RECENT ADVANCES IN MATHEMATICAL STATISTICS, II'

By CeciL C. Cralie
Unaversity of Michigan

The statistical theory of the linear relationship between a dependent variable

71, and a set of independent variables z;, x3, - - - , Z:41, is by now quite gen-
erally understood. Supposing that the x;’s are measured from their respective
means, we determine the coefficients, by, bs, -+, bey1, in such a way as to

maximize the coefficient of correlation 1.2 3....11 between x; and 2 byz; . This

=2

coefficient of correlation, usually called the multiple correlation coefficient,
measures the exactness of the linear relationship that exists, and it has the
property of being quite unchanged if the origins or the scales for the separate
z:'s are changed in any way or even if the set x; , 23, - - - , 241 should be replaced
by any equivalent set of linear combinations of them. That is, e.g., if ¢ = 3,
the new variables, v; = 22 + 23 + %4, v5 = 201 — 25 + 324, 4 = z1 + 205 — 274
are equivalent to x, , 3, 24, since the latter can be found if the v;’s are known,
and the multiple correlation between x; and the v/’s is exactly the same as that
between z; and x», x3, . Moreover, the requisite sampling theory if the
variables involved are normally distributed is well established.

I want to discuss briefly an important generalization of this kind of situation
that has been the subject of recent research. In particular, in his paper, “Rela-
tions between two sets of variables,” published in Biometrika in 1936 [1] H.
Hotelling set forth these ideas in excellent fashion and contributed much to the
mathematical theory required for their practical application. We now suppose
that we have two sets of measurements, 1, -+, %:, and Zs41, ** -, Toy¢, made
on the same object and that we are interested in the linear relations that may
exist between the members of one set and the members of the other. As an
example, 2, -+ , x, might be the prices of s more or less related commodities

at a given time, and z,41, - - - , Z,4. measures of factors which may be thought

to be effective in the price situation.

In the more special case I began with, s = 1, and a single equation fully ex-
pressed the linear statistical relationship of x; with x>, -+, z,41. Now there
are s dependent variables and now with s < ¢, not one but s distinct linear
relations will exist and will be required to fully describe the linear connections
between the two sets of variables. We may assume, that there is no mere
duplication among the variables we are using, i.e., no one of the s z;’s is always
exactly given by a linear combination of the others in the set and the same is

1 This is the second of two papers read by B. H. Camp and the author on ‘Recent Ad-
vances in Mathematical Statistics’’ before the American Statistical Association, the Econo-
metric Society, and the Institute of Mathematical Statistics, on December 30, 1941, in
New York City. The authors selected topics from papers published during the past five
years.
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also true of the set x,41, -+ + , Z4:. Now there is no logical or mathematical
necessity for the way in which we are so far using our measurements. Suppose
s =2and t = 3. We can find the best linear regression equation for z; on
Z3, &4, 25 and then find the like equation for x; on x3, x4, 5. But we could
very possibly get more meaning out of the situation if we began by replacing x;
and x; by, say, u1 = 21 + 2 and us = x, — 2, and similarly replacing x3 , s , %5
by three v;’s formed from these three «’s in a similar fashion. We have really
been making a quite arbitrary choice among the u’s and »’s that could be used
and the question presents itself: What significance is there in the way we choose
our u’s and v’s?

It turns out to be much more than a merely reasonable beginning to try to
determine a u from the first set and a » from the second in such a way that they
will be more closely correlated than any other » and v formed in this linear
fashion from the s 2’s in the first set and the ¢ #’s in the second. That is, we set,

8+t

U= D Gz, and v = D, bizi,

a=1 te=g+1
and determine the ¢,’s and the b;/’s which will maximize r,, . We may say that
this » and v will account for more of the linear dependence of z,, - - - , x, upon
Tsi1, ¢, Loyt than will any other w and v. To the mathematician familiar
things begin to appear, though, as Hotelling remarks, in its purely mathematical
form this problem seems to be new. A very important observation is the fact
that this maximum r,, would be quite unaffected by any change in origin or
scale on any of the 2’s; it is even unaffected if we should begin by replacing the
first s 2’s by any equivalent set of s linear combinations of them as new variables
to work with and by doing the same thing on the second set of ¢z’s. Hotelling
makes use of this circumstance to greatly simplify his mathematical de-
velopments.

Now things fall out in a very interesting way. One actually solves not for the
a’s and b’s at first but instead for the maximized r,, . Having this the corre-
sponding a’s and b’s can then be found. But generally the equation for r,,
gives not one but s different values for r,,! What is the meaning of the s
different r.,’s? Well, you remember that I said that s relations (s < f) would
appear to exist between the two sets of variables. These s r,,’s correspond to
those s linear relations which are picked out in a unique way. We now have
s u, v pairs which are independent of each other in the sense that no u or v is
correlated with any other u or v with the'exception of the other member of its
pair, and of course this correlation is precisely the r,, by which the pair was
determined. Further, the largest r,, gives the maximum « and v we set out
to find; the second largest r,, determines the pair «, v of maximum correlation
among those independent, in the sense just described, of the first pair; the third
largest ., leads to the u, v of maximum correlation among those independent of
the first two pairs, and so on. The s independent linear relations among them
completely describe the linear statistical dependence of the one set of variables
upon the other. The relations are essentially those between the u, v pairs and
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the closeness of these are measured by ri, 72, ---,r,, which I write for the
S Tw'S. The new variables are called canonical variables and the correlations
between them canonical correlations. We may say that the maximum pair,
u, v, gives both the best linear predictor that can be formed from x,,;, -+ , Tous
and also the linear combination of z;, -+ , z, that can be best predicted.

I have to try to deal briefly with the numerous ideas and results in this paper
which is not unrelated to earlier work by the author and by S. S. Wilks. First,
what about an over all measure of the linear connection between the two sets
of variables? It is shown that )

g=%rmry---r, and z= (1 —r)(1 —7ry) --- (1 — D),

have properties that make it appropriate to call the first the (vector) correlation
coefficient between the two sets and the second the coefficient of alienation.
Both are simply expressed by means of determinants of the covariances (product
moments) among the st 2’s. For example, if s = 1, ¢ is simply r1.235...041. If
s=1=2,

713724 — T14723

= \/(1 - sz)(l - 7'324)’

the numerator of which is the tetrad difference of the psychologists. Further,
if it should happen that xz, and z, are identical, this ¢ becomes ri.2 .

In an application, of course, the various quantities appearing above will have
to be calculated from an observed set of values of 1, « -+ , s, Tog1, ** ) Toge -
Hotelling adapts an iterative process he had previously given to calculating the
canonical 7, , - - -, 7, , from which the canonical variables can be found, and he
numerically illustrates the whole procedure. But what is more difficult is to
solve the sampling problems that arise. It is very helpful to assume that all
the 2’s obey a multiple normal frequency law.

First, Hotelling derives expressions for the standard errors of the r’s and of
g and z which are approximations useful for large samples. But for small
samples exact sampling distributions are needed. Wilks [2] had earlier studied
the exact sampling distribution of z in the case in which we are interested, that
in the population the set z, ---, ., is completely independent of the set
Teq1, *** , Tege , though he did not leave his general result in a form suitable for
calculation. Hotelling now finds the distribution function for ¢ for s = 2.
The result is not in all cases simple in form but numerical values can be obtained
from it. The relations between these two possible tests, one based on z and the
other based on g, are discussed at length.

An obvious undertaking would be to try to find the exact joint sampling
distribution of the canonical correlations for any s and ¢, and I will say some-
thing about the very interesting papers in which this problem was solved. But
some of this later work arose in a different though related setting which I want
to discuss briefly first.

In 1936 R. A. Fisher published “The use of multiple measurements in taxo-
nomic problems,” [3] which was the introduction of linear discriminant functions
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to the statistical world. Suppose that N; random individuals of one race
(species, variety, etc.) have been measured with respect to each of k character-
istics and that N, random individuals of another race have been similarly
measured. What linear combination of these measurements would serve best
to distinguish members of one race from those of the other? An example used
by Fisher in this paper was that of two samples of 50 plants each of two varieties
of iris found growing together in the same colony. In the flower on each plant
there was measured the sepal length, x;, the sepal width, xz,, the petal length,
z3, and the petal width, ;. What linear function,

X = M2 + Nz + Asx3 + A4,

would enable one to most surely identify the variety to which each single plant
belongs? To choose such an X Fisher proposed the mathematical principle that
the coefficients, \;, 7 = 1, 2, 3, 4, be determined so that the difference in the
average value of X in the one variety and the average value in the other divided
by the sum of squares of the X’s taken about the two group means shall be a
maximum. Then quite simple mathematics leads to the required numerical
values of the \,’s.

