THE RETURN PERIOD OF FLOOD FLOWS
By E. J. GuMBEL
New School for Social Research

Introduction. Engineers have used various interpolation formulas to repre-
sent the observed distribution of flood discharges. These 'formulas are some-
times constructed ad hoc for a given stream, and have no general meaning. Most
of them are rather complicated." Some authors have tried to introduce upper
and lower limits to the discharges, even though it is doubtful that such limits
exist. Others have introduced the third and fourth moments of the distribution,
in spite of the fact that these numerical values are subject to large errors. For
some formulas it is impossible to give a meaning to the constants; different form-
ulas applied to the same stream give rather contradictory results; and conse-
quently there is considerable confusion. For example, Slade [20] has stated that
“the statistical method in whatever form employed is an entirely inadequate
tool in the determination of flood frequencies.” According to Saville [19] “the
engineer should satisfy himself that he has used an adequate number of methods,
whether mathematical, graphic or otherwise, which have real support from either
theory or experience, and then form his own judgement.”

The main reason for this situation is that these studies have little or no
theoretical basis. The author believes it possible to give exact solutions,
exactitude being interpreted from the standpoint of the calculus of probabilities
[10]. Our solutions are simply the consequences of a truism: ‘“The flood dis-
charges are the largest values of the discharges.” The present study is but an
explanation of this statement.

Many American authors start with a statistical function, which we call the
return period of floods. Therefore we shall first analyse the notion of return
period and show how it can be derived as a consequence of the concept of dis-
tribution. We then give a short résumé of the theory of largest values. The
discharge, and in consequence the flood discharge, is considered as an unlimited
statistical variable; it is not necessary to determine its distribution. We are
justified in representing the observed distribution of flows by one of the the-
oretical distributions of largest values. The distribution we choose contains
only two constants, and both have a clear hydrological meaning. The numeri-
cal values are calculated by the method of moments.

1 In recent years many articles discussing this topic have been published by the American
Society of Civil Engineers and the American Geophysical Union [8]. A review of some of
the proposed formulas is given in the Water Supply Paper 771 [17].
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164 E. J. GUMBEL

The application of the notion of return period to the largest values leads to a
simple formula for the return period of the floods. In the last part of this paper
we represent the flood flows of the Rhéne and Mississippi Rivers by our formula.

1. The return period. Let us consider a continuous statistical variable z,
having a theoretical distribution w(z). The probability W(z) of a value less
than or equal to z, and the-probability P(z) of a value greater than or equal to
z, are

) W) = [ widz, P@ = [ " w(z) de,

where z denotes the variable of integration. Clearly
1) W(z) + P(z) = 1.

Let n be the number of observations. Let z. (m = 1, 2, ..., n) be the
observed values arranged in increasing magnitude, where m is the serial number
beginning with the lowest (“from below’). The lowest observation has the
serial number m = 1, the highest has the serial number m = n. These observed
values will be written x;, and z, respectively. The number of observations
below or equal to =, is m = n'W (2z.) where ‘"W (z») is the observed relative
number corresponding to the probability W(z). The graphic representation of
this series is called a cumulative histogram.

In hydraulics many authors arrange the observations in decreasing magnitude.
Let mz (m = 1, 2, ..., n) be these observed values. The serial number m is
counted in a descending scale (“from above’’). For the largest value m = 1,
for the lowest value m = n. The number of observations above or equal to
mZ is m = n'P(nz) where 'P(,,z) corresponds to P(z). The numbers 'W(zm)
will never decrease; the number 'P(,,z) will never increagse. The mth value on
a descending scale is the n — m + 1th value on an ascending scale. Therefore

2 W P(mz) = n — n’'W(zm) + 1,
and
2) nP(x) = n — nW(x).

The difference between formulas (2) and (2’) will play a certain rdle later.

Different methods are used in statistics in comparing the theoretical values
W(x) or P(z) and w(x) with the corresponding observations 'W(z), or 'P(uz)
(cumulative frequencies) and A’W (z.) (frequency distribution). They all have
in common an arrangement of observed values according to magnitude.

For the purpose of considering the observations in chronological order, we
introduce a statistical criterion which at first glance may appear to have a new
logical structure. It is assumed here that the observations are made at constant
time intervals, and this interval is considered the unit of time. We suppose
that the observations are homogeneous, i.e., subject to a common set of forces.
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Furthermore, we suppose that the events are independent of one another: the
occurrence of a high or low value for z has no influence on the value of any
succeeding observation. Let us choose a low value z, and ask the following:
After what number of observations does this or a greater value return? We
calculate the mean of these chronological intervals between every two consecu-
tive values, equal to or greater than z. We repeat these operations for a second,
third, . . . till the penultimate value of z.

These means are called the observed return pertods. The criterion consists of
the comparison of the observed, and the theoretical return period for increasing
values of z. For a discontinuous variable we could obtain the return period for
a value equal to z, (not equal to or greater than z). This average time, which
is sometimes used in physics, does not interest us, as our variable, the discharge,
is continuous. We limit our consideration to the return period of a value equal
to or greater than z, called: value greater than z.

The determination of the theoretical return period is a classical problem:
How many trials must, on the average, be made, in order that an event of a
given probability should happen? Our event, the realization of a value, equal
to or greater than z, has the probability P(zx) = 1 — W ().

The mean number of trials 7'(z) which are necessary to obtain our event once,
is evidently

) 1
(3) T(x) = ITWTx—)" 3
or
3" T(z) = L.
P(x)

This value 7'(z) is the mean chronological interval between two values, equal
to or greater than x. If we start at the time when such a value has been ob-
served for the first time, we can interpret 7'(x) as the theoretical return period
of a value equal to or greater than z. We designate it as the theoretical return
period. This concept has not been used in statistics. It is a well-known con-
cept in hydraulics which was introduced by Fuller [6]. To every theoretical
distribution w(z) there is a corresponding return period 7'(x) and conversely,
to every theoretical return period T'(x) there is a corresponding distribution

@ w@) = 12,

obtained by differentiating (3).

