ON SYMMETRIC FUNCTIONS
AND SYMMETRIC FUNCTIONS OF
SYMMETRIC FUNCTIONS*

By

A. L. O’'TooLE:

INTRODUCTION

The study of symmetric functions is quite an old one. From
the time of Girard (1629) even up to the present day this sub-
ject has occupied the attention of many eminent mathematicians.
The theory of the roots of algebraic equations in one or more
variables has furnished the chief incentive for the development
of the theory of symmetric functions. Ingenious methods for
computing symmetric functions in terms of what are called the
elementary symmetric functions have been developed by Ham-
mond, Brioschi, Junker, Dresden and others. Extensive tables
of symmetric functions in terms of the elementary symmetric
functions may be found in the literature.

Symmetric functions play such a pre-eminent role in the
mathematical theory of statistics and their computation by direct
methods or by general formulas, even when assumptions restrict-
ing the groupings of the variates about the various means are
made, is so excessively tedious that there has seemed to be need
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of development of the theory of symmetric functions in direc-
tions not suggested by the theory of equations. The ingenious
methods referred to above are of little or no practical value in
statistics ; for they express a symmetric function in terms of the
elementary symmetric functions whilst here it is necessary to
express the symmetric function in terms of what are called the
power sums. Likewise, and for the same reason, the tables men-
tioned are of no value to the student of statistics.

Moreover, in the theory of sampling one not only has to
deal with symmetric functions of the given variates but with
symmetric functions of symmetric functions of the given vari-
ates. This then leads to interesting as well as practical develop-
ments in the theory of symmetric functions.

In this investigation it is proposed to:

1. Develop symbolic methods which will enable one to
express any given symmetric function in terms of the power
sums, without knowing the expressions for the symmetric func-
tions of lower weight, and which will also lend themselves readily
to the construction of tables;

2. Develop symbelic devices in the more general case of a
symmetric function of symmetric functions.
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CHAPTER I

Direct COMPUTATION

1. Suppose there 1s given a set of n variates' z, .- x,,
Xy Xg» x,, » no assumptions whatever being made
as to their arrangement about, the various means. Any rational,
integral, algebraic function of these » variates which is un-
altered by interchanges or permutations of the variates is called
a symmetric function. With a few modifications, the usual no-
tation for symmetric functions will be used in this investigation.

The power sums s, , Sg1 Sgr - - - S, ¢
Let
a,=£x,--x,+xe+ e+ X, .,
i=/
n
2 2 2 2
3:'2 LA R + x>,
&=/
n
8, x"sx'3+ac + rxy
i=1
n
*— * t - . . . . t
6,=Z.r‘--xl+az¢+-- +x’ .
&=/
@ -} 1 4 . aye gy
Further, let ( a*4”c ™ - - -) represent any symmeinc

1The variates may be either real or complex numbers.
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function of the given variates. In other words, let ( a% 4 ar. )

equal the sum of all the terms such as

a a.xb b . b c .. xc ..
1 e o« ub#l'z-owz xw-oﬁ.xvaol «+Ze?

which can be formed from the 7 variates, where @, b, ¢, . .

and «, B, ¥, . . . are positive integersand a>b->c >
« 20 . eug
e 2 PR
(3 Z/) x? .z X x, o, (FjEkEm.

o
\\:[\4:

IxS
<

DEFINITIONS :

A partition of a positive integer ¢ is any set’ of positive
integers whose sum is ¢ . The integers which constitute the par-
tition are called the parts of the partition and are enclosed in
parentheses (). It is desirable to arrange the parts in descend-
ing order of magnitude from left to right. Obviously then for
any finite positive integer ¢ each partition of # contains a finite
number of parts. If there are , parts in the partition of #
then the partition is called an 7-part partition of t or simply
an r-partition of t. E. G. (33), (321), (3111) are respectively
2-part, 3-part and 4-part partitions of 6. When repeated parts
appear in the partition it is customary to write one of the re-
peated parts with an index corresponding to the niumber of times
that part is repeated. Thus (33) is written (3%) and (3111) is
written (31%). The number ¢ is called the weight of the par-
tition. For a discussion of the formulae for finding the number
of partitions of an integer the reader is referred to Whitworth’s
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“Choice and Chance.”

It wili now be clear that the notation introduced for the gen-
eral symmetric function is a partition notation. The weight of
a symmetric function is the degree in all the variates of any term
in the summation. The order of a symmetric function is the
highest degree in which each variate appears in the summation.
For instance, in Zx?.zj .z: = (432) the weight is
44+ 3+42=9 and the order is 4. It follows that in the partition
notation of a symmetric function the weight is given by
aw+ bB +c?7+ - - - . and the order by @ . In the par-
tition notation the power sums become simply (1), (2), (3),
w « « « + « « () respectively.

For the purpose of mathematical statistics, moments rather
than the power sums are the important thing. However, the
transformation from power sums to moments is so simple that
the results of this investigation in terms of power sums may be
written in terms of the moments by putting

!

nu,.x =S, »
’

Nig:.x = S »
’ =

Np g .x © Sz ,

¢ .
NU, . * St »
L (] . (4
where ' ., .. 0 Mgx 0 - - v My, T the
statistical moments of the n variates.

2. It is not difficult to express certain symmetric functions
in terms of the power sums. Practically all texts in higher al-
gebra devote a section or two to this problem. Most of those
which develop general formulae do so by using the properties of
the coefficients of an algebraic equation. However, many others
have developed general formulae in symmetric functions without

1W. A. Whitworth, “Choice and Chance,” G. E. Stechert and Co., N. Y,,
fifth edition, page 100.
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making use of the algebraic equation in their derivations. The
latter procedure will be followed here in order to emphasize the
fact that the interest is not in the theory of equations but in a
set of variates such as might appear for instance in a statistical
problem. A few of the general formulae of symmetric functions
will be developed now by direct computation in order to demon-
strate a basic theorem of this work—a theorem which will be
stated at the close of this chapter.
Multiplying s, and s, the result is

Se 6 =(x2+x2+ ...+ xB) (X, 42+ -+ X,)

=(x2 2 2 3,0, )
(xPx, s xrx b vz, 2l )H (X)) v x))

-1 %n
n n
=Z .x“a‘rl +Z x:, (¥
‘f’ is/
ot
(2)(1)=(21)+(3) , hence

@21 =(2)(1)-(3)
Similarly, if ugv ,

Sy, =(xfrxfe  exp)x)rxfs. . . .. -*x"")

(78 14 usv UOV)
-

U_.v _u_v « _v
'(x'.xgmx,x *---+’.z"_,x")+(.z, rz, T,
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n n
-Z x‘f“xJ‘.’ + Z x‘-“*v , (4,

=/ &l
J=/
= (uv) + (u+v) , hence

(uv) = (u) (v) - («-v)
However, if «=v a modification is necessary. For then

2 « 2
(u) :(:xl 412u+ “e +x:’)

- (112“¢1:“+-- s e xPU) eloc, tayte s vl 2 )
n n
(73 . .
=Z xf“+Z xxr, (ty,
L=/ (=/
J=/
2: (2"":‘)4.2(_“—2) and thus
21 (W)= (u)? - (Za) where ‘the bar over 2 « in-

dicates ordinary algebraic multiplication of 2 and « , i e
2u)=s,,.