But now that we have set up such an instrument as X, there is a more interest-
ing use to which it can be put. Suppose that the question were to establish
that the N, individuals from the one group and the N individuals from the other
really belong to different races distinguishable with respect to the complex of
characters we have chosen to measure in each. We are on the old question of
racial likeness or unlikeness and obviously the word “race” may have a meaning
broad enough to give this work of Fisher’s wide application indeed. Subject
to the principle according to which the coefficients \; are determined from sample
sets of measurements, X is the best possible linear discriminant function. We
are now faced with the question of the statistical significance of the difference
between the means of X for each group compared to the above mentioned in-
ternal sum of squares.

It is generally useful and enlightening in a problem of this general nature
turning on the use of linear and quadratic forms to consider its interpretation
as an analysis of variance or covariance. Fisher readily provides such a set-up
in this case by assigning to the quality of belonging to race A a numerical value,
%1, the same for all members of that race, and by assigning in like fashion a
different numerical value, y., to the quality of belonging to race B. It is
mathematically convenient if we have samples of N; and N, from races A and B
respectively, to let

Y = ———-lz—— and Y2 = —-___.N_l_.__
NN Ni + Ny’
for then over the combined sample of Ny + N:, we have,
NiN.

— 2 = ————
S(y) =0 and S(y¥°) NEN,
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This may seem somewhat arbitrary at first glance, but let us start anew by
writing the linear regression equation,

E
y= z; bi(z: — %),

in which y takes on one of the two values above and in which Z; is the mean of
z; in the combined sample, and then proceeding to determine the b,’s in the usual
least squares fashion. The b’s turn out to be proportional to the \,’s previously
found. Now the total variance of the y’s is analyzed into that within groups
and that between groups and it is immediately suggested that the usual z-test
with k and N — k& — 1 degrees of freedom is the appropriate one. But, as
Fisher remarks, ordinarily for the application of this test one postulates a popu-
lation in which the y’s have a normal distribution for each fixed set of values of
Z1, %2, -+ ,% . Here, however, the y remains fixed and one postulates a
normal distribution of the z's associated with a given value of y. Not to leave
this matter in doubt, though I shall return to it, I may remark that Fisher
noted that earlier work by Hotelling [4] showed that the z-test is nevertheless
the proper one to use.

I have to be brief indeed concerning linear discriminant functions. Fisher
wrote further papers dealing with them in 1938 [5], 1939 [6], and 1940 [7] and
among others, Mahalanobis [8], Bose [9, 10], and Roy [10], of the “Calcutta
School” have made relevant contributions. In particular, Mahalanobis [8]
introduced the concept of the generalized distance by which two sets of multiple
measurements differ, which has an obvious connection with the present subject.
Fisher also discussed a test for the direction in k-space in which two such samples
differ most and in case we have three such samples from three different races
provided a test for their collinearity.

In his 1939 paper mentioned above [6], Fisher called attention to the connec-
tions between the theory of linear discriminant functions and Hotelling’s ca-
nonical correlations. Of course it can be said at once that a linear discriminant
function arises as the very special case of investigating the linear relationship
between the artificially introduced y and 21, 2, - -+, 7% . And the test of sig-
nificance based on the analysis of variance turns on the ratio of the sum of
squares due to regression, i.e., among the predicted values, to the total sum of
squares for the regression and for the residuals. This analysis is quite general
in form and can equally well be set up if one is predicting linear forms formed
from N, variables from linear forms madé up from N, other variables. If one
sets up the condition that this ratio, ¢, be a maximum one is led, as Fisher shows,
to a determinantal equation in ¢, the roots of which are the squares of Hotel-
ling’s canonical correlations.

Mathematically the general problem we are interested in is equivalent to the
following: We have a sample of N, + N, observed values of p normally dis-
tributed variables. If a;;is the covariance of the i-th and j-th variables in the
sample of N; and b;; the like covariance in the sample of N; we want the sampling
distribution of the roots of the determinantal equation:
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| ai; — #aij + bsj) | = 0,

under the hypothesis that the first sample is independent of the second. This
problem Fisher solved in his 1939 paper though in his characteristically concise
and intuitive manner. But in the same number of the Annals of Eugenics,
P. L. Hsu [11], at Fisher’s suggestion, gave a complete analytical solution. Hsu
also showed more in detail how the result applies to Hotelling’s case of N ob-
servations on s + ¢ normally distributed variables in which the set of s is inde-
pendent of the second set of ¢&. In his 1936 paper Hotelling gave the result for
s = t = 2 and in 1939, Girschick [12] gave the solution for s = 2 and ¢ > 2.
Hsu showed, too, the striking fact, mentioned by Fisher, that it is sufficient
that only one of the two sets of s and of ¢ variables be normally distributed in
order that the distribution function found apply. This provides the explanation
of why the test of significance applied by Fisher for linear discriminant functions
is valid even though the y introduced had an arbitrary distribution of values.
The simultaneous distribution of the canonical correlations is fundamental
but on finding it not all difficulties are thereby resolved. As mentioned above,
either of the quantities, z or ¢, as they appear in Hotelling’s paper, furnish over
all tests, or rather they would if their distribution functions were obtained in a
satisfactory form. The form of the distribution of z for complete independence
was given by Wilks as early as 1932 [2] but that of ¢ for s > 2 is still lacking.
For s_>.2 there are difficulties in applications even with z and in 1938 [13]
M. S. Bartlett proposed a more convenient approximate test. Ordinarily, how-
ever, one would want to test the largest canonical correlation alone for signifi-
cance. There are two kinds of trouble here. First, there is no assurance that
the largest observed canonical correlation corresponds to the largest one in the
population. Second, it is quite important to know whether the remaining popu-
Yation correlations are zero or not. Bartlett in 1941 [14] discussed these points.
Now I make an abrupt change in subject. Some interesting work has been
done on the theory of runs and its applications during the last five years.
First, T want to try to convey some idea of the contents of three papers by
W. D. Kermack and A. G. McKendrick published in 1937 [15, 16] and 1938 [17].
Suppose we have an unlimited set of numbers, no two of which are equal, and
start drawing from them at random, recording the numbers in sequence as they
come. Within the sequence drawn there will occur runs up and runs down of
varying lengths. Thus in the sequence of 10 numbers, 2, 5, 11, 8, 9, 4, 3, 7, 14,
12, there are 3 runs up, one of length 2 and 2 of length 3, and 3 runs down,
2 of length 2 and one of length 3. Both ends of a run are counted in finding its
length; no run can have a length less than 2. The total number of runs is 6 of
which 3 are of length 2 and 3 are of length 3. We can also count the gaps which
extend from crest to crest or from trough to trough and note their lengths with
the convention that again both ends are counted in determining a length, so
that no gap length is less than 3. Thus in the sequence of 10 numbers above
there is one gap of length 3, 3 of length 4, and one of length 5.
It is clear that if we know the distribution for runs or for gaps of different
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lengths we can compare an observed sequence, or rather an observed distribution
of runs or gaps by lengths, with the frequencies calculated on the hypothesis
of randomness and be by way of acquiring a test for this hypothesis. To be
brief, in these papers these theoretical distributions are found together with
their means and variances. There are some interesting applications. Tippett’s
random sampling numbers and a series of reversed telephone numbers both
passed the x*-test as random and also passed the test based on the departure of
the mean from its expected value compared with its standard deviation. On
the other hand, the series of Swedish death rates for the period 1740-1930
could not conceivably be random. This investigation was prompted in the first
place by the fluctuations of the death rate from ectromelia in mice in an experi-
mentally induced epidemic.

The problems here dealt with had been only partially solved by earlier writers.
There is much interesting material in these papers I have no space for. The
authors readily include the case in which the numbers composing the population
are not all different. They also studied series of limited length, series arranged
in a cycle or ring and even what may be termed a Mgbius cycle.

A. M. Mood in 1940 [18] in an interesting paper investigated a different form
of the problem of runs. Suppose we have n elements of two kinds, say n; a’s
and ne = n — m b’s, and that these are arranged at random in a row. For
example, if n; = 5 and n, = 7, and if a.random arrangement of the 12 a’s and b’s
is babbbabbaaab, the a’s occur in 2 runs of one and in one run of 3 and the b’s
come in 2 runs of one, in one run of 2 and in one run of 3. If r;; (1 = 1,2) is
the number of runs of j of elements of variety 7, Mood finds the probability of
obtaining a given set of values of r;; such that Z Jrii=mn; (2 =1, 2), i.e., of

1

obtaining a given pattern of runs in the two kinds of objects. Besides this
basic distribution function he obtains certain marginal distributions such as
that for the occurrence of a given set of runs in the a’s regardless of how the b’s
fall (except that they must provide the necessary points of division), or that for
ry and 7y if these are respectively the total number of runs of a’s and of b’s, or
that for r; or r; alone. He finds the factorial moments ‘of these variables and
then their means, variances and covariances. Similar results are obtained in
case there are more than two kinds of elements. In the second part of the
paper, Mood turns to the case of drawings from an infinite population in which
articles of two or more kinds occur in fixed proportions. Finally, in both of the
two kinds of drawings considered he derives the limiting forms of the distribu-
tions studied as the sample size increases. As Mood notes, here, too, a few of
the results had previously been found, but this paper is the first really thorough-
going investigation of its subject.