If the variable is without limit to the left, the return period will start with'
T = 1. If the variable is limited to the left by # = e the corresponding return
period will be

%) T =1 if W =0
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In the graphic representation, the return period 7'(z) which has a time dimen-
sion, will be the abcissa and x the ordinate. Therefore we consider z as a func-
tion of T'(z); from (4) we obtain

dz 1
(6) din T ~ w(x)T(z)

where In signifies the natural logarithm. The increase of x as a function of
In T'(z) will be very rapid for small values of T. For a limited distribution
the same result is obtained, provided the probability W(e) and the density of
probability w(e) are sufficiently small. Clearly, the return periods of the three
quartiles are respectively 1%, 2, 4. The return period will always increase
with 2. It will tend towards infinity even if the variable is limited to the right.

Let us now consider the calculus of the observed return periods. Instead of
values equal to or greater than z,, we will only speak of values greater than z,, .
The observed return period is the interval between the first and the last observa-
tion greater than x,,, divided by the number of intervals between all observa-
tions greater than z,. The number of observations greater than z, is n —
n'W(zm). Between these observations there are n — n'W(z,,) — 1 intervals.
This denominator is independent of the chronological order of the observed
values. We can calculate the mean of the observed intervals up to a value z,,
so that n — »'W(z,) = 2. For this value of x,, there are only two observa-
tions, i.e., only one interval. In that case no mean can be calculated.

The numerator, the interval between the first and the last observation greater
than z, will be # — 1, provided that the first and the last value in chronological
order are greater than z,,. But in general the first value greater than ., will
be the (k + 1)th in chronological order. The first value greater than z,, found
in the reverse chronological order, will be the (¢’ + 1)th. Let’k + &k’ = [, then
the interval between the last and the first value greater than z,is» — 1 — L.
The mean observed interval is thus

1T@m) = (0 — 1 =0/(n — 1 = n'W(zn),

or

o mewn(o)/m)

This magnitude depends only on the chronological order of the first and the
last value greater than z,,. It is independent of the chronological order of all
other observations. Even in the case [ = 0 this value differs from the theoretical
value (8). The observed value surpasses the theoretical value, even if the
frequency ‘W (x.) is identical with the probability W (z).

In the general case, I > 0, this difference is a function of . The number !
depends upon the times at which the observations begin and cease; but it is
not a characteristic of the chronological order. As a result of these disad-
vantages of formula (7) we prefer to introduce other definitions, in which the
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chronological order does not enter. These definitions have an added advantage
in that they are constructed in a manner analogous to the theoretical formula.
The observed value which corresponds to (3) is

’ _ n
®) T(xm) = ,’T_‘—m;
or
9) "T(@m) = n/(n — m).

But this definition of the observed return period is not the only one which
corresponds to (3). Starting with the serial number m, in_a descending scale,
Fuller [6] puts

8" "T(zm) = 7%
According to this definition, the return period of the mth value from below is
9") "T(xm) = n/(n — m + 1).

TABLE 1

Two definitions of the observed return periods
observed serial number serial number exceedance interval recurrence interval

variable  from below from above formula (9) formula (9')
x1 1 n n/(n — 1) 1
Z2 2 n—1 n/(n — 2) n/(n — 1)
Tm m n—m-+1 n/(n — m) n/(n —m + 1)
ZTn—1 n—1 2 n/1 n/2
Zn n 1 — n/1

This observed return period corresponds to the theoretical return period (3').
The difference between (9) and (9’) results from the fact that the relation (2)
between the observed cumulative frequencies ‘W (x,) and 'P(nz) differs from the
relation (2") between the probabilities W(z) and P(zx). The two definitions
of the observed return periods are related by

(10) "T(@mt1) = "T(@m) < 'T@m41)-

From a purely logical standpoint the first definition is as justifiable as the
second one.. Both are used in hydraulics. In order to avoid confusion between
formulas (9) and (9”) Horton [16] calls '7T'(x) the exceedance interval, i.e., “the
average interval at which an event of given magnitude is exceeded,” whereas
he defines "T'(z.), the recurrence interval as ‘“the average interval of occurrence
of values equalling or exceeding a given magnitude.” Of course, the exceedance
interval surpasses the recurrence interval. Since both observed intervals cor-
respond to a common theoretical return period we designate both of them as
observed return periods.
The difference between formulas (9) and (9’) i‘s made clear in Table I.
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Each of the definitions (9) and (9’) and the theoretical expression 7'(z) has
different properties. For the lowest observation

W) = 1; n'P(.x) = n.

Therefore
1
Te) =1+,—; "T@ =1,
whereas for an unlimited distribution lim 7'(z) = 1.

If the number of observations is sufficiently large the numerical differences
between the two observed periods are rather small, except for very large values
of the variable. For the last observation

n'W(x,) = n; n'P(ix) = 1.

Therefore the return period 'T'(x,) for the last observation does not exist. Ac-
cording to the second definition the return period for the last value is equal to
the total number of observations. But in general there is only one observation
of the last value.

The preference given formula (9) over (9") corresponds with the preference
given to W(z) over P(x) when comparing the theoretical with the observed
values. Therefore it is natural to count m from below. Since both definitions
are equally applicable and since they lead to different results for large values of
the variable, one should not calculate the return period for a small number of
observations.

The observed return periods (9) and (9’) differ from the theoretical return
period (3) in the same way that the frequencies ‘W (z) or 'P(sz) differ from the
probabilities W(z) or P(z). The chronological order enters neither into formula
(7) nor into (9) or (9). We need not take it into consideration, since the
theoretical return period is obtained from the probability and the observed
return period from the cumulative histogram. Therefore the usual statistical
methods can be used for making the comparison between observed and theoreti-
cal return periods.