If wupviw, u+r+viw uswitv, viwéu, then
A ) - o5 N e Mo o0

+
= (x‘,‘x:x"‘ﬁ . .)+(x,“"xzw+-- D e .)

S

” n
urvy _w vew “
= x.“x.’xw+z . X +Z X .
(3R0V NN ¢ e ] ] = ¢ )

J=! J=!

e
f Y]
NEE
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n n
Uuiw _v wUrv+w Ny
Jowrmal o F it
=/ =/
J=/ L S

= (uvw)+{urv, w)+lvew,u)+fusw, v)+(wsrvew)

the commas being used to separate the parts of the partitions.
Now applying the result obtained for ( wv ) to the second, third
and fourth terms on the right of this last expression, it becomes,
since

(urv,w) =(u+vw) -(u+viw),
(vew, u) = (vew)lu) - (usvew),

(urw, v) = (usw)lv) -(u+viw),

(uhvlw) = (uv w)+{usrv)lw)+ (vswdlu) +(wew)(v)-2( wtvew).
Finally

(wvw)=l))w) -(us)w)-(vew)lw)-(uswdlv) + 2 (u+vew)

S s s 423

=5,5,5, -3 w  Svaw SuT Susw S UV

u-v w GL#YS

If w=v-w , then a modification is again necessary, and
repeating the multiplication with w=v=-w it is found that

31(u®) = (u)?-3(2alw)+2(3a)

:sa

» -Js,us“ +2s,, -
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In like manner, if wgvéw 2, wrv# v , etc,
u+rvew # 2 , etc., then

(wrw)=lal)in)z) ()N w+z) - ()w)(v+2)
- (@) () v+ w) () w)(wr2) ()2 ) ()
~lw)(ENwsv) #2udlvomez) s 2 (i Nuswsz)
22N usviz) +@(2Nurvrw) +(urv ) (wez)

Husvlwsz) slusnwilvie) +(usz)viw) -6(usvew+z).
If u=v=w=2z , then

Al = () 600)%(50)+80X3a) + 32012 6(F7)

=% _ 2 e _
su 65¢4 sau 4-85“ sJu. *352“ 654(.‘

Similar modifications are necessary when some but not all
of the parts of the partition are equal. For example,

2 u u 2
@) v)=(x,+2,+ - ) (xr+.zzy+ ceerxy)
n n 7
=g_':.x‘.2“‘“’ +zx.2“x.' +Zx_‘”fx.“+22: x“z%x",
rl ey A R « ¢
i
itjtk,

<(Pu+v)+(Pu,v)e2(urvu) +2(u?v)
(Za)V) + 2(furv)-4(2a+v) + Elu?v)
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hence

24 (u?v) = ()’t) -(ZaMv) - 2l )fwsv) + 2(Fa+v)

*s‘fsv-s s, -2s, s

2u @ “usv +252¢+V

3. Proceeding after the above fashion, any symmetric func-
tion whatever can be expressed in terms of the power sums.
However, the process becomes increasingly cumbersome and the
general formula is of no practical value for the purpose of com-
putation. Moreover, it is necessary to use a continuous process,
that is,to work from the simpler symmetric functions of small
weight to the more complex symmetric functions of greater
weight.

A special case may be worth mentioning to illustrate still
better the carrying out of the direct process in the general case.

t [74 “ L7 t
(«v) = (¢ +. .. -+, )

Applying the multinomial theorem and assuming that the law
holds for ¢ -1 and that the symmetric functions of weight less
than ¢ are known and transposing all the terms of the right
member except the term involving ( « ¢), it is found that

¢t tH(w)(Ca)* (3a)%. .. (F0)°¢

tut) =2 -nN""

a, jag a Qg
/1 ‘e *37%---t .a,!a.a!a‘!--a‘.’

where @, , a,, a;, . . . . , a, are cither positive in-
tegers or zeros such that @, v+ a2, +a,+. . . +ag=v and

a,+2a,+3az+-- - -+tag=t.
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In particular, if « =1, then

¢ t1(1)*(2)%2(3)%. .. (¢t)

)= )"

1S 2%23%. .. to"a,.’ aa/as.’--at./

This last result may be expressed very conveniently in de-
terminant form. Starting with the results obtained in article 2,
it is seen that

/(7)) =s,,
2 s, [/
21(/°) =
S; S
s, / o
37 = |s, s 2 ’

s, / o 0
S, s, 2 (o)

al(17) = ’
SS S2 S, 3

(7]
N
»
* W
Y
L
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s, /! o©0 - - - - . o
s, s, ¢ o0 - - - - O
s, S, s 3 O . (4]

(%)= C

.
.
.
.
.
.
.

Sty Se2 © S S 5 ot/

St S¢1,St2 - + - Sy § S

To establish this general law it is sufficient to note that the
development of this determinant gives as a general term

(1) sl sa st - - 8]t
ld: zca Ics. ... %, ¢l! ¢‘t"/ G‘.’"'atT

where «,, a,, @y, . . . . , a,are positive integers or
zeros which satisfy the conditions @ +a,+az+ - - --ta=v
and @, +2ay +3az+4ag+- - - tag =<¢.

Hence the determinant is equal to

a, az‘.
t! 5, s R

Z(’l)v’t ,a,zaz .. 2

Qg

-t‘t.al!aal et dt!

where,as before,the summation is over all the different terms it

is possible to obtain by assigning 2,, a,, . . ., agall

positive integral values or zeros which satisfy the conditions
@, +Qpt --- ~+Qp=V,

a, +tZ8ag+-- -+ tay=t.
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4. This chapter will be concluded here with the statement
of a very important theorem which may now be written and which
will serve as a basis for the developments in the chapters to
follow.

Basic THEOREM:

Any symmetric function (defined in article 1) may be ex-
pressed a: a rational, integral, algebraic function of the power
sums,

Further, each term in the expression for the symmetric func-
tion in terms of the power sums is of the same weight as the
symmetric function itself. Hence a term which does not arise
from a partition of the weight of the symmetric function cannot
appear in the expression in terms of the power sums.



A. L. OTOOLE 118

CHAPTER 1I

A DIFFERENTIAL OPERATOR METHOD OF COMPUTING SYMMETRIC
Funcrions IN TerMs oF THE Power Sums

5. Consider a symmetric function (a@% 5% ¢ 7. ) of
weight w of the variates &, , X, . . . . %,. By the
theorem demonstrated in chapter I and stated at the close thereof
it is possible to write

(a*b8: 7. -)"'f(s,.s,, <. -.8,,)

wheré £ stands for a rational, integral, algebraic function of the
power sums S,, S,, -+ . . . S, , and where each term in
T is of total weight w, i. e. isobaric.

In the preceding chapter the direct method of computing a
symmetric function in terms of the power sums has been illus-
trated. But that method has two major disadvantages. In the
first place, it is necessary to know the expressions in terms of
the power sums of the symmetric functions of lower weight; and
in the second place, it becomes altogether impractical for any-
thing but the simplest cases. It is proposed to develop a method
which will have neither of these disadvantages—in other werds,
to develop a method which will express any given symmetric
function directly in terms of the power sums without knowing
the expressions for the symmetric functions of lower weight, and
which will not become too unwieldy. In addition, the method
ought to lend itself readily to the construction of tables of sym-
metric functions in terms of the power sums.

The method developed here will be a differential operator
method. It may be stated at the outset that many schemes for
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determining differential operators which will do the work are
possible. The writer has investigated a number of them. The
operators developed here are given because they seem to satisfy
best the demands just imposed on the method of computation.
In fact, their simplicity and the directness with which they pro-
duce results indicate that they are the simplest differential oper-
ators that can be developed for the problem.

6. Suppose now that a new variate x,, =K s intro-
duced. What effect will it have on (@*5%¢7. . ) and on
f ? First consider ( @¥b”c7”. . .). Since all the variates
enter the symmetric function in exactly the same way, new terms
involving k in all the ways in which the other variates appear
will be ‘introduced. For example, if the original set of variates
isx,,x,, x,, Z, and the original symmetric function
(32)=F x7 x*, i#j ', then this symmetric function is
made up of the terms

A N
L AR S A L
L2 x  Hzg  xx
Introducing a new variate Zs =k , produces the new terms
.z,"k' x:k: .z:k‘ .Z:k‘
Kz S o S ¥

or that is, produces [ &z} and Z xf k% And since k is
a constant with respect to the summation, these summations may
be written k2 &* and k' 2],i. 1,2 3, 4.
s ., 4 .2 .
2 2 3 g
Hence ﬁx‘-a;- becomes_%{x;?.zjfk E.I‘-fk .'li,lf/,
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i. e, (32) becomes (32) + k*(2) + k?(3).

Similarly k& must enter (@“6%c7. . . .) just as
every other variate does. As a result new terms are produced
and (a%bPc” . . . ) becomes ( a®b6Pc? . . . )

+ k%(a*'6%c7..)) +/(b(a"'b"°'cr---)

+ kc(a“'bpcy-l. . .) $ e e o e e . -

Next find what happens to f(s,, 8, . . . ,S.)
when the new variate x,,, =& is introduced. From the
definition of the power sums it follows that

S, becomes s, + k
&, becomes 8, # k?
Sy becomes s, + k3

8; becomes s, ¢ k*

g, becomes s _+k™.
Hence £( 8, S;, . . - .8, ) becomes
f(s,+k, 5,+4k% - - -3 5,4+ k™),
Taylor’s series for several variables is
flx+h, yrk, 2+m, - --)= f(x,4,2,-- )
+(ho[Ox+kIfoy +mOfda+ - - - )t
+(h3fox + kdfdy + mdfda+ - - -)° f’
+(hdfdx +kdfdy + mI/da+..:)* :fﬂ

+. .
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where the multiplication of operators is algebraic,

Applying Taylor’s series to the function under consideration,
the result is

f(s,+k,s‘+kf- Cr o, S, k%)= f(s.,s,, - - -.s.)
+(k3/Os, + kOfds, + - - - - +k"I/Is ) Ff
+(kIfds,+ kIfIsp + - - - -+ kwd/dsw)zé‘?

+(KIfO3,+ kIO 6,+ - - - - +k"9ds, ) &

+(kdfDs, + kd)Idsy+ - - - - +kd/Is,, )w-:;! ,

all other terms being identically zero.
Now let
d,=d/ds,, d,=90/ds,, -
dyr d/as ., y./‘Z'J'o‘...’
Then d=(0/9s,)(0/0s,) = d%/3s?  and
similarly dl“. a“/a s

It is now possible to write

»

Y’ w.

f(s+k, sz+k2, cec e, s+ k)"

+(kd,+kzcl,+k3d3+- . . -+k"&f,,)f

2 f
+(l’d,fkade+k3d;+ R .,,‘,“aw) 3i
+(kd,+kzd,+k’d,+ e +kwd")’3t[

- .

+(kd, +kd, + k7d+ - - - -+kwd,)w£7
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Multiplying out and collecting coefficients of powers of k,
this becomes

fls,+k, SytkS-e, S, +k")(lthD 1 k%D + 47D+ -+&"D)f,

all other terms vanishing, where

[ D-d,,

2!D=-d*2d,,

3!D-4d,% 6d,d, +6d, ,

()| HDa ke s, M d, +Ila; +Hd,,
SID-~a,%20d,d,+60d,d ,+60d,d} +l0d,d, +/20d,d, +/20d,,

6!D=d,%30dd,+1204,'d, + 180d,'a} +360d,"d,

+R0cd, d, +720d,d, +700d,d, +120dy +360d}+ 720d,

etc.
-

Applying the multinomial theorem and then picking out the

coefficient of &7, the general term in this coefficient is found to
be of the form

A /B ,C
a:zdbdc""
Al BI1C!-. -
wherea,b,c, . . . and A, B,C, . . . are positive

integers which satisfy the condition @4+ bBD+cC+ - - - =t ,
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Hence
, t/dla,) af
t! Dt =Z Al Bl C! where a A+ bB +cC+...st;

i. e. the sum of all the different terms which can be formed by

assigningtoa, b,¢, . . . ., A, B,C. . . all positive

integral values which satisfy the condition aA +b8+cC+ .- -=t¢.
From the above relations it follows also that

[ 4,-D,

Zd, ~-(D*-2D,),

3d, =(5,%3D,D, +3D)),

@) 44, --(*4D°D +2D+4D,D,-4D,),
3d_=(D*-5D°D, +50°0,+50D]-5D,D,-5D,D, +5D),
6d,--(D%6DD,+6D7D,-61,°D, +90°D-12D,B ]

+6D D, +6D,D, -2D+3D'-6D,),

A 8 C
(v-1)!¢t DODLDQ---
Al 8'c!.....