In a paper antedating Mood’s by some six months, A. Wald and J. Wolfo-
witz [19] used the distribution function for the total number of runs (irrespective
of length) for arrangements of fixed numbers of two kinds of elements to provide
a test of the hypothesis that two samples have come from the same population
with a continuous distribution law. If the observations in the two samples
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combined are arranged in order of magnitude and if then the observations from
the first sample are each replaced by a zero and those from the second are each
replaced by a one, we have a situation to which this distribution function for
runs applies. W. L. Stevens in 1939 [20] also discussed an application of this
distribution.

The third principal topic I have chosen for my remarks is developments in
the use of the probability integral transformation. The use of this device at all
seems to be quite recent, appearing in a paper by H. Cramer in 1928 [21] who
invented a test of goodness of fit which reappeared as the “w’-test” in apparently
independent work of R. von Mises in 1931 [22]. In 1932 in a section new in the
fourth edition of “Statistical Methods for Research Workers,” [23] Fisher showed
the usefulness of this transformation in combining independent tests of signifi-
cance and in 1933 and 1934 Karl Pearson [24, 25] had papers in Biometrika on
the subject.

As for the transformation itself, suppose that p(x) is the probability density
function of a continuous variable z defined on the range (@, b) such that,

f: p(z) dr = 1.

Then let us introduce the variable,

y= f p(z) dz,

which is the probability that a value of the variable at random will be less than z.
It will be seen that since z is a random variable, the proportion of population
values less than an z drawn at random is itself a random variable. Perhaps
this will be clearer if I use a simple example of J. Neyman’s to show how a
sample of z’s also determines a sample of y’s for a given p(z). Suppose that,

1
p(z) = N 2n ’
and that a sample of 5 values of z arranged in order of magnitude is: —1.5,
—1.1, —0.5, 0.6, 1.6. Then by reference to a table of areas under the normal
curve of error, we find that the corresponding observed y’s are: 0.067, 0.136,
0.309, 0.726, 0.945. 1t is obvious that the range for y is always, for any z(z),
(0, 1). Further if f(y) is the probability density function for y, of course,

) dy = p(=) dz.
But from the definition of y,
dy = p(z) dz,

so that f(y) = 1. Thus, quite independently of p(z), y obeys a rectangular
distribution law on the range (0, 1).
This simplicity of the distribution of the quantity y and its independence of
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p(x) are most attractive properties. I shall note briefly some of the applications
that have been made in recent years.

In 1936 W. R. Thompson [26] denoted by px the probability that in a sample
of N a randomly chosen z will be less than z; , the k-th value observed. Then
the probability that " < px < p""isjust p”’ — p’. The probability that exactly
r other members of the sample will be less than x; is then,

(N : l)pi(l — p)¥ .

Further for all samples in which just r values occur less than z; , the proportion
of occasions on which p’ £ pr £ p” is given by

pl'
f Pl —p)" dp/ﬁ(r + 1, N =),
pl

the difference of two incomplete S-functions. But that there are exactly r ob-
served z’s less than z; is equivalent to saying that xx is the (r + 1)-st observa-
tion in order of magnitude, so that in the above we may as well replace r by

k — 1. Itiseasy to find that the expected value of p; in such samples is

EN —k+1)
(N+12(N+2)°
expressions that the proportion of occasions on which 2z < & < Zy_gq1 is
LB 1+‘1 2k (N + 1 > 2k). Statements of this kind establish confidence
limits. Thus if one says that in a sample of N, an observation at random will
fall between the k-th and the (N — k 4 1)-st observations in order of magnitude,
N +1 - 2
N+4+1

integral just above is the fiducial probability of the truth of p’ < pr < p” if
in a sample of N the k-th observation is the (r + 1)-st in order of magnitude.
Thompson went on to obtain confidence limits for the median in a sample of N
from any population.

In 1939 Wald and Wolfowitz [27] studied the problem of obtaining confidence
limits for ¢(z), the proportion of observations in a sample of N with values
less than a given z, the population obeying any continuous distribution law.
Their arguments are too complicated to attempt to sketch them here, but they
are based on the fact that the transfornied variable, y, as defined above, is
rectangularly distributed on the interval (0, 1). With their exact solution they
gave a more convenient approximate method for calculation in applications.

