ON A STATISTICAL PROBLEM ARISING IN THE CLASSIFICATION
OF AN INDIVIDUAL INTO ONE OF TWO GROUPS'

By ABramamM WALD
Columbia University

1. Introduction. In social, economic and industrial problems we are often
confronted with the task of classifying an individual into one of two groups on the
basis of a number of test scores. For example, in the case of personnel selection
the acceptance or rejection of an applicant is frequently based on a number of
test scores obtained by the applicant. A similar situation arises in connection
with college entrance examinations. Again, on the basis of a number of test
scores, the admission or rejection of a student has to be decided. In all such
problems it is assumed that there are two populations, say =1 and =, one repre-
senting the population of individuals fit, and the other the population of individ-
uals unfit for the purpose under consideration. The problem is that of classifying
an individual into one of the populations m and . on the basis of his test scores.
Often, some statistical data from past experience are available which can be
utilized in making the classification. Suppose that from past experience we
have the test scores of N; individuals who are known to belong to population =1,
and also the test scores of N individuals who are known to belong to population
w2 . These data will be utilized in classifying a new individual on the basis of
his test scores.

In this paper we shall deal with the statistical problem of classifying an in-
dividual into one of the populations r; and m. on the basis of his test scores and
on the basis of past experience, given in the form of two samples, one drawn
from m and the other from 7, . In the next section we give a precise formulation
of the statistical problem and state the assumptions we make about the popula-
tions T and T .

2. Statement of the problem. We consider two sets of p variates (z1, - - - , p)
and (¥1,---,¥p). It is assumed that each of the sets (z1,---,z,) and
(1, -++ , Yp) has a p-variate normal distribution and the two sets are inde-
pendent of each other. It is furthermore assumed that the covariance matrix
of the variates ;, - -+, 2, is equal to the covariance matrix of the variates
Yis s Yoo 1€ Ouge; = Oyy; (6,5 = 1, --+, p). We will denote this common
covariance by ;. Let us denote the mean value of 2; by u; and the mean value
of y; by »;. Furthermore we will denote the normal population with mean
values u1, - -+ , up and covariance matrix || ¢;; || by 71, and the normal popula-
tion with mean values », - - - , ¥, and covariance matrix || ¢:; || by 2.

A sample of size N is drawn from the population 71 and a sample of size N3 is

1 The author wishes to thank Dr. Irving Lorge, Columbia University, for calling his
attention to this problem.
145

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

The Annals of Mathematical Statistics. IKOJN ®

www.jstor.org



146 ABRAHAM WALD

drawn from the population m . Denote by zi. the a-th observation on z;
f=1,---,p;a=1, -+, Ny and y; the 3-th observationony; (¢ = 1, - -+ , p;
B=1,---,Ny). Letz (=1,---, p) be a single observation on the i-th
variate drawn from a p-variate population , where it is known a priori that = is
either identical with m, or with m,. The set (21, -+, 2,) is assumed to be dis-
tributed independently of (21, -+, z,) and (W1, - -, Yn).

We will deal here with the following statistical problem: On the basis of the

observations %o, ¥i,2: ¢ =1,--- ,p;a=1,--- ,Ny;8=1,---, Ny) we
test the hypothesis H; that the population =, from which the set (21, - - - , 2,) has
been drawn, is equal to = . The parameters wi, ---, pp, v, -, v, and

|| 045 || are assumed to be unknown.

3. The statistic to be used for testing the hypothesis H;. In this problem
there exists only a single alternative hypothesis to the O-hypothesis H; to be
tested, i.e. the hypothesis H; that = is equal to m . If the parameters y;, -- -,
Ups V1, -, vp and || oi; || were known we could easily find (on the basis of a
lemma by Neyman and Pearson) the critical region which is most powerful with
respect to the alternative Hy. Let us assume for the moment that the para-
meters pi, -+, Mp, V1, -, ¥p and || o5 || are known and let us compute the
critical region for testing H; which is most powerful with respect to the alterna-
tive Hy. According to a lemma by Neyman and Pearson® this critical region is
given by the inequality

p2(zl7_'" ) z?) >k

(1) pl(zl, ) zp) -

where p1 (21, - - - , 2p) denotes the joint probability density function of z,, - - - , 2,
under the hypothesis Hy, pa(z1, - -+ , 2p) denotes the joint probability density
function of (21, - - - , #p) under the hypothesis H, , and % is a constant determined
so that the critical region should have the required size.

Denote the determinant value | o;; | of the matrix || ;7 || by ¢*. Then

r k4

1 -2 g ol (z5—pi) (2j—17)
(2) pl(zly"'>zp)=qu i=1 =1 ,
and
» P .
('3) pz(zla”‘yzp)=Wo'e ! »
where the matrix || el || denotes the inverse matrix of the matrix || o¢;|| . Tak-

ing logarithms of both sizes of the inequality (1), we obtain the inequality
@ =32 X ol — )i — v) — (@ — w)zs — w)l} = log k.
j i

2 J. NeYmaN and E. 8. Pearson, “Contributions to the theory of testing statistical
hypotheses,”” Stat. Res. Mem., Vol. 1, London, 1936.
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Multiplying both sides of (4) by 2, we have
®) 2 20 — wdes — p) — (2 — vi)(; — v)] = 2log k.
g 7

The critical region (5) is most powerful with respect to the alternative H, , but
it cannot be used for our purposes since the parameters py, -+« , pp, V1, *** , Vp .
and || oi; || are unknown. