SYSTEMS OF LINEAR EQUATIONS WITH COEFFICIENTS SUBJECT
TO ERROR

By A. T. LoNsETH
ITowa State College

1. Introduction. Various scientific problems lead to non-homogeneous sys-
tems of n linear equations in » unknowns, in which the n* + n coefficients (in-
cluding “absolute’” terms) are subject to error. Such errors may be errors of
observation, or errors introduced by rounding off decimal expansions. If the
system has a non-vanishing determinant, the ordinary rules yield the solution.
But the question arises: how may the possible errors in the coefficients affect the
solutions? In particular, one would like to know how to exclude the fatal event
that some malicious combination of errors might make the determinant zero.
One would further like to have limitations on the solution-errors in terms of
maximum coefficient-errors. Considering the coefficient-errors as random vari-
ables, one may also inquire as to the probability distributions of the solution-
errors.

The principal result obtained in this paper is the Taylor’s expansion of the
error in any unknown, considered as a function of the n(n + 1) errors in the
coefficients. An upper bound is obtained for each term of this series, and the
sum of these upper bounds (when convergent) is expressed in closed form. Thus
are obtained not only approximations to the maximum error, but an actual upper
limit. Convergence of the power series is established for sufficiently small
coefficient-errors; ‘“‘sufficient smallness” is specified in terms of a simple criterion,
which simultaneously provides a sufficient condition for the non-vanishing of a
determinant with elements subject to error.

These results were obtained before I learned that work had already been done
on the problem. The earliest seems to be that of F. R. Moulton [2] in 1913; he
found the first order approximation (6) for n = 3, and discussed the geometrical
reasons for sensitivity. Much later I. M. H. Etherington [1], evidently un-
aware of Moulton’s paper, found the expression for the total error of a deter-
minant whose elements may be in error, and applied this to the present problem.
He thus found limits for the first and second ordei errors, in a rather different
form from mine. The probabilistic considerations of section 5 were suggested
by Etherington’s article. L. B. Tuckerman [3] recently discussed the question
of estimating computational errors incurred in the course of solution. He con-
sidered only errors of first order.

My original procedure was to compute the terms of the Taylor’s series as
successive differentials of the unknown, from Cramer’s formula. This soon be-
comes laborious, and I found only the first two terms. The linear matrix equa-
tion (4) was then kindly suggested to me by R. Oldenburger. Here (4) is solved
by iteration, resulting in a simple recursion formula for successive terms of the
Taylor’s series.
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2. Formal matrix solution. Let the system of equations be

n
(1) Ea.-,-x,~=c.' i=l,2,~--,n.
i=
In terms of the matrices
an a1n ( 51 a
A= |, x=|1], e=]1],
An1 * Ann l Tn Cn

system (1) can be written
(2 AX = C.

Supposing that not all ¢’s vanish, and that A, the determinant of A, does not
vanish, there is a unique solution X. But the a’s and ¢’s, and consequently the
z’s, are subject to error: let the true value of a;; be a;; + aij; of ¢;i, ¢i + vi;
and of the resulting z;, z; + £;. We must actually deal with the system

3) A+4+a)X+x)=C+eg,

where we have written

ay ¢ aln] & M ]
a=|: D, X=| |, e=|:
am'“am.J én ’YnJ
Expanding (3) and using (2), we find for the error-matrix x
4) x = m + nX + nx,
withm = A%, n = —A"a; A7 is the inverse of A. We solve (4) formally

for x by iteration. Thus
x = m + nX + n(m + nX) + n’x, etc.:
and there results the infinite expansion
(5) x=2x%:x"=m+nX; x* =nx*"7, E> 1.
k=1
In section 4 convergence of (5) will be established for sufficiently small | o;; |.

3. The elements of x*. It is necessary to consider closely the individual

elements of x*. Writing

(k)
3]
x® =11,
(k)
n



334 A. T. LONSETH
we note from (5) that
B= 2
k=1

this is precisely the Taylor’s series for the error in z; : each £ is a homogeneous
polynomial of degree k in the o’s and vy’s. Writing A4;; for the cofactor of a;;
in A,

x¥ =m 4+ nX = A (c — aX)

(Au | A [ (
A A J 7 oyt oan 1
é_l:u . 1‘1—1"; Yn Onl **° Qnan Zn
A A J
An  An
A A "I — oy — r — O1nZa
A Aun| |70 = anm = o — e
A A

whence (summing hereafter from 1 to n on Greek-letter subscripts)
1
(6) 51('1) = 4 {Z Yului — T Z oy — 0 — Zn Z a;mAm'}'
» » »

From (5), if & > 1,

(k) k=1 _ A=l g (k=)

X = NnXx ax
[~}1za,.1A,d —711 za,‘,,A,,l]l g
so that
(7 £ = — % Z gy Z“: O A i k> 1.