The return period is a statistical function like the distribution, w(z) or the
probability W(z). No formula for 7'(z) that contradicts the properties of w(x)
can be accepted. The return period 7'(z) will contain the same number of inde-
pendent constants as the distribution w(z). Consequently the fit of the theo-
retical curve 7'(z) to the observations 'T(z.) or ’T(2) cannot be improved by
introducing a new constant without also changing the distribution w(z). The
theoretical curve z = f(T) will fit the observed curves (Zm, 'T(zm)) and
(@m, "T(xx)) in a way that depends upon the fit of W(x) and P(z) to 'W(zm)
and "P(xx).

Let us suppose that w(x) contains k constants; that they are determined by the
method of moments which conserves the arithmetic mean &, the mean of the
squares 72 ete. of the observed distribution. For the return period these mo-
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ments have a meaning. Let us consider for the sake of simplicity a positive
variable. The kth moment M,

= | " W)

= —f:af‘d(l — W(z))

k j; ) 1 — W(z)z* " dx

is according to (3)

ka—ldx
11 M.=k Lo
v A OX
whencefork = land k = 2
’ - ® dx . 2 * zdz
an =l P =2 TG

For a given distribution containing two constants, the method of moments con-
serves the area and the center of gravity of the reciprocal of the return period.
Even if the method of methods gives the best determination of the constants,
for the distribution, it need not give the best determination for the return
period. But if the observed return periods were used for the determination of
the constants we would get two sets, since there are two observed curves having
equal validity, but different values for large z. We will get one and only one
set if the constants are calculated from the: observed distribution, for here the
difference between 'T(x.,) and ""T(x..) does not matter. The fact that we do
not take the constants from the observed return periods, but from another
statistical function, might be a cause for deviations between the observed and
the theoretical return periods.

Once the constants have been found, we compare the observed curves
@m, "T(xm)) and (xm, ""T(xm)) with the theoretical curve x = f(T'). To avoid
discontinuity the observed return period will be established for all values of .,
arranged in increasing order.

If the observed return periods for small values of = are systematieally smaller
(greater) than the theoretical period, it is reasonable to conclude that there
exists an attraction (repulsion) for small values of the variable and a repulsion
(attraction) for the large values. But it must be remembered that the observed
values have different weights in that the return periods for small values of z are
based on many observations. This number diminishes as z increases. The last
observed return period is based only on two observations. Therefore the di-
vergence between theory and observation will increase with the variable. With
this precaution the criterion of the return period suggests one cause of difference
between theory and observation. In order to apply this method to the largest
values we must first establish the corresponding: distribution.
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2. Theory of the largest value. Let x be a statistical variable unlimited to
the right having the distribution w(z). Among the N observed values, one will
be larger than the others. We wish to determine its theoretical value.

According to the principle of multiplication the probability By(z) that N
values are inferior to « is

(12) By(z) = W(z).

This is the probability of = being the largest value. The largest value is a new
statistical variable which possesses a mode, a mean 4, a standard deviation s
and higher moments. To get the mean the distribution wx(x) of the largest
value is needed. From (12) by differentiation

(13) wy(z) = NW¥ (2)w(z).
The mode will be the solution of

/ N - w'(x)
(13%) W() w(z) + w(@) = 0.

For a given initial distribution w(z) and for small N we have to solve this equa-

tion. But the mean and the moments cannot be obtained in a general way by

the use of the exact distribution (13). However we can reach general solutions

if N is large, provided we limit ourselves to certain classes of initial distributions.

We have studied this problem in previous publications [11-13]. For our present

purpose it is sufficient to give the results in a form due to R. von Mises [18].
We define a large value u of the variable z by

(14) N1 = W) =

This means that the expected number of observations equal to or greater than u
isone. Equation (14) is but another form of definition (3). The mean number
of trials is used in (3) whereas the original variable z is used in (14).

The probability « du that a value greater than « will be contained between u
and u + du is given by

(15) =,

Obviously « and u are functions of N and the constants in the initial distri-
bution w(x). There are two limiting forms of the probability (12)

lim W¥(z) = F(z); }'im W¥z) = B(z).

N—owo
If
(16) lim ou =k > 0,
weobtain

17) F(z) = e ™",
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This probability function was first established by Fréchet [5]. If

. d (1
(18) lim == (a) =0,
we obtain
(19) W(r) = ¢ "™,

This probability function is due to R. A. Fisher [4]. Let us consider the first
limit. The initial distributions which lead to it belong to the Pareto type.
For this distribution

k
w(x)=x7+—l; W(x)=1—-£k-; z=1
and condition (16) holds; for any value of x
aw(@) _ .
1— W(=)

The distribution f(z) of the largest value, which corresponds to (17), is

k [u\F* —tuarh )
(20) 1) = E(2) e

The mode Zw of the largest value is the solution of

%[(k +1) 1ng— (g)k] =0,

hence
E+1_ ku
z o
or
. k 1k |

According to the definition (14) the mode of the largest value will increase
with N. For a finite number of observations, which is always the case, the
mode will be limited. But the moments of order k£ or higher will not exist.
For k < 1, no moment will exist. For k£ < 2, only the first moment, the mean,

exists, and so on.
Let us consider now the second limit (19). The initial distributions which

lead to it belong to the exponential type. For this distribution [14]
w(z) =€ Wkx)=1—-¢" =z=0,

and for any value of z

() =0
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which means that condition (18) is fulfilled. Most of the distributions used in
statistics belong to this type. According to (19) the distribution of the largest
value is

(22) W(z) = ag =0T,

If we introduce a reduced variable y without dimension by the linear trans-
formation '

(23) Yy = a(x - u),
we get the reduced probability 8B(y)
Bly) =B
o W = B0
=¢° .

