ON THE FREQUENCY DISTRIBUTION OF CERTAIN RATIOS
By H. L. RieTz

University of Iowa

Considerable interest in the distribution of ratios, ¢ = y/z, has no doubt
been suggested by important applications. For example, we may mention the
opsonic index in bacteriology, the ratio of systolic to diastolic blood pressure
in physiology, and ratios such as link relatives or certain index numbers in
economics.

In 1910, Karl Pearson! gave certain properties of the distribution of ratios
by means of approximate formulas for moments up to order four in terms of
means, variances, product moments, and coefficients of variability of z and y.
The resulting formulas did not give, with sufficient accuracy, the constants of
the distribution of the opsonic index for the purpose of Dr. Greenwood to whom
Pearson attributed: the derivation of the formulas for the special case in-which
z and y are uncorrelated. Pearson next adopted the plan of tabulating the

reciprocals, say z’ = :-1-, and then finding the constants of the distribution of

the product yz’ in the case in which z’ and y are uncorrelated. He then ob-
tained satisfactory results in illustrative examples.

In 1929, C. C. Craig? obtained the semi-invariants of y/z in terms of moments
of z and y, and then expressed the moments in terms of the semi-invariants of
the distribution function, f(z, y), of * and y. By this means, he was able to
deal with the case in which z and y areé normally correlated under suitable
conditions. Craig found it desirable to restrict the distribution of x in such a
way that the probability of a zero value of z is an infinitesimal of sufficiently
high order that a certain integral exists. This limitation seems to imply in
applications to actual data that no zero values of x are to occur. This suggests
that we deal with the cases of z at or near zero with considerable care.

By starting with the assumption that the values of x and y are a set of
normally distributed pairs of values with correlation coefficient r, and by con-

sidering the quotient z = Z ::: z, a and b being €onstants, R. C. Geary,® in a

paper published in 1930, found an algebraic function, » = f(2), of fairly simple
form with the property that u is nearly normally distributed with arithmetic
mean zero and standard deviation unity provided that e 4 =z is unlikely to

1 On the constants of index distributions, Biometrika, Vol. 7 (1910), pp. 531-546.
2 The frequency function of y/x, Annals of Mathematics, Vol. 30 (1928-29), pp. 471-486.
3 The frequency distribution of the quotient of two normal variates, J. Royal Statistical

Societv. Vol. XCIII (1930), pp. 442-7.
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146 H. L. RIETZ

have negative values. Here we have again a suggestion to exercise special
care in the case of quotients with the divisor near zero or negative.
In 1932, Fieller* obtained in explicit form the approximate distribution of
t = y/z where values (z, y) are drawn from the bivariate normal distribution
1 11 {(,_;). =r_,, (z—s)(v-i)}
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Very recently Kullback® found the. distribution law of the quotient, ¢ = y/z,
where z and y are drawn from Pearson Type III parent populations given by

fl(x)=£r%p):; fz(y)=ejrvy;—l, 0Sz= o, 0Sys=< .

It is fairly easy to see, in a general way, that the distribution of ¢ = y/z
depends very much on the location of the origin as well as on the parent distri-
bution from which z and y are drawn. This fact will be fairly obvious from the
present paper whose main purpose is to give clear geometrical descriptions of
the distributions of ratios, ¢ = y/z, for each of several cases in which (z, y)
are points taken at random from certain simple geometrical figures conveniently
located with respect to the origin.

In accord with the suggestions to be cautious when the divisor is near zero
or negative, we consider first the very simple case of ratios ¢ = y/z obtained

4 E. C. Fieller, The distribution of the index in a normal bivariate population, Bio-

metrika, Vol. 24 (1932), pp. 428-440.
¢ Solomon Kullback, Annals of Mathematical Statistics, Vol. VII (1936), pp. 51-53.
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from points uniformly distributed over a rectangle such as is shown in Fig. 1
with sides parallel to coordinate axes and a; > 0, b, > 0. As indicated on Fig. 1,
we assume for simplicity that the coordinates of the points are positive and
o SrTSabhsy=sb.

Case I. Whenbl<b2 , Fig. 1.
a

Let k dxr dy be the probability that a point (z, y) taken at random in the
rectangle will fall into dxdy where k is a constant. Then

bs as

1
(a2 — ar)(be — b)) "

Transform the element % dxdy into one with variables ¢, and z by making

and k=

z =z,
y = tx.
The Jacobian is |z | = z.
The new element is &k = dzdt and is to be ihtegrated over the range on z for
an assigned ¢ in order to get the probability, to within infinitesimals of higher

order, that a random ¢ falls into an assigned df. By assigning ¢ any value such

that I—)l Sts z , say t is the slope of MN, (Fig. 1), we have

as 2
(¢H) kﬁ zdxdt = g(ag - I—)—) dt

23
t

the limits of integration being indicated by the ends of the line MN.
When the assigned ¢ is such that by =t = f_;i’ say ¢ is the slope of the line

a
M'N’, we have

) | k/’xdxdt=§(a,—al)dt

When the assigned ¢ is such that bz < é b o 58y it is the slope of M"'N",

we have

bs

T k /b2
3) Ic/ zdx dt =-2-(?2 - af)dt
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Thus, from (1), (2), (3), when as in Fig. 1, — < -Z—i the frequency function
a
of ¢ is given by
_kf 2 bf) b, b
@ F@) = 3 (az -7 when = t < o
_k, 2 b bs
(5) F@) = 3 (a3 — a}) when o= t < o
2
(6) F(t) = k@i - af) when Z<e<®
2.\ 2 as @
See Fig. 2 for the general form of the frequency curve F(f) when lll < li’

by

al

with the segment from { = — to 2 a horizontal straight line and with discon-

tinuities in the first derivatives of F(f) at ¢ = by and t = g-:
a1
Y
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When ¢; — 0, and b; = 0, the frequency curve approaches

(7 F(@t) = T when 0=t=< %z
_ b2 bs
8) F(t) = Sa when ¢ = B

It may be noted that the curve given by making a; = 0 and b, = 0 extends
to infinity, and that the first and second moments about the origin are each

infinite.
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Case II. When 2 > 2,
a 2]

If the rectangle in Fig. 1 were moved upward keeping its sides parallel to the
bs

z and y axes until g‘ > Pl we would obtain
1

k b7\ .. b b

() F(t)=§(a§—t71) if a—iétél;:,
—_ k 2 2 : b2 bl

(10) P() = g5 03 =) if sts 7
_ k(b3 2) o b1 [

an ro=b(%_at) ¥ Dais?