Lt_dt'(‘/) t+l Z(_’) tev

wherea,b,c, . . ;A ,8,C, . . . are positive
integers and where the summation is over all the different terms
which it is possible to obtain by assigning positive integral values
toa,b,c, .. A,B8,C, . . . which satisfy the
conditions A+B+C+ . . . =v , aA+bB+cC+ - - =2

7. Now since (@™ 6%c”. . )sf , therefore replac-
ing f by (2™ b%c7. . .) the effect of the introduction of
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the new variate &, ., -4 may be written

(kD +k2Dyt - -+ k"D Na“tT 7. ) la“6%"-.)
/ 2 w

- 7
4% p N P AT Sl 0 W% s’ )

Equating coefficients of equal powers of &, it is obvious that

- v s
Dla*b% .. )=(a """ ),

ﬁl’

-Db(d‘bpc cee)= (a""b )

(3)
Dla“6%” ) = (a* 6% ""..),

. 0 . . .

. . . 3 - - . - -

B 7 4
.DanDc---(a"'b’C-")-/, and also that
D (a*bPc”..) = O if r is not among @, & c;

The relations between & and D given above enable one to
express ( a% b L. .) in terms of the power sums.
One particular case is worthy of mentxon If 1 is not among

@a,b6,c, . . . then D, (a*b" . . .) =0 and hence
&, f = 0 and therefore also aj F=d*f«...=d"Ffa0
In this case the operator relations may be written simply
D0,
(1) D, - ,.

D, -d,,
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= 42,3
2.’D4~ d, +2d,,
D, -a, dy+d,,

3.’D6= d:+6dzd‘ +3d; 4 6:/‘

and

(2) dy - 0,,

2la,-2D,-D},
s = Ds -D, Dg »

3ldy- 6D,-3D5+2D'-6 D, D,,
| __etc.

Hence when 1 is not among @, b,c,. . - then s
cannot appear in the expression of (a@* bPc”. . .)interms
of the power sums, i. e. all the coefficients of terms involving
8, vanish identically. But it must not be assumed that if
8, = 0 then &,f=0. Ordinarily this will not be true. It is
necessary to find Of/0Js, and in it set. s, = 0. In statis-
tics s, = 0 corresponds to the case where the variates are
grouped about their arithmetic mean, i. e. so that My=0.

8 The application of these operators & and D to the
computation of a symmetric function in terms of the power sums
will now be demonstrated. After that their use in the construc-
tion of tables will be considered.
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Suppose it is desired to express (3%) in terms of the power
sums. The only terms which may appear are given by the par-
titions of 6. There are eleven partitions of 6. Hence let

2 6 “ s 2 2
(3%)=a,s,°q,s,%,+a,s,%, +a,s’s] +a, s, 1a,ss,

) 2
$Q,S, 9,5, + QaSy +Qg85 +Q,,9,3,+a,, S

Since  (32) does not contain 1 as a part, D, =, = O
and S, cannot appear on the right-side of the above equation,
1. €. a’.aggaaxa4.a‘-a‘-argo.

Now operate on the left side of the equation with [, and
on the right with o/,.

D,(3%) -0,
d,f=3a,sl+a,,s,,
hence 0 = 3a° s‘fa“, o and therefore @, < a,, = 0.

Operatmg on the left wnth D, and on the right with d, gives
s = Y since Dy (3%) =(3) and dyf=2ay s, .ic

Sg=2ag sy . Operating on the left with 6 D, and on the
right with d + 6d,d, + It + 6, giv& 06 a,
+6a, and thus a,, =~ Y. Hence

3% =(ss2-3s,)/2.

Similarly let
2 s E) 2 2 .
(3/ )aa,s, +@,S,'S, +a, 33, +Q,5,5,7+ a,85,$,14,5,5,14, S,

Operate on the right with o, ® and on the left with D,a.
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This gives

3
33-20 a, s’ ¢+ Gae s, s, + 2a331
hence

Q, =a, -0, as"z"

Operate on the right wiin 2a'2, and on tne leit with

(D2-2D,). Then - s,-4a,s, s,+2a, s,

and @4-0, ag--4

Operate on the right with 4dg and on the left with
-(%40°D,+2D,°+4D D, -4D,). Then

~4s,=4a,s, , as=-/
Similarly, operating on the right with 5 &, aud on the left

with its equivalent in terms of D, the result is 5 = Se,, a,= L
Hence

(31%) = (35,-25,s, - s ,8, +25,)/2 -

In the case of ( 32) the operations on the left were per-
formed with 1)/ R Dz , .D3 and 6 D, and on the right with
their equivalent expressions in terms of «, , o, , 4, d' ,
d,, d,, with D=d, = 0. In the case of (31 2) the op-
erations on the right were performed with a:a, 2d,, 4d and
I d , and on the left with their equivalent expressions in terms
of D, ,D,, D,, D,, D;. Obviously it is immaterial from
a theoretical point of view which procedure is followed, For
practical purposes it will usually be found that the procedure
followed in the case of (31 ’) is preferable,

9. The application of the operators to the construction of
tables of symmetric functions in terms of the power sums will
now be illustrated.
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Weight 1:
. (l)=s,,

Weight 2:
. (@) =s,,
2. (1%)=a,5%+a,s,.
D, (1)d,la,s,2+a,s,), a,=1I/2.
20,(1%)=(ad +2d,Na,s2+a,s,), ay=-a,= -1/,

(/%) =(s2-s,)/2.
Weight 3:

For all the symmetric functions of weight 3 ¥ will be of
the form

)
f=a,s, +a,8,s +a,s,.

df=3a,s2+a,s,.
(@,°+6d,d,+6d,)f - 6(a,+a,+a,).

.. (9)=s,.

2. (2l)+s,s,-3,, since D, (2[)=(2) =8y; therefore
@,=0, a,=/; 60,(2))=0 and hence a,=-Gg=-/,

o (1Y)=(5"3s,s, +za.)/6 since B,(7)=(1%)

and (/%) =(s?-s,)/2 :
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therefore a,=l/6, a,=-1/2;
6D,(/°)<0 hence ag=-u,-a, = //3.

Weight 4:
For all the symmetric functions of weight 4 £ will have

the form

f=a,5a,s?s,+a,s,s, +a,5;+a,s,.

df-4a,s’+2a,s s, + a,s,.

(@*2d,)f=-2(6a,+a,)s®+ 2la,+2a,) s, .

(d)412a7d, +24d,a, +12d2+24d,)f-24(a,+a, +ay + a4 +a,).
. @)=s,
2 (2%)=(st-5)/2 since O,(2%)-0,

a,-a,=a,-0; 2D, (2%)-=2(2)-¢s,,

a,=l/2; 24D,(2%)=0, a, =-//2.
s (3/)-s,s,-5, since D,(3)=(3~-s,,

a,-a, «0, a,:/. ED‘ /\3’)3 0,

d‘:o; 24D4/s3’)'0, Q“'j/.

