04) + 0,0, — 0} == 0

_0,F0, ':_ 0, —0,\* (]
(=23 ) () +on

If the errors in o,, 0,, and o, are not large, 0,0, —0} must be small; one of the
two values of s®* must then be small, the other nearly equal to o,-}-0,; only the latter can

be used.
12
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Further, we geot:
0 0,—8?

a
TS e s

(0, —8%)s® B o— (0, —e")s*
0, +0,—28%"

In this way we avoid guessing at approximate values (for which otherwise we
should perhaps have taken a® =0, and 4* ==0,). The values which we have here found
for a® snd 3%, and to which may be added

—ab = 048!
0, o, — 28"
ore really exact; and if we substitute them in the above normal equations, we get & = 0
omd =0

Even when, as in this case, the theory is not linear, it is not unusual for the
sum of the squares to be a minimum. Caution, however, is necessary; particularly, it
may happen that the sum of the squares becomes a maximum for the found elements, or
for some of them.

We may also in another way make the equations of this example linear, namely,
by considering the logarithms of o,, 0,, 0, as the observed quantities, and finding the
logarithms of the elements from the equations which will then be linear. ’

logo, = 2logz

logoy == logz +logy
log o, = 2log y.

In this way we throw the difficulty over upon the squares of the mean errors. As

d
log (¢ + d2) = logz-{—?z .
we may approximately take

1408 2) = ;s 2]

If & and b also here indipate approximate values of z gnd y. the weights of the
8 .equations, respectively, become proportional to a¢, 24b%, and 4%. Thus we find the
normal equations
2a%log o, -+ 2a%h* log o, == (4a 2a%h?) log = +- 2a%btlog y
2a%b% log 0, | 2b¢ log 0y = 2a%h? log z 4 (45* 4-2a%*) log y ,
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which give the simple results

s .
g = e~ ) e 2t = g3t

L] ] 1] 3
Blogy = logos — () s 25 . weogn) = gioet .

This solution agrees only approximately with the preceding ome. It might seem
for s moment that, in this way, we might do without the supposition of approximate values
for the elements, but this is far from bethg the case. For the sake of the weights we
must, with the same care, demand that o and x, as also b and y, agres, and we must
repeat the adjustment till the squaree of the mesn errors get the theoretically correct
values. And then it is only a necessary, but not a sufficient condition, that  —a and
y—0b are small. Unless the exactness of the observations is also so great that the mean
errors of o; are small in proportion to o, itself, the laws of errors of the logarithms eannot
be considered typical at the same time as those of the observations themselves.

Example 5. The co-ordinates of four points in a circle are observed with equal
mean errors and without bonds: z, == 20, y, = 10; z, = 18 y, = 18; z, =3, y, = 17;
and z, =2, y,=4. In the adjustment for the co-ordinates & and b of the centre and
the radius r, we cannot use the common form of the equations

E—a)r +(y—by =,
because it embraces more than oms observed quantity besides the elements. In order to
obtain the separation of the observations necessary for adjustment by elements, w& must
add s supplementary element, or parameter, V; for each point, writing for instance
Zy=matrcosV,, g =b+rsinV;.

As (Lo equations are not linear we must work by successive corrections Aa, Ab,
Ar, AV, of the elements, of which the first approximate system can be- obtained by
ordinary computation from 3 points. For the theoretical corrections Az and Ay of the
co-ordinates we get by differentiation of the above equations

Azy == Na+Ar-csVi—AV,.rsinV;
DAY= AdV+Ar-sinVi+AV,-rcos¥,.

These oquations for the observations lead us to s system of seven normal equations.
By the “method of partial elimination™ (§ 61) these are not difficult to solve, but here the
simplicity of the problem makes it possible for us immediately to discover the artifice.
We know that every transformation of equally well observed rectangular co-ordinates resalts
in free functions. The radial and the tangential corrections

Azcos Vit Aysin Vi = Aw

AzsinV,—Aycos V= Al

and

15



256

can, consequently, here be taken directly for the mean values of corrections of observed
quantities, and as only the four equations

Aty = NasinVi—AbcosV,—r AV,
contain the four corrections A V; of the parameters, they can be legitimately reserved for
the successive corrections of the elements. In this way

A= NacosV,+ AbsinVi+4 Ar

with equal mean errors, 1,(m) == 2,(x) == 2,(y), are the “equations for the observations”
of this adjustment, and give the three normal equations:

[AncosV] == Aa[cos V] + Ab[cosVsinV]4 Ar[cosV]

[Ansin V] = Aa[cos Vsin¥V]+ Ab[sin® V] + Ar[sin V]

[An) - Aafcos V) + Ab[sin V) +Ar-4.

In the special case under consideration, we easily see that the first, second, and
fourth point lie on the circle with r == 10, whose centre has the co-ordinates a == 10 and
b == 10; the parameters are consequently:

Vy = 0°0'0, V= 53°T'8, V, = 135°0'0, and V = 216°52'2.