In 1938 (I am not being strictly chronological) E. S. Pearson [28] published
a study of test criteria based on this probability integral transformation. Sup-
pose that we have n independently observed s, 1, %2, -+ + , Yyn . How should
the y’s be used to test the hypothesis that the observations from which the y’s
were calculated all came fiom the same population? K. Pearson [24] had

N+1

and that the variance is It follows from the first of these two

such a statement has a probability of of being true. Or, the
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already suggested the use of @ = yyy2 - ynor @ = (1 — y)(1 — ) ---

(1 — ys). It is known that a simple function of Q or of Q' obeys a x*-distri-

bution with 2n degrees of freedom so that we have a ready means of combining
independent tests based on Q@ or Q’. But how is one to choose among Q, Q’, or
other functions of the y’s that might be suggested? E. S. Pearson emphasized
the role that the hypotheses conceived as alternate to the one being tested
should play in making such a choice. He illustrates this in a case of testing
the hypothesis that a sample came from a normal population of zero mean and
unit variance and in which the alternate populations, from one of which the
sample might have been drawn, are such that the corresponding #’s calculated

on the hypothesis being tested would follow a Pearson type I distribution law.

Using the likelihood principle he was led in this case to Q or Q’, which are then
concluded to be “best possible tests.”

The final paper I want to discuss is an important one by J. Neyman on the
“Smooth test of goodness of fit,” published in 1937 [29]. Suppose again that a
random sample of N values of z gives the set, 41, ¥z, - - - ¥y on the hypothesis
H, that the population distribution law is p(z | Hy). If H, is true the ’s in
random samples do follow a rectangular distribution on (0, 1). But what would
be the distribution of the y’s if the distribution law for the population were
actually p(z | Hi)? We have for the y’s as calculated,

y=fp(xIHo)d:c.

But to find f(y),

/() dy = p(z | H,) dz,
so that,

_ p(z | Hy)
) = perm) * "
Therefore if Hy is not true, the y’s calculated on the assumption that it is may
be expected to exhibit a statistically significant set of deviations from a rec-
tangular distribution.

As Neynan remarks, it is a defect of the x’-test of goodness of fit that the
information one has of the algebraic signs of the differences between calculated
and observed frequencies, particularly of the way in which positive and negative
differences succeed each other, is completely unused. And in forming a test of a
statistical hypothesis it is now well understood, thanks to Neyman and Pearson,
that due account should be taken of the alternate hypotheses conceivably true.

Neyman begins by specifying a wide class of alternate hypotheses in a form
that lends itself to mathematical treatment. This is done by assuming that the
distribution of y’s calculated for H, will, if an alternate H, is true, be given by a
function of the form,

5"'.‘(')
p(ylol, 02; Ct %y ek) = ce!
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in which (y) is a polynomial of degree 7 (a transformed Legendre polynomial)
with convenient properties. For low values of k, such as will ordinarily be used,
this permits alternate distribution curves to deviate in a smooth manner from
the distribution tested, with a limited number of intersections with it.

Now the problem is to determine the function of the observed y’s which will
provide a suitable test of H, with respect to the alternate hypotheses of order or
class k, k having been decided upon in advance of making the test. The mathe-
matics, proceeding along Neyman and Pearson li:les, shows that the appropriate

function, for large samples at least, is simply D u} in which,
1

1 X ’
w= E xi(y:)
the y;’s being calculated from the sample. Moreover, the probability that the
k

sum Y, uf\ exceeds a given value is at once obtained from a table of theincom-
1

plete I'-function, i.e., this sum is proportional to a x’.

This is a very fine piece of work but, as Neyman points out, there are still
questions to be settled concerning the general utility of this ‘“smooth test.”
F. N. David in 1939 [30] further discussed this test. In particular, it may be
pointed out that the parameters in p(z | Ho) must be assumed known; what
would be the effect on the test of estimating these parameters is unknown. A
reasonably large sample seems to be required to make the developments on the
assumption of large samples applicable but a y must be calculated for each
observation. This makes for a good deal of computing but it is not known how
grouping of observations might be effected. And the matter of the choice of the
order of the test to be applied, i.e., of a value of k, is still somewhat in doubt.

I will not debate the proposition that there are papers completely omitted
from this discussion as important as those I have included however inadequately.
The limitations of space forced me to choose and it is quite possible that my
personal tastes and interests had more weight than they should.
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