« (2%)- (s?s,-2s,s,-52+25,)/2 since

D(2A%)=(2l)= s,5,-3,, @,:0, ay-1/2, ay- /;

XY ’
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2D,(219-2(1¥)=(s2s,),2a,+a, =-/r"®,
@,--4/2; 24D,@21%)=0, a,-/.
5. (1%9=(s}-6 s,‘sa +8s,3, +85:- Gs,)/24,

since D,(I‘)'(I')=/s,’-ae‘o,+2s,)/6

a,//24, ay--/f8, ay-1/3; 2D, (1%)=0,

2a,%-a, . a,~l/8; 248 (17)=0, aye--i/4.

Weight 5:
f<a,9% a8, +a,8%s,+a,8 85 a,5,3, +a,0,8,4a,8,.
d,f-3a,8% 3apls,+2a,8 0, 10,88 +a,s,.
(df+2d,)f <2(10a, va,)s]+2(3a, +2a,)s,s,
+&fag+ay) a,.
(&,%+ 204,y +60a %, + 60d, a2 +i0ud, +20ct,d,

+120d )= 120(a, +ay +a4+a,+as 1ag+a,).

4 (5)-8,

2 (32)=3y3,-s,, since D, (32)=0,
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a,capay=a,-a, ~0; 2D,(32)=2(3),
agsa,=/, ag=l; /120d,(32)=0, a,=-agz=-/.
@l)=s,s,-s, , since D (4/)=(4),
a,sa,ra,va, ~0, a,=/; 2D,(4])=0, a,=0O;
1204, (4/)=0, a,=~|.

@)= (sts,- 3,5, - 25,5,+23,)/2, since
D,/Za/) =(2%), a,=- /2, a,=a,=a,=0,

a = /l/2; 2D (2%)=22)), ag=-/;

120D, (2%/)=0, a,=|.

(B317)=(s,3%-2s,s,- s 8, +25,)/2, since
D(5/%)=(3l), a,-2,=0, a,~1/2, a,=0, a =-1;
2D, (31%) =0, a =-a,=-1/2; I20D,(31):0, a,=!
(@1%)=(s,8%-3 5,87 3513 +63,3,+53,9,-45,)/6,
since 0,(2/)=(2/"), ,=0, a.=1/6,

age-1f2, age-l/2, as=l; 2D, (21%)=2(17),

a = 3/6; /120D,(2/7°)=0, a,<-2/3.
(1) <(e*-10s,s,* +20 s,8%+ /53:3' -30s,s, -20s,8,

1243, )/120, since D)(15)=(17), a,= /120, ap--Y/12, a,= /6,
G, = s a‘r-//a;ZD,(/‘)=0' a:‘a;’"%; /204 {/7'0' e,-éé:
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Weight 6:

e, he 3 2.2 e
f=a,8'+a,5,8% a,s,8,%+a,88s2+a, 8, s,

s 2
48,5,5,5,+Q,5,8,+Qg8,5,+ @y S, +a,S5 +a, S, .
s 3 2
. d,f=6a,s7+4a,s,8 +3a,3,8,

+2a,3,%s, + 22,8, S, + @53y 5+ G, 8y .
(@2+2d,)f=2(15a, +a,) 8 +2(6a,+2a,) 5, 3,°

+2(3ag+a,) sy5,+2(a,+3a,) st +2(a, +a, )s,
[@6d,cd, + 6dy)t= 6(20a,+4a,+a,) s’

+6(%a,+9a,ta,) s, 8, + 6(4,4 agya,,) Sy .
(@®+30d[d, +120d,%d, + 1804} + 360 d, % + 720a,d,q,

+7204, dy +720d, d, +120a,' ¢ 3604+ 720, ) F

= 720(a,+a, +ay +a, va, +a4 sa,+a,+a,a, 4a,,).

A (6)355.

2 (39)=( s2-s,)/2 since operating on this sym-
metric function with D, . 2D, .6 Dy . 720 D, and comparing
coefficients of the symmetric functions thus obtained with the re-
sult of the operations on 7 above, gives

Q,*Qy= Q" Q4" Qs"AQg *Apedy= Qg *O
a,- /2 , a,=-I/2.

(2% =(s3- 3s,5, +2s,)/6. For operat-
. . . . s

ing with D, and comparing coefficients of D, (2~) = 0 with
d,r ahovegives @, =@, ay “Q, ~ Qg Qg @,=0,
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Similarly, operating with 2 Dy gives ag =//6, ag4 =-1/2.
Operating with 6D, gives a,, =0. Operating with 720 Dg
gives @, « //3.

9 (42)~G482-36.

& (Sl)=s,.s,-s,.
6. (‘32’)"’0’251'5.9‘:"45 -s2+2s, .

2

z @/%)-= (3,87-2s,5,-5,5,+28,)/2.

") (Zz/?)-(sfs;'- s,s%-4s, s, 8 +4s,s,

+38,8, - 8,4 2s 3 -65,)/4.
o. (B3/%)=(s,5"3g,5% 3s,s,s,
+6s,8 +35,s, +2355-65,)/6.
w (219 =(3,5% 45,5 652524125, s,2420s,3,5,
-16s,s,- 185,5,+35 +8s3+/6 s, )24.

W (/%= (s’ /Js‘s,‘+40.s, 34458 }:2-90 3,52 120s,5,5,

+/44s,8 +90s, s, - /58 +40s; - 120s, )/ 720.

Note that only the four operator relations given ahove have
heen used in finding the expressions for all eleven symmetric
functions of weight 6.
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CHAPTER III

SymMETRIC FuNcTioNs oF SYMMETRIC FUNCTIONS.
A PROBLEM IN SAMPLING

10. Consider again the 77 variates &, , X, + - %y,
Let sl:z’"’a:zn ‘s.,,-x: R ,st,x denote the

power sums, the ac subscript being introduced here to keep in
the foreground the fact that the summation is with respect to x .
Now raise each variate to the power 777, where 777is a positive
integer. Thus a new set of variates is produced, viz. ;™ x

-,x:f Suppose now that samples, each containing » vari-
ates, (~r £ 7z7) , are drawn in all possible ways from these 77
new variates. Obviously there will be C_  samples. Denote?!

them as follows:

. rsl
z = .zr"'#-.z;"* +.rrm-z x"’,
r:2
z, =2 +x7+ . -+x,',:', 20, x”
w .
By I, T+ ez, =) 7
- - e nEr m
26" ZFn-rs1? tx, - *

INotation suggested by Editorial, Annals of Mathematical Statistics, 1
(1930), page 100.
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r:i
where 2B, = Z x ™ s the sum of the r variates appear-
ing in the ¢‘th sample.