For the third point the computed co-ordinates are: z, ==2:9290 and y, = 170710,
oonsequently, Az, = 400710 and Ay, = — 00710, A¢, =0, and An, = —0-1005;
all other differences Az ;=0 and Ay;= 0. The “equations for the observations" are:

10000 A a 4 0-0000 A b+ 10000 A r = 0-0000
06000 Aa+ 0800045+ 10000Ar = 00000
—07071 Aa+ 07071 A6 + 10000 A r = —0:1005
— 08000 Aa—06000A b+ 10000 Ar =  0-0000.

The normal equations are: For checking
25000 A a + 04600 A b+ 00929 A r = - 00710 + 0-0002
04600 A a + 15000 A b+ 09071 A r == — 00710 0-0000
R == 00929 A 6 09071 A b+ 40000 A r == — 0-1005. 0-0000
By elimination of A r we get
24978 Aa-- 04390 A b - 4 0-0733 + 00001
B == 04390 Aa 41294320 - — 0:0482; —0-0001
and by eliminating A b
A = +23490A0 = -+ 0-0896. 0-0000

From R, B, and A we compute
Aa = 400381, Ab = —00501, and Ar = —0:01465.
The checks are found by substitution of these in the several equations. The 4 equations
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for the observations give the following adjusted values of A n;:
AN, = 00234, Any == —00319, Ay == —00770, and A n, = —00151:

the sam of squares [(o—;——-.—“r] (here = (8—17)2,) is consequently

~ (0-0234)* 4+ (0-0319) + (0-0238) + (0-0151)* = 0-00285.
Por this, by the equation (108), we get
0-01010 — 0-00271 — 0-00856 — 0-00147 == 0-00286

as the final check of the adjustment.
The 4 equations for A ¢, give us

AV, == 4172, AVy == 4208, AV, = —29,.and AV, = —218.
Thus, by addition of the found corrections to the approximate values,

r = 998585, 4 = 100381, b — 90498,
V, = 0°173, V, = 56°386, ¥, = 134°571, anfl ¥, = 316°306,

we have the whole system of elements for the next approximation, if they are not the
definitive valuea. In both cases we must compute by them the adjusied values of the co-
ordinates, aocording to the exact formule; the resulting differences, obs.—comp., are:

Point A Ay Aw Aot
1 —00232 4 00002 — 00232 - 00002
2 400191 +4 00257 + 00320 00000
3 400166 — 00166 — 00234 — 0-0001
4 —00123 — 00090 00152 0-0000.

The sum of the squares, [(A z)* (A y)*] = 0-00236, agrees with the above value,
which indicates that the approximation of this first hypothesis may have been sufficient.
Indeed, the students who will try the next approximation by means of our final differences,
will, in this case, find only small corrections.

From the equations A4, B, and R, which express the free elements by the original
bound elements, A a, Ab, Ar, we easily compute the equations for the inverse .trans-
formation:

Na == 04257.4
Db~ —01444- 44 07726- B
Ar = 00228.4—01752. B+ 025-R.

By these, any function of the elements for a given parameter can be expressed as a linear
fanction of the free functions 4, B, and B; and by 2,(4) = 2-34904,, 1,(B) —1-23482,,
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and 4, (R) == 41,, the mean error is easily found. Thus the squares of the mean errors of
the co-ordinates = and y are

Ay(x) = {2:3490( 04257406228 cos V')* + 1:2043(—01752 cos V')? +4(0:25cosV)3)a,
2,(y) = {2:3490(—0-1444 4 0-02285in V)* 4 1-2043(  0-7726 — 0-1752 sin V)* +4(0-25 sin V)*)a,.
Only the value A, = 0-00236, found by the summary criticism, is here very
uncertain.

XIII. SPECIAL AUXILIARY METHODS.

§ 57. We have often occasion to use the method of least squares, particularly
adjustment by elements; and this sometimes requires so much work that we must try to
shorten it as much as possible, even by means which are not quite lawful. Several temp-
tations lie near enough to tempt the many who are soon tired by a somewhat lengthened
computation, but not so much by looking for subtleties and short cuts. And as, moreover,
the method was formerly considered the best solution — among other more or less good —
not the only one that was justified under the given supposition, it is no wonder that it
has come to be used in many modifications which must be regarded as unsafe or wrong.
After what we have seen of the difference between free and bound functions, it will be
understood that the consequences of transgressions against the method of least squares
stand out much more clearly in the mean errors of the results than in their adjusted
values. And as — to zome extent justly — more importance is attached to getting tolerably
correct values computed for the elements, than to getting a correct idea of the uncertainty,
the lax morals with respect to adjustments have taken the form of an assertion to the
effect, that we can, within this domain, do almost as we like, without any great harm,
especially if we take care that a sum of squares, either the correct one or another, becomes a
minimum. This, of course, is wrong. In a text-book we should do more harm than good
by stating all the artifices which ®ven experienced computers have allowed themselves to
employ, under special circumstances and in face of particularly great difficulties. Only
a few auxiliary methods will be mentioned here, which are either quite correct or nearly
80, when simple caution is observed.

§ 58. When methodic adjustment was first employed, large numbers of figures
were used in the computations (logarithms with 7 decimal places), and people often com-
plained of the great labour this caused; but it was regarded as an unavoidable evil, when
the elements were to be determined with tolerable exactness. We can very often manage,
however, to get on by “means of a much simpler apparatus, if we do not seek somethimg