The numerical values of this function, calculated by means of Becker’s tables [1],
are given in Table II, col. 1 and 2. The reduced distribution

(25) p(y) =¥,

makes clear the meaning of u: the distribution has one and only one maximum
which occurs for the reduced value y = 0. Therefore  is the mode of the
largest value for a given set of N observations. For an initial distribution w(z)
satisfying (18), and for large N, definition (3) of the return period as a function
of z becomes identical with relation (14) which involves the number of observa-
tions N and the corresponding most probable value u.

We wish to decide which distribution of the largest value is to be used to
represent the given observations. This decision depends, according to (16) and
(18), on the nature of the initial distribution at the extreme values of the
variable. If the law of the observed initial variable is known, a precise answer
can be given. But generally speaking, a distribution chosen to represent given
observations is nothing but an interpolation formula. Formulas having different
analytical properties may all give satisfactory results. One might fulfill condi-
tion (16), and another (18). The conditions apply to the differential coefficient,
whereas the initial observations are always discontinuous. Therefore they will
not enable us to decide which, if any, of the conditions is met. For extreme
values of the variable z the observed differences are large and nonuniform, and
there is therefore no way to replace the differentiation by a finite difference.
Consequently we have to use the observations of the largest values to control
the two competing theories and not the conditions. The fact that distribution
(20) has higher moments only under certain conditions, is a strong practical
argument in favor of distribution (22). Therefore the following development
will be based on this distribution. |

It can be shown that the mean error 9 of distribution (22) is related to the
constant o by
(26). 6 = 0.98/a.

Therefore the constant u is the most probable largest value for N observations
and 1/« a multiple of the mean error.
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TABLE II

Probabilities and return periods of largest values
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reduced

Flood discharges per second

variable pro&a(l::)hty retll(x)rgn;(e;)md in cubic meter |in 1000 cubic feet
Yy z ) T
Rhéne R. Mississippi R.
—-2.00 0.00062 0.000
-1.75 0.00317 0.001
—1.50 0.01131 0.005 1355 803
—-1.25 0.03049 0.013 1492 869
—-1.00 0.06599 0.030 1629 936
-0.75 0.12039 0.056 1766 1002
—-0.50 0.19230 0.093 1903 1069
—-0.25 0.27693 0.141 2040 1135
0.00 0.36788 0.199 2177 1202
0.25 0.45896 0.267 2314 1268
0.50 0.54524 0.342 2451 1335
0.75 0.62352 0.424 2588 1401
1.00 0.69220 0.512 2725 1468
1.25 0.75088 0.604 2862 1534
1.50 0.80001 ~0.699 2999 1601
1.75 0.84048 0.797 3136 1667
2.00 0.87342 0.899 3273 1734
2.25 0.89996 1.000 3410 1800
2.50 0.92119 1.103 3547 1867
2.75 0.93807 1.208 3686 1933
3.00 0.95143 1.314 3822 2000
3.25 0.96197 1.420 3959 2066
3.50 0.97025 1.527 4096 2133
3.75 0.97675 1.634 4233 2199
4.00 0.98185 1.741 4370 2266
4.25 0.98584
4.50 0.98895
4.75 0.99138
5.00 0.99329
5.25 0.99477
5.50 0.99592
5.75 0.99682
6.00 0.99752
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TABLE III

Observed return periods
Rhoéne, Lyon (France) (1826-1936)

Flood Serial . Flood Serial Return
discharge number R‘;:gr,l;,?::)‘)d discharge number period
Tm m Tm m log 'T'(zm)
899 1 .004 2475 57 .313
1172 2 .008 2475 58 .321
1231 3 .012 2475 59 .329
1272 4 .016 2491 60 .338
1272 5 .020 2514 61 .346
1432 6 .024 2514 62 .355
1432 7 .028 2514 63 .364
1439 8 .032 2514 64 .373
1444 9 .037 2538 65 .382
1502 10 .041 2554 66 .392
1541 11 .045 2586 67 .402
1560 12 .050 2594 68 412
1639 13 .054 2594 69 .422
1706 14 .058 2594 70 .432
1780 15 .063 2602 71 .443
1829 16 .068 2626 72 .454
1850 17 .072 2627 73 .465
1857 18 .077 2643 74 477
1913 19 .081 2675 75 .489
1913 20 .086 2675 76 .501
1934 21 .091 2773 77 .514
1955 22 .096 2773 78 .527
1992 23 .101 2773 79 .540
1992 21 .106 2839 80 .554
2006 25 111 2856 81 .568
2006 26 .116 2881 82 .583
2013 27 .121 2881 83 .598
2050 28 .126 2965 84 .614
2050 29 .131 3007 85 .630
2072 30 137 3050 86 .647
2094 31 .142 3058 87 .665
2101 32 .148 3067 88 .684
2115 33 .153 3067 89 .703
2145 34 .159 3126 90 .723
2145 35 .164 3179 91 .744
2153 36 .170 3214 92 .766
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TABLE III—Concluded
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.Flood Serial Return period .Flood Serial Ret'urn
discharge number log T (zm) discharge number period
Tm m Tm m log 'T(zm)
2160 37 .176 3250 93 .790
2168 38 .182 3266 94 .825
2175 39 .188 3293 95 .841
2206 40 .194 3310 96 .869
2206 41 .200 3310 97 .899
2206 42 .206 3354 98 .931
2221 43 .213 3426 99 .966
2236 44 .219 3444 100 1.004
2240 45 .226 3444 101 1.045
2258 46 .232 3480 102 1.091
2281 47 .239 3606 103 1.142
2296 48 .246 3625 104 1.200
2327 49 .253 3708 105 1.267
2342 50 .260 3801 106 1.346
2358 51 .267 3810 107 1.443
2381 52 .274 3905 108 1.568
2420 53 .282 4096 109 1.744
2444 54 .289 4105 110 2.045
2452 55 .297 4390 111
2467 56 .305

2z, = 276,773. Zzh = 744,538,565.