Further, let
oLr
S:a = é;zl ,
nCr
Se:2™ g ziz’

represent the power sums with respect to &.

Now since each &, is a symmetric function of certain of
the x, .re ARSI x , any symmetric function of the
&, isa symmetnc function of symmetric functions. The situ-
ation here is then considerably more complex than in the preced-
ing chapters. The problem now is to express any symmetric
function of the &, in terms of the power sums with respect
tox. It is not difficult to imagine how much more complicated
and tedious the direct computation is here than in the problem
already dealt with. But these symmetric functions, particnlarly
the power sums with respect to 2, play such an important role
in the theory of sampling that it is now proposed to develcp a
differential operator method for expressing symmetric functions
of the z, interms of the power sums with respect to x.

On account of the presence here of symmetric functions of
both ar and & it is necessary to modify the notation of the pre-
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ceding chapters. Let (a®* bBc?.. )x be the general sym-
metric function with respect to o and (@% bAc? )4 the
same general symmetric function with respect to &. Under this
notation the power sums with respect to a may be written
(l)x , (Z)x A ¢ t)x , and the power sums with respect
to & become (1), , (2)5, . . = (t‘)a .

11. Case r77sl.

Consider first of all the case of samples when m=1. In
developing an operator method for expressing (a* bPc. -)2
in terms of the power sums with respect to ac it will not be
necessary to deal with this general case. For the operators de-
veloped in chapter II will express ( @ % bPc?. .. )y in
terms of the power sums with respect to &. Hence all that is
required is an operator method for expressing the power sums
with respect to Z in terms of the power sums with respect to .

That it is possible to express the power sums with respect
to 2 in terms of the power sums with respect to o¢ can be
demonstrated by direct methods. Recall the theorem stated at
the close of chapter I and note also that in any power sum with
respect to & each term is a symmetric function (a power sum in
fact) of certain of the x, , X, o X, Each x enters
exactly the same as every other o and the power sum with
respect to & is unaltered by interchanges or permutations of
X, , Xy, - . o X, Hence the symmetric function with
respect to @ is also a symmetric function with respect to a and
therefore can be expressed as a rational, integral, algebraic func-
tion of the power sums with respect to &. Moreover, as before,
each term in the rational, integral, algebraic function of the poWer
sums with respect to 2 will be of total weight wv if the sym-
metric function of the =, is of weight w; that is, the sym-
metric function is of the same weight in & as it is in & , This
last conclusion follows directly from the definition of the &, .

Although the problem here is more complicated than that
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in chapter II, nevertheless the approach to the problem in that
case suggests a beginning here. Let

(W)a' f(sl:x ? s‘-’x’ R 4 sw:x)'

where f is a rational, integral, algebraic function of the power
sums with respect to x. Since (w)z is of weight w, no
power sum of weight greater than w can. appear in f , i. e. no
power sum higher than s _ . x-

Introducing a new variate x,, =k ,as before, changes
f (S):22Sp: » + + - » Swig) into F(S, . + k,
Sy.xt kX . .. »Swix? K'). But it has already been
shown that this new £ may be written

f(s s, k") (14kD+ k*Dys - - - + k™D, )f

“x+k,s

2:%
where, if &, = d/0s v:ax - the relations between D and &
are given by (1) and (2) of chapter II.

What is the effect of the new variate o,
(W)z ? If no further assumptions are made then obviously
thére will now be , ,C_  samples. The introduction of new
samples complicates things and no operator relations are obtained.
It would seem desirable to preserve the number of samples. This
may be done by making suitable assumptions. Just as the new

=K on

variate is arbitrarily introduced, so its behaviour in the sampling
process may be arbitrarily determined in any way that will bring
results. With this in mind, select any one of the original variates,
say x; . Let Qx; =k=x,,, . Now assume that
£k =qx; is so related with a; that in the sampling process
every sample which contains o, also contains gz, , i. e. con-
tains (@ + / ) o¢; . In other words, in order to keep the num-
ber of samples the same, x; and @x, are always taken to-
gether in the samples.
Now each variate appears in ( l)z exactly , ,C,_,
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times. Hence (¢ +/ )x‘. appears ,,_, C ., times in
the new (1)z . Therefore the new (1) is equal to the orig-
inal (1) increased by ¢x,-, ,C,,=k-, ,C, _, .
Similarly (2) z becomes ) z+2k(1) g0 * k2 Cr
where the prime above = indicates here, and in what follows,
that (¢ ), is obtaind from (t ), by replacing » and r
by #-1and -1 respectively in the expression for (¢ )a
in terms of the power sums with respect to ac. For example,
since  (7), = fr., S;.x » then

(/)z’ = n-zcr-z S, xc

Applying the multinomial theorem to the samples, the effect
of the new variate may be written

(1), becomes (1), + k-, ,€

r-/

(2), becomes (2), +2k(/)y1 + k%, ¢

-l

(3), becomes (3), + 3k (2),1 +3k%(1,. + k%, C

rj»

. . . - - . . .

(W), becomes (W), + & - k(w-1),, + o k2 (w-2),.

WY 2t 1) FUIRY S o

w w-/ n-t-r-| *
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Now since (w), =f , therefore

(1+hD 4k Ds -+ k"D )W), = (W) o [, klw-1),,
#,C k2 w-2), + C - k°(w-3),,
4+ o -
+.C, -kV(ww)z,f .

w
+k C r-1

Equating coefficients of equal powers of k it follows that:
D, (W)z =W, '{W’/)z' ’

D, (w),= C, (w-2),,

2 w2

D, (w),= ,C, (w-3),

. . . .

D, (w)z = G, (w-v),

D, (W)= b (1) .
Dw(w)z R ¥ Cr-l ’
_Da(w)z= O if u>w.

12. Before proceeding to the application of these operators
it ought to be remarked that other sets of differential operators
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can be developed. For instance, it is possible to develop a com-
plete set of differential operator relations by adding k to each
of the given variates. But the operators thus obtained are very
cumbersome in comparison with those developed above. The
statement made with respect to the operators developed in chap-
ter II may be repeated here. There is every reason to believe
that the differential operators developed here are the simplest
that can be obtained for the problem.

13. The use of the operators developed in this chapter will
now be illustrated by computing a few power sums with respect
to 2 in terms of the power sums with respect to xv .

+. Let (')z =a,s, , . Then

D,(1), -d,a,s,,, ,thtis

nt1Cry =a ., Hence
/), “nslrs S,ix -

2. Let

(2)z=fga/'5/fx +3, 8, x-

D (2),-4,*,
Z(/)zl =d,f,

2

'n-zcr-z *6, i 3234 S)icr &= n-zcr-z .