The sums Zv,4,;, Za.ud,; have obvious interpretations as determinants.

4 Bounds and convergence of the series. Assuming | a;;|, |v:| = 6 and
taking absolute values in (6),

8) 160 < |i|<1 + 12D | ).
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It will be observed that equality can be attained for a particular choice of o's

and y’s as 44: the bound for first-order errors is best possible. But it is not in

general possible by a single choice of o’s and 4’s to obtain equality for all j.
Similarly from (7)

61 5 (167 D 14w, >
whence by induction

© 1815 (3) 0+ D 1aDE E 4 DT |
Summing on k,

S 161 S o+ D aDE 4D (5 07),

k=1 |A| m m k=1
with

é
K225 >V

If p <1,wecanlet m — o

(10) l&] = IAl(l+Z‘.lacp|><23|Aml)/(1 — ).

Observing that the v’s occur linearly in (6) and (7), we conclude that (5) con-
verges if

(11) laij] €8 < IAI/(ZVDZ”DIAWI).

It follows that the determinant of the system (3) cannot vanish if (11) holds.
This is rather remarkable, in that 622 | 4,, | is merely the maximum first-order
term in the error of that determinant ([1], p. 108); the effect of higher order
terms (i.e., of any but first-order minors) in producing a zero determinant can
be wholly ignored.

From the remark after (8), it appears that equality in (9) and (10) cannot
generally be attained.

If (10) is written | £;| < B/(1 — p), it is easily seen that the remainder after
the hth approximation does not exceed p"B/(1 — p).

6. Probability distributions. We now consider some consequences of the
following assumptions: the o’s and 7’s are identical, independent random vari-
ables, bounded by a & satisfying (11), and distributed symmetrically about zero.
(It would be reasonable to assume further that they possess a frequency func-
tion, which is nowhere concave upward.) Writing &(z) for “expectation of the
random variable z,” we have

6(0,’,‘) = 6(7:’) = 07 té)(a,,) 6(’)’@) = 0'2 < 52.
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On account of independence and symmetry, the expectation of any power-
product of o’s and y’s containing an odd power must be zero. To first order,
the mean a; of the solution-error ¢, is approximated by

(12) o’ = &) = 0;
and the standard deviation .S; by
(13) 8 = /(") &I {1+ ; xﬁ)(.; AP

The second approximation to a; is also easily obtained:
2
(14) o = 6G") = H(X X w4 ).
14 L

Both (13) and (14) were given by Etherington [1], though in a less symmetric
form. Higher approximations, as he remarks, involve complicated summations;
but if they should ever be required, the machinery exists in (6) and (7) for their
systematic computation. As to the errors in using (13) for the standard devia-
tion S; and (14) for the mean, we know only that

a; = ai” + o),  8F = (S")* + (3.

Etherington ([1], p. 111) considers the important special case of “rounding
off” decimal expressions. Each a and ¢ is supposed correct in the gth decimal
place, the (¢ + 1)th figure being “forced,” i.e., increased by one when the
(g + 2)th figure is dropped, if the (g + 2)this 5, 6, 7, 8, or 9. Assuming constant
frzequency2 1077 in the interval (—$107% 4107, we may use (13) and (14) with
@ = 107%/12.

Errors of observation are often assumed to be normally distributed. There is
nothing against such an assumption with regard to the v’s, but the o’s must not
make (3) singular, and must accordingly be suitably bounded, e.g. by (11).

6. Conclusion. The formulas and bounds of this paper involve only these
quantities: the determinant A, its first order minors, and the solutions of 1).
They can be found in the course of solving (1) by orthodox methods.

Inequality (10) definitely limits the maximum solution-errors, in terms of the
maximum coefficient-error 8, provided § satisfies (11). But it may be that 8),
either alone or in conjunction with the second-order bound from (9), will give a
better approximation.

The ratio 22 | A,, |/| A | may be taken as a “measure of sensitivity” of 1)
to error.

The fundamental formulas (6) and (7) are capable of solving other problems
than those studied here. For example, it may happen that only certain elements
(such as those of a single column) are in error, in which case better inequalities
can be found. Or the o’s and 4’s may not be independently and identically
distributed.
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