The arithmetic mean @ of distribution (22) is [4]

(27)

_ c
i=u-+ -,
a

where ¢ = 0.5772157 is Euler’s constant. The standard deviation s is

s = w/a /6.

(28)

Therefore

(29)

(30)
by

2=

% = u -+ 0.45005s.
The reduced variable y introduced by (23) is related to the reduced variable

2

8

—_) —

_z—

v/
Ve,
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The substitution of the numerical values leads to

(30") = 0.77970y — 0.45005.
Conversely,
(31) y = 1.28255z + 0.57722.

The value (32) v = /i, the coefficient of variation, is related to the product
au. By (27) au = oii — ¢ and by (28)

1

(33) au= gy

Therefore the numerical value of au can also be considered as a characteristie
of an observed distribution of largest values.
For the two constants we calculate for the observed distribution of largest

values the two first moments

(34) =":m§.z’n’
and
— 1,

To get the observed standard deviation we use the Gaussian formula

(36) s=1/(1+n11)(«7—a’).

According to (28) and (27)

@37 f; = 0.7796968s,

and

38) u = g — 05772157
7 a .

These formulas give the two constants in the distribution of largest values.

3. Flood flows interpreted as largest values. We will now apply the theory
of largest values to flood flows. Let us consider the daily flow as a statistical
variable, unlimited to the right. This idea is not new. The formulas proposed
by Fuller [7], Hazen [15], and numerous other authors all incorporate this
assumption. Gibrat [9] supposes that the daily flows vary according to Galton’s
distribution. Instead of postulating a specific formula for the distribution of
flows we shall only suppose that it belongs to the usual exponential type, which
means that condition (18) is fulfilled.

We define a flood as being the largest value of the N = 365 daily flows. The
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flood flows are therefore the largest values of flows. This commonplace implies
the distinction between floods and inundations. For each year there exists one
or more floods of the same magnitude, but there might exist several different
inundations or none at all. If there are several inundations in a year the
greatest one will be a flood; but a flood need not to be an inundation: even a
dry year has a flood. We limit ourselves to floods, assume that N = 365is a
large number, and represent the distribution of annual floods by the distribution
(22) of largest values.

There have been objections to the concept that the daily flow is an unlimited
variable. Horton [16] believes that this implies the absurd idea of unlimited
floods. This opinion is shared by Slade [20], who claims that there is a definite
upper limit to the magnitude of the floods for a given stream. The theory of
largest values confirms only partially Horton’s opinion. If we should choose
distribution (20), the most probable annual flood will be limited. For this
distribution, however, it might happen that the mean annual flood has no
meaning. To avoid this we have chosen distribution (22), for which the mean
annual flood and all the moments will be finite. A further justification of the
use of (22) might be derived from the fact that Galton’s distribution belongs to
the exponential type. As a final argument, numerical calculations show that
formula (22) gives a better fit to the observed distributions of flows.

The variable z is the annual flood flow measured in cubic meters or cubic
feet per second. The mean % is the annual mean flood, whereas u is the most
probable annual flood. The value s is the standard deviation of the distribu-
tion of annual floods. Finally y is called the reduced flood..

The distribution (22) possesses the properties of the observed distribution of
flood flows. It is asymmetrical; rising rather quickly but falling rather slowly.
The modal value is to the left of the mean (see Fig. 3).

To apply the theory of return periods let us consider the event of the highest
annual discharge being greater than . We have to replace in formula (3) the
general probability W(z) by the probability of flood discharges (19). The
number of observations n is the number of years for which observations exist.

To use formula (3) we have to suppose that the intervals between the suc-
cessive floods are all equal to one year. This assumption conforms more or less
to the seasonal nature of floods.

The return period of a flood greater than z

1
(39) T(x) =l —!
is the arithmetic mean of the intervals between two years, which have a flood
discharge greater than x; the discharges for the intervening years are all less
than z. Therefore T(z) is the mean of the number of years for which 2 will be
surpassed once. Formula (39) gives the meaning of u from the standpoint of
the return period. Fory = 0
e

T(u)=e_1.
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The return period T'(u) of the most probable annual flood is 1.58198 years. In
other words, the constant u is the flood discharge with return period

40) log T'(w) = 0.19920

where log signifies the common logarithm. The return period of the mean
annual flood is by (27) and (39) equal to 2.32762 years.

Let us now consider the relation between the flood discharge = and its return
period for small and large values of z. To small values of z correspond large
negative values of y and therefore return periods T approximating 1. The
distribution (25) of the largest values being unlimited, the flood discharge con-
sidered as a function of log T will by (6) increase rapidly at first. To large
values of z correspond large values of ¥ and T'(z). If we introduce the natural

logarithm, (39) gives
— — 1 =V
In (1 m) =e .

For large values of z, viz., T'(z) = 10, it is sufficiently accurate to use

so that

(41) y = In T'(z).

If the common logarithm is used,

(42) log T(z) = 0.434294a(z — u).

The logarithm of the mean number of years for which the flood discharge will
once be exceeded, converges towards a linear function of z. This property of
the distribution of largest values was established by M. Coutagne [2]. Let us
write

(43) z=u-+ log T(z).

2.30258
a

Then 1/« can be considered as a measure of the increase of a flood discharge
with respect to the logarithm of time.

According to the general formulas (6) and (42) the shape of the return period
as a function of the flood discharge z is as follows: at the beginning i.e., for small
flood discharge, the return periods are close to 1 and increase very slowly. At
the end, i.e., for large flood discharges, the logarithm of the return period con-
verges to a linear function of z.