2! D,(2), <(af+ 24,)f ,
2 n—/Cr-I =2la +a,), a,=

@) s?

e “nCrz Six*(n, Crs™ n2Cr2 ) S,

n-iCrs " n-zcr-z ’

tar
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3. Let

(3) =f=a, s +@,S, Syt @y Sy -
B -ar,
\3(2)zl ‘—'d,f,

3 ”-3Cf'- slfx +3{ n-2 CF—Z - C ) S

n-3=r-8 2:X

C

4
“3al S;:x* 2,8 hence <, = n-3-r-3°

@ T2:x’

@ =3(,.C, .- n.5Crs)

3ug04=045544+6%)ﬂ

6,,Cr, =6(aa, say,),
Q3 < p Cr./ -3 n-zcr-z *e-, JCr-s
(3)2 n3r.3 *3(-0: r-2 " n-3Cr ,3)slx 2 x

3 2
(4),g= f- QS . x* 25, x%2.x +

2
35 25%3:x7%S2.x "9 Sa.x -

D), -a,f,
4(3), =d,f,

4[7)—4 Cr.49 *’3( scr-a-n-4(r-4).sf;x$¢::
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#Hn2Cr2-39.5Cr 542 n s er)sa:rJ
=44,s,,, +2a;5,.2 S2.2 * 33 S5 x »

@)= n-e Crar @ 6(n.5Cr s n4Cry),

- 4(.,,_26',_2 -3, C,_s +E .y C,_,,).
Z!Da (4)- (a’,"v-?d,)f,

12(2)g, =(d%+2d,)f,

8 7p.3Cr.3 52y +12(n-2Cr.2-9.5Cr.3) Se.x

= 2(ba, +a2)sf__z +2(ag+2a,y)sg,x
@24=3(2.2Cr.e " C93Cr.5* n-4Cr.a)-

41D, (4), = () 12d]d, +24a,d, + 12d; +244, ),

24-,,C,., =24 (e, ta,ra, +a‘fa’,),

C

2 ,

s “n1Crs " 7'11-2 Cr-z +/Z-,,,, Cr-a - 6'»—4 Cr-4’

(4)z 7 0eCra- 5% *6(nsCrs “n-4Cra)S) x Saix
+4(,.. Cro-30sCrst2ns Cra)Si.x S5.x
#3(0-2Cr2"2ngCrs* msCrs)Sf s
(0t Crit =T p2Crg *12,,3C,,

"6 e Cr-4)34:z
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14. Now consider the case where 72 is any positive integer.

¢
will express any power sum with respect to & in terms of the
power sums with respect to ¢/, i. e. in terms of s, rw o Saiye
Sg.y» * * + + - . Butobviously s . =S, ..
and hence the operators of this chapter will express any sym-

metric function which is a power sum with respect to & in
terms of power sums with respect to z, viz. in terms of

Write x.” = y; - The operators developed in this chapter

Smix’ Sgm:x ' Sym:x @ - - - Wwhere misa
itive integer. Hence the operators developed in chapters II and
ITI will express any symmetnc functnon of &,;, (<1, 2, ,
vy Ch, 2 x” ,ma posntive integer, in
terms of power sums wnth respect to & . In particular

(l)g = ney Cr—/ Sz
- 2
2= 22Cro Sz * (5, € rt " »-2 <,.2)s om:x

(2= ».3Cns Sz *90, 5

r2 ”-3 Cr J)’sm 2 3 :mx

m:x
*/'/Cr—/' n2Cr2? S n.sC ) Som: x
15. Consider again the case 77=«/. P n1Cry.
Pe=rn-2Cr2: " " " Pk pn-kCrux. K=

Then?!
S,:2 "PrSi:x
ez =PeSiic *(P-P)S, o,
S3:2 *Ps s’l\'-'at +3(/ot 'pa)sl:z Sp:a *(P: -'310,*2,0,)3‘”’,

4z /04 'x+6/’°3 pd)slx 2:2

INotation suggested in Editorial, Annals of Mathematical Statistics, 1
(1930), page 104.
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+ 4//’3 - apo +2p, ) S, So:x* 3/'00 - 2,0’4,0‘) 3:,-:

+Heo,-Tog * 2Py 0P, ) Sy

etc.
The question as to whether the coefficients in the above

expressions follow any simple law now arises. Instead of
/ak'ﬂ-kc-k: ks r , Write p":'n—tc-k
Sr. Let

Z(p)p.

Llp)p-p*

'%60)50- 3,03 +20 S
flp)=p0- 0%+ /2,0"'6,0".
ete.

Further, let /3 be the expression obtained from /5 (o) by
going back to subscripts instead of exponents. Then

E'Pl »
P, Py,

8 *P, "3103 "2/0.1 »

L p-Tp,tl2p,-6po, ., »
etc.
The expressions for s, ., S,,a * - - - . may

now be written:
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Sa" ’:33/

rx
2
YA Rs,. x>
3 3
Sg.2" 2 PS xt PR, s, +Es,_.x ,
4 4 2
34-.;7’21 s,.x+6F° % S x* 4 58,55, x
*38’5:3 +P S,
etc.
where, of course, . B F, - - - - is to be found by multi-
plying P.(0) ‘Z(p) Pt (p) + - - - -and then changir;g
the exponents in the result into subscripts. e. g. To find ’3
first find P *0) =(p-02)%=02-207 + p* and then

change the exponents into subscripts, obtaining Fz) 'a,a‘ <Py +h-
One further step is necessary in order to emphasize the law
for the formation of these expressions for s, _, s, ., -
They may be written in the form

2.z g/ 2/
FS . x P,R S, :x5s:x P".’.x)
Se= 33 ¢ /721 3 /'
< -4 2
.8 .4.Ip/°/:.z* PPS/ x 2.2
“a 4! 2lire!
2 2

F Py Six sa.-x* Pasa:x + es‘.x
/! 3¢ 2/(21)* 4/
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I _J_K I J X
s tlZP‘.a.Pk...sisj.sk...
I o,
fz (c?) {//)J/k.')‘-'- ISkt - -

After computing by the direct method the first eight mo-
ments, under the assumption that s,,, = M, = 0, an article!
which appeared in the Annals of Mathematical Statistics gives
the following law for the formation of the functions #p ()
for ta/ 2, --- - ,8 If c;. is the coefficient of

s st
¢ in the expression for Py (p) , then

Cit ™ “ci:t-l -(‘.‘l)ci—l:t-/ .