By comparing (5) and (10), it may be observed that F(f) of the middle seg-
ment of the distribution curve differs much in Case II from its corresponding
constant value in Case 1.

By moving the rectangle of Fig. 1 downward, keeping its sides parallel to the
z and y axes until 3 is negative, we easily find further forms of the distribution
curve F(t).

To consider the distribution of the ratio ¢ = y/z for another very simple type
of distribution of z and y, suppose we have given the distribution function

_ g mi-tfzzc>0, y non-negative
(12) f(x,y)_ke b:<a>c’b>0

where / / f(x,y) de dy = 1. Then
0 3

ecla
" ab
In this case,
o [* i
) F(t == /. ze dz
1 ( ab £t
= ——\¢c+ e °,
b+ at b+ ot

[
8

a monotone decreasing function from ¢ = 0 to ¢
With ¢ = 0 as a limiting value, we obtain

ab

(14) F@t) = & T )

a distribution curve with the mean value of ¢ at infinity.
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If we should similarly consider

=2
(15) __2 20z 20y § .
fz, v) p— e (z and y non-negative)

we easily obtain
(16) F() = L

1 £

2 woL0y (—,— + —;)
z Ty

as the distribution function. A
Although the difficulties® of the problem of the distribution of the ratio y/z
when z and y are normally correlated have been overcome’ to a considerable

| 4
C(a, b*b,-b)
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Q /8{0&173)
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> X
Fig. 3

extent, still the examination of some very simple geometric cases of non-
normal but linear correlation may not be without some interest. Such a case
will now be considered.

For one very simple case in which z and y are correlated, suppose we are
given a set of points (z, ) uniformly distributed over the parallelogram ABCD
(Fig. 3) with sides AD and BC parallel to the y-axis so that the regression of
y on z is linear as shown by the line RS.

The equation of RS is
b + by

2

@17) y=m(x— a) +

-‘Loc. cit., Pearson, p. 531. )
7 Loe. cit., C. C. Craig, R. C. Geary, E. C. Fieller.
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Then although z; and ; are correlated, z; and

y$=ys—m(x.~—a-)—13‘—:'2'—b’

are uncorrelated. Let us consider the distribution of the ratio ¢’ = %{-
Consider the element of frequency kdxdy’, where
(18) k(b — by) (a2 — @) = 1.
Change variables to = and ¢’ by the transformation
z =z,
y =tz
Then the element of frequency becomes
19 kx dx dt'.

Next integrate (19) with respect to x under the restriction that ¢ is assigned.
Three cases occur:

(a) When — b"z; bhoys< b’z; B we obtain by integration of (19) for the
element of relative frequency of ¢ in df,
(20) k / zdzdt = £ (a} — a}) d.
ent = =——, we obtain
(b) Whent = 2 = % we ob
bty
’ — 2
(21) k/“ xdxdt'=’§c[%rbil'—a§_|dt'
(¢) Whent = —b’2; bl, we similarly obtain
_beb ,
(22) kL H xdxdt'=’§"[@4—“t,zi)-—ai]dt'

From (18), (19), (20), (21) and (22), the frequency function of ¢ is given by

a2+a, bz—'bISt/sz—bl.

(23) F(t’) = m when -— 2 = 2as ’
n _ 1 (b — b)),
(24) F(t) - 2(b2 — bl) (a2 — al) [ 4t,2 a’l]r
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where the range of ¢’ is subject to either the inequalities,

b2_bl bﬂ_bl b2_bl b2_bl
S'S S’ -_— .
22 _t_ 21, or 21 _ts_ 22

See Fig. 4 for the general form of the F(¢') frequency curve.
If we make a; = 0, the curve becomes. infinite in range. If we make not only

a, = 0, but (b, + b;)/2 = 0, we have, in place of (17),

y = mx.
In this limiting situation, if we make a; = @ and b ; b b,
Ft)
_bb ) 0 Xy b2,
2a, 2a, 2a, 2a,
Fi6. 4
(23) becomes
a b , b
(25) F@) = " for — a =t = Pt and (24) becomes
b b b
Y — /> 2 r< — o,
(26) F@') Ta for ¢ = o and for ¢’ < Z

Then we have y’ = y — mz

’

<

and =2 =¢t—m.

]|

Further, if ¢ is distributed in accord with a frequency function, F(t'), the
distribution of ¢ = ¢’ + m with m constant is given bv

F(t — m).
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Hence, the probability that a random value ¢ will fall into a range ¢ to ¢ + d¢
is given to within infinitesimals of higher order by

(27) S dt when m—égtgmﬁ.é,
and by
b dt

(28) when t;m+£andt§m—g.

4a(t — m)?
With the frequency curve given by (27) and (28) we may note that the variance
of t becomes infinite.

Without taking the space to continue illustrations, it is fairly obvious that a
wide diversity of form can be given to the frequency function of the quotients
t = y/z by relatively simple changes in the location of a sample parent popu-
lation with reference to the origin.