Another form of (43) is

2.30258

— log T'(x).

x_
(44) 21t

The ratio of the flood discharge which will be exceeded in the mean once in T’
years to the modal annual flood converges to a linear function of the logarithm
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of the return period. The constant 1/au of dimension zero depends, by (33),
on the coefficient of variation. Its value is a characteristic of the stream. If
we introduce the arithmetic mean %@ and the standard deviation s we obtain
by (42), (27), and (28)

z = 4 — 0.45005s 4 (0.77970) (2.30258)s log T'(x).
Therefore, approximately,

(45) T_1- %v + 1.7960 log T(z).

u

The right hand member of this linear equation contains only one constant, the
coefficient of variation of the floods. Finally by (42) and (31)
r—u

(46) log T'(x) = 0.25068 + 0.55700 5

There is still another way of interpreting these asymptotic formulas. Let
T(2x) be the return period of the value 2z, then by (43)

9 = u + In T(2:c),
(44
therefore
_ou + In T'(2x)
au +InT(x)’
and finally
47 T(2z) = T*(x)e™.

The return period of a flood of magnitude 2z is equal to the square of the
return period of z multiplied by a factor which depends only upon the coefficient
of variation.

All these asymptotic formulas are good approximations only for return peric-Is
above ten years, which means according to Table II, y = 2.25 or according
to (23), (30) and (31) z = % + 1.3s. The corresponding value of the flood
probability is by (3) B(x) = 0.9. The consequences of (41) can be applied to
only 109 of the observations, i.e. to the large flood discharges. Their observed
return periods are based on a few observations and may therefore differ con-
siderably from the theoretical values. In spite of the above restrictions the
linear formula (43) has a meaning for values of 7 equal to or greater than unity.
We now ask: How will the most probable largest value increase with the number
of observations? This number of years can again be called 7. The answer to
the above question requires the solution of (13’) where the distribution (25) of
largest values b(y) must be introduced as the initial distribution w(z).

From (24)
T—-1

—yy—e—Y —
e—-s-ve”“ -—1+e”=0,
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or
Te™? =1,

which is identical with (41). For T = 1 the most probable annual flood is of
course 4. Therefore the relation (41), valid for T = 1, means: The most prob-
able flood u(T') to be reached within 7 years is a linear function of the logarithm
of T-

(41') w(T) = u + g.§g2_5;_‘8k>gT.

The constant 1/« is the slope of this straight line. The results (41-46) are
related to Fuller’s well-known formula [6]. This author, the first to investigate
flood flows systematically, proposed a linear relation between the logarithm of
the return period and the arithmetic mean of the flood discharges greater than
the mth value (m taken from above). A similar empirical formula has been
stated by Lane [7] and has been applied by Saville [19]. The similarities and
differences between these interpolation formulas and our theory can be stated
in the following way: If we start from the theory of largest values we reach
these formulas as asymptotic expressions for the return period of large floods.
Considered this way, our theory gives a certain justification to Fuller’s hypothe-
sis. But Fuller’s and similar formulas were intended to apply to all flood
discharges. Now, the distribution of the flood discharges (4) corresponding to
these return periods does not fit the observations. It can be shown that these
formulas involve the assumption of a simple exponential distribution ¢(z) for
the flood discharges

(48) ¢(x) = __1__ e—(z—-d)l(ﬁ—-l);
U—e

and the existence of a lower limit ¢ of the flood discharges given by ¢ = @ — s.
In Fuller’s formula all flood discharges must be greater than 2/3 of the mean
annual flood. The density of probability always diminishes with increasing
magnitude of the flood. This neglects the ascending branch (about one third)
of the distribution of floods (see Fig. 3) and is incompatible with the observed
facts. We therefore prefer our formula which takes account of the total varia-
tion, but we do not minimize the importance of Fuller’s work which has led to
much valuable research.

Formula (39) gives the theoretical return periods T'(z) as a function of the
reduced flood discharge y, and holds for the entire range of observations. The
general numerical values are given in Table IT, cols. 1 and 3. For a given stream,
the return period of a flood discharge greater than z depends by (23) upon the
two constants « and u. If these values have been calculated by (37) and (38)
the theoretical flood discharge x corresponding to T'(z) is obtained by the
linear transformation

49) z=u+yla
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The asymptotic formula (42) suggests the coordination of the flood discharges
z and the logarithm of the return periods.

4. Rhéne and Mississippi Rivers. We think that our system of formulas is
simple, logically consistent and free of artificial assumptions. Now it remains
to be shown that the arithmetic involved is simple and that the results fit the
observations. For the Rhéne we shall analyze the observed cumulative fre-
quency, the distribution, and the return periods. For the Mississippi River
we shall limit ourselves to the return periods.

For each year we choose the maximum of the daily discharges (we do not use
momentary peaks). The 111 values z, for the Rhéne 1826-1936 published by
Coutagne [3] and arranged in order of increasing magnitude are given in Table I1I
(col. 1). The supposition that the intervals between consecutive floods are all
equal to one year is not always true. Only 77 of the 111 floods occurred between
October and March, whereas 34 were scattered throughout the year. But the

TABLE 1V
Calculation of constants

Stream observation station.......... Rhoéne Lyon | Mississippi River

(France) Vicksburg (Miss.)

1826-1936 1890-1939
Number of observations.......... n 111 50
Annual mean flood............... ua 2,493.5 1,355.6
Mean squared flood............. u 6,707,555.0 1,951,828.8
Standard deviation............... s 703.1 341.3
Constant..................... l/a 548.2 266.1
Most probable annual flood. ... ... u 2,177.0 1,201.9

differences in the lengths of the intervals compensate each other. The second
column of Table III contains the serial number m. According to (9) we calcu-
late for the mth observed flood discharge z., taken in ascending magnitude,
the logarithm of the observed return period log n/(n — m) (col. 3), where n = 111
and m = 1, 2, --., 110, and obtain the exceedance intervals. The other
observed curve, the recurrence interval, is obtained by (10) through the coor-
dination of zs41 and log n/(n — m). Both curves are plotted in Fig. 1. The
recurrence and exceedance intervals differ for the large flood discharges. The
observed flood discharges arranged in increasing magnitude are plotted in the
cumulative histogram, Fig. 2.