This is equivalent to saying that

D t-/ _ e/
t /P) ‘Z (m"/)cm+l st/ mcm.-t-l P .

ma0

That this law holds for all values of ¢ =1, 2, .
is now easily established. For if it be assumed that this law-
holds for the expression for (¢ -/); in terms of the power
sums with respect to x , then it holds also for ( t)‘ because
the operators D, , D,, - - -, D; and the equivalent oper-
ators in terms of o, d,, + - -, dy will express (t),
in terms of the power sums with respect to & and of weight
less than ¢. And the coefficients of the terms in the expression
for (¢ )z are seen to depend only on the coefficients of these
power sums of weight less than'¢ . e. g. Suppose the law
holds for =1, 2. Let

3
(3)2- Ql sl-‘x + 02 s/:x sa.-x + Q’ aa:x .

1Editorial, Annals of Mathematical Statistics, 1 (1930), page 107.
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Operate on the left with [), and on the right with «, .
3(2)3' =3¢, slarx * Sy s hence
a3
@ =F° &-3RE.

Operate on the left with 6D, and on the right with ( d,a
+6d,a, + 6da). Then

OR=6(9,+Q, +@,), therefore
@=-FP-Q -0,
-B-R*-3R R
But
B(o) - B(p)-3P(p) B (p) = p-p*- 3p(p-p°)
=p-3p% S0’
- B ().

Hence

Q=5
16. Consider the functions AYq), ¢/, 2, - - 10,- -
P; {/o}'/oo

2(0)=p-p%,
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Rlp)-p-30% 20"

alp)po-70 20150 6%

Rlp)p-15p%+ 500" 60,0% 240

Rl <030 1800 °~3900* + 3600°- 1200,

P, () <0 -630%+ 602,0°-2100,0°
+336,0°-2550,0° + 72007,

B (0)=0- 1870 +/932,0° - 10206 0 *
+85200,0°- /9280 + N6 0 - 504002

R(p)=p0-2550% 4 60500°-46620,0° +166824,0°
- 3I7520,0° + 3326900 - 18/440% s 4032428
B (0) - po- 51/0*+ 186600 °- 2006 300*

+ /0206040 ‘-?73.9240/9 é +» FIC9424 0 4

-3780000,0°. 18/44000°+ 3628800 .
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Those who are familiar with the calculus of finite differences
will recognize the coefficients in the above expressions, neglecting
their signs, as the numbers appearing in the table of values of

Am/”"(A mx”)z_/
If «w/x) and v/x) are functions of o then

A"u(x). v(x)= vix) A" ulx)+,C, A w(x) A" uixsi)

*nCo cA%(x) - A" %ulx+2) e - -

Now x”: a.x ™/ . Hence, letting v/x)=x and
ufx)=x”’! T ATz x" ' ax A2 7’

em A" (xs1) ™' and all the other terms vanish.
Also  (x47)" ! a Ex"'c(/+A)x™". . Therefore

ATx " xd m.x"-/+ mA m.l(/*A)x -l
= xA"x" s m(A A ™ ™),

It js now possible to write

e/
e(P)'Z (_I}M{Am, t-l) ‘PMO{
me0
To show that this law is equivalent to the law given above, viz:
./

Rlp)-Z [(”"/)cm»/: 1”7 metd ] ~m

meO

assume they are equivalent for 72 /,0) and show that they
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are then equivalent for A, (p) That is, assume
v 2 /, ¢-2 /
Zo(~/)"l?mddnl +mAT 1" },o e
e 3

‘az’ [( mel
mH)C, bt - 7€y 0.t | P

320

Then
( /)mAm/ t-2= Comelstut and {./) m-/A m-/ A

oty For Py, , (0) the two laws are equivaiont 1f
¢
m w b1 m-/, ¢-/
Z (1) [(m+/)A /I +mA '/ /om”
m:0

¢ )
-Z [(m*/)cmﬁl:t T mC .t ]pm*/

m=0

o .. maAmt-2
But this is true since if Comet:t-y “C-1)7A™/
then
Cmet:t = (”",)'cma-/.-f-l TNC yyy: 8-/

»(-/) '"[{md)A M) mA ’""/"'2]
.(_/)mAm/f-/.

Similarly, since ¢, .., =(-1) ™/A™ )T hen

m-/ ;‘~I

Comeg = l-1)™ AT T

17. Since A"/"-A‘?(/#A)O" , it is possible to
write
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5 1
Rlp)=) (-NTAT I o™

m-0

¢-/

2L A (1e8) ™),y ™

The latter expression on the right suggests that /3 f,0)
may be expressed as a function of 0 and x with ar set eqifal
to zero for each particular vajue of # . Suppose that £ [, Plx-o
is such a function. Obviously # can be neither a polynomial
in & nor a rational function of any kind in & ; for setting
x equal to zero would show that /~ would have the same value
for all values of ¢ . The nature of the expression suggests
that ac enters /< only as a variable with respect to which dif-
ferentiation is to be carried out, & then being set equal to zero.
There are two main reasons for this assumption. First of all,
since x enters the difference expression only as a variable with re-
spect to which differencing is performed, ar being set equal to zero
after egch differencing, the guess is that . enters / only as a
variable with respect to which differentiation is to be carried
out, x being set equal to zero after each differentiation. Be-
sides this there is the intimate relation between A and o /d'x.
Forinstance, /+ A =e afdx , d/fdx = log (/+4)
and hence A" can be replaced by a function of the 7’th degree
in d&/dx and vice versa. Further, since the difference ex-
pression contains A" it is reasonable to try to express ~ asa
function involving & ¥/dx* . Now let 4 x,0)0.0*
(dd=x®).P( x. ) )] x-0 - Since ¢ differentiations, none
of which are to give results identically zero, are to be carried
out then ¢ cannot be a rational function of ar. Also functions
which involve the possibility of the derivative being infinite are
excluded. Hence try a transcendental function of 2 and,0 .
The exponential function will not satisfy the conditions. Try
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é(x, o) =log f (=, pP)- And again £ cannot be a rational
function of & . Suppose £ is an exponential function of ac,

say f(x,/o)= #£(0,e%). Then
Frlp)= et Rloe™)] .,

The simplest case would be P/,o, e¥)= o * . But this
does not satisfy A, (,0)=,0 . Nor does £fo,e%):pe%s0;
nor Pfoe™)=ppoe* 0 . But Rloe™)pe*+/- 0
does satisfy the conditions since it has heen shown’® that
¢
Z, tog (pe s/ -0)] o

satisfies the law ¢, - €, py=l-D)Ciy 44
where c, , is the coefficient of ¢ w Py f0)

Hence A% fjo) can be written in the three cquivalent farms
for all values of ¢ :

¢/

Pt(/o)‘z (-I)m(Am/t-l)'/Om*

m=0

/

¢-!
Pf (/0) sZ [(m*,)cm-fl: -1~ TCm: ¢t ],O el
»m:-0 ’

ot
Py (p)- g;f log (/oex*/—’a)-,&"’

1Editorial, Amnals of Mathematical Statistics, 1 (1930), pages 107, 108.
Also see remark on “Sampling Polynomials,” page 120.