To compare these observations with our theory, we calculate the two con-
stants 1/a and u according to the formulas (34)—(38). The values =z, and
Tzl are given at the end of Table IIL_ Division by n = 111 gives the mean
flood % and the mean squared flood 4* (Table IV). The Gaussian correction
being 1 4 1/110 we obtain from formula (36) the standard deviation s (Table IV)



Observed and theoretical distributions of flood discharges

TABLE V

Rhoéne
Reduced Variable Midpoints | Observed Theoretical | Cumulative
variable z :v _l_éf distribution | distribution | frequency
y 2 1118'BW(z) 111AB(z) 111B(z)
-2.75 670
—2.50 807 1 0.00
—2.25 944 0.01 0.01
—2.00 1081 1 0.34 0.07
—-1.75 1218 1.19 0.35
—1.50 1355 7 3.03 1.26
—1.25 1492 6.07 3.38
—1.00 1629 5 9.98 7.33
-0.75 1766 14.02 13.36
—0.50 1903 13 17.38 21.35
—-0.25 2040 19.49 30.74
0.00 2177 21 20.21 40.84
0.25 2314 19.68 50.95
0.50 2451 19 18.26 60.52
0.75 2588 16.31 69.21
1.00 2725 14 14.14 76.83
1.25 2862 11.97 83.35
1.50 2999 9 9.94 88.80
1.75 3136 8.15 93.29
2.00 3273 8 6.61 96.95
2.25 3410 5.30 99.90
2.50 3547 6 4.23 102.25
2.75 3686 3.45 104.13
3.00 3822 4 2.65 105.70
3.25 3959 2.00 106.78
3.50 4096 2 1.64 107.70
3.75 4233 1.28 108.42
4.00 4370 1 1.01 108.98
4.25 4507 0.79 109.43
4.50 4644 0 0.61 109.77
4.75 4781 0.48 110.04
5.00 4918 0.38 '110.25
5.25 5055 0.30 110.42
5.50 5192 0.23 110.55
5.75 5329 0.18 110.65
6.00 5466 0.27 110.73
111 111.00

182
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and finally from (37) and (38) the constant 1/« and the most probable annual
flood 4. From the numerical values in Table IV the linear transformation (49)
for the Rhoéne is

x = 2177.03 + 548.19y.
TABLE VI

Observed return periods
Mississippi River, Vicksburg, (Miss.) (1890-1939)

'Flood Serial Return period .Flood Serial Ret}lrn
discharge number log’ T'(z) discharge number period
T m g ™ Tm m log’ T (xm)
760 1 0.0088 1357 26 .3188
866 2 .0178 1457 7 .3273
870 3 .0269 1397 28 .3566
912 4 .0362 1397 29 .3768
923 5 .0458 1402 30 .3980
945 6 .0555 1406 31 .4202
990 7 .0655 1410 32 . 4437
994 8 .0758 1410 33 .4686
1018 9 .0862 1426 34 .4949
1021 10 .0969 1453 35 . 5229
1043 11 .1079 1475 36 .5529
1057 12 .1192 1480 37 .5851
1060 13 .1308 1516 38 .6198
1073 14 .1427 1516 39 .6576
1185 15 .1549 1536 40 .6990
1190 16 .1675 1578 41 7448
1194 17 .1805 1681 42 .7959
1212 18 .1939 1721 43 .8539
1230 19 .2076 1813 44 .9208
1260 20 .2219 1822 45 1.0000
1285 21 .2366 1893 16 1.0969
1305 22 .2518 1893 47 1.2219
1332 23 .2676 2040 48 1.3980
1342 24 .2840 2056 49 1.6990
1353 25 .3011 2334 50

2z, = 67,780. Sal = 97,591440.

This leads to the determination of the theoretical flood discharges. The theo-
retical return periods log T'(z) are given in Table II, col. 3 as a function of the
reduced variable y and of z (col. 4). The discharges x obtained by letting
y take on the values —2.75 to 6.00 in the linear transformation, are given in
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Table V, cols. 2 and 3 and plotted in Fig. 1. The distances Az used in the
calculations of the theoretical discharges are 1/4a = 137.05.

Along the abscissa are plotted the logarithm of the return periods and the
return periods in years; along the ordinate are plotted the corresponding flood
discharges and the modal annual flood ». The straight line from the point (u, 0)
to the asymptote gives the most probable flood as a function of time. The
theoretical curve corresponds quite closely with the general course of the ob-
servations. For small floods the theoretical return periods are practically iden-
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Fia. 1. REONE AT Lyon (FrRaNCE) 1826-1936
Observations Table III: Recurrence intervals, + — — +; Exceedance intervals,
. o; Return periods, ——; Theory Table II, cols. 3 and 4: Extrapolation, — —.

tical with the observed values. But for the very large floods the theoretical
curve surpassed both the exceedance and recurrence intervals.

The observed cumulative histogram is shown in Fig. 2. We calculate from
Table II, col. 2, the frequencies 111B(z) (Table V, col. 6). These theoretical
values (z, 111B(z)) are also plotted in Fig. 2. The agreement between theory
and observations is very good.

For the comparison of the observed and theoretical distributions of the flood
discharges we use what might be called the natural classification. For the
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observations, the length of the class intervals and the beginning of the first class
interval are arbitrary. In order to obtain the observed distribution of the flood
discharges, it is natural to use the theoretical class intervals set forth in Table vV,
col. 2. The data of the third column can be interpreted as the midpoints of the
class intervals given in col. 2. The frequencies for these class intervals are ob-

]

F16. 2. CoMULATIVE FREQUENCY OF THE FLOOD DISCHARGES. RudNE, LYoN (FRrRANCE)
1826-1936

Observations Table III cols. 1 and 2, e—s; Theory Table V cols. 2, 3 and 6, /

tained from Table III, and are given in Table V, col. 4. The observed distribu-
tion is shown in Fig. 3. To obtain the corresponding theoretical distribution we
calculate from Table V, col. 6, the difference between two cumulative frequencies
disjoined by one, i.e., we pair consecutively the first and third, the second and
fourth items and so on. This theoretical distribution given in col. 5 and the
observed distribution are based on class intervals of the same length. Fig. 3
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shows that the theoretical distribution AB(x) of the largest values agrees in a
satisfactory way with the observed distribution A’@®(z) of the flood discharges.
Table VI, col. 1, gives the corrected’ flood discharges @, , measured in units of
1000 cubic feet per second, for the Mississippi River at Vicksburg (1890-1939),
(n = 50), arranged according to increasing magnitude; col. 2 gives the serial
number m. We calculate the logarithm of the observed return periods log
n/(n — m), (col. 3). The observations (., log 'T(xm)) and (Zm41, log 'T(Zm))
are plotted in Fig. 4. The constants obtained by formulas (34)—(38) are shown

— .
i T ¢ ¥ F f E ¥

F16. 3. DistriBuTION OF THE FLOOD DiscHARGES. RHONE, Lyon (FrRAaNCE) 1826-1936
Observations Table V cols. 2, 3 and 4, [1; Theory Table V cols. 2, 3 and 5,

in Table IV. By (49) the theoretical floods = corresponding to the return
periods T'(z) presented in Table II, col. 3, are

z = 1201.98 4 266.14y.
These floods are given in Table II, col. 5. The class interval used is

1/4a = 66.5.

 These data have been put at my disposal through the courtesy of Mr. A. E. Brandt of
the U. S. Department of Agriculture.
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The theoretical curve (z, log T'(x)), plotted in Fig. 4, agrees in a very satisfactory
way with the observations. For the large floods the theoretical return periods
are between the exceedance and recurrence intervals.

The calculations of the theoretical return periods for other streams, e.g. the
Columbia, Connecticut, Cumberland, Rhine, and Tennessee Rivers, for which
reliable observations exist for more than 60 years, also show a good agreement
with the observations. The goodness of fit diminishes for streams for which
the number of observations is smaller and for which the data are not very

reliable.
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Fia. 4. Mississippl RIVER AT VicksBURG, (Miss.) 1890-1939

Observations Table VI: Recurrence intervals, + — — +; Exceedance intervals,
¢; Return periods, - ; Theory Table II, cols. 3 and §; Extrapolatjon, — —.

6. Summary and conclusions. In order to apply any theory we have to sup-
pose that the data are homogeneous, i.e. that no systematical change of climate
and no important change in the basin have occurred within the observation
period and that no such changes will take place in the period for which extra-
polations are made. It is only under these obvious conditions that forecasts
can be made.

The theoretical return period 7'(xz), the mean number of years between two
annual flood discharges greater than or equal to z, is a statistical function such
as the distribution w(z) or the probabilities W(z) and P(x). There are two
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sets of observed values corresponding to the theoretical set. The exceedance
interval ‘T(z.) formula (9), and the recurrence interval T (z.) formula (9');
zm being the mth flood discharge, where m is counted from below. As any
theory must include both notions, no separate theory for exceedance or recur-
rence intervals is possible.

The return period T'(x) of a flood discharge z is found by formula (39). For
large values of z the flood diseharge converges toward a linear function (42) of
the logarithm of the return period. This is the scientific basis of Fuller’s em-
pirical formula. The two constants of our formula » and 1/a, are, respectively,
the most probable annual flood discharge and a multiple of the standard devia-
tion (28). Their values depend upon the drainage basin and known geological
and meteorological factors. It is beyond our present task to consider the influ-
ence of these factors. Qur method can be summarized by the following rules:

1) For each year find the maximum daily discharge ., (do not use momentary
peaks) and arrange these » data in increasing magnitudes.

2) Calculate for each discharge zn (m = 1, 2, ... ,n — 1), the values log
'"T(zm) = log n — log (n — m) and plot the curves z., log n/(n — m), and
Zmy1, log n/(n — m). These are the observed exceedance and recurrence
intervals. _

3) Calculate the annual mean flood % and the annual mean squared flood u’;
determine according to (36)—(38) the standard deviation

s=1/<1+1—£—3)(17—¢)

and the two constants

1/a = 0.77970s,

_ g 057122
a

4) The theoretical flood discharges = corresponding to the logarithm of the
return period T'(z) given in Table II, col. 3, are obtained by the linear trans-
formation

z=u+y/a

where y is taken from Table II, col. 1. Plot z as a function of log T'(z). For
large values of « and for extrapolation it is sufficient to use the linear asymptote
obtained graphically.

The linear part of the theoretical curve (z, log T') permits of two interpreta-
tions: First, T is the theoretical return period of a flood greater than or equal
to z; second, z is the most probable flood to be reached within T years. The
second interpretation holds for the straight line through the point (u, 0).

The figures show a close agreement between observed and theoretical values.



FLOOD FLOWS 189

The observed curvature of the return periods is brought out by the theoretical
graph.

The agreement between theory and observation is excellent for floods which
correspond to reduced values of ¥y < 3. For the two or three extreme floods,
the return periods are based on a few observations and, consequently, the agree-
ment is not very good. No theory can be verified by two or three observations.
Generally speaking, the theory fits the observations as closely as could be ex-
pected for such a complicated phenomenon.

In order to make a further test of our results, we need a numerical measure
for the weights to be given to the theoretical points. Therefore, for a given
probability we must find the corresponding theoretical limits for the observed
return periods. The theory of positional values will give these control curves.
Since it was the purpose of this article to develop and make clear the basic
method, we have refrained from introducing this subject.

It is our claim that the calculus of -probabilities and especially the theory of’
largest values, is an efficient tool for the solution of certain hydrological problems.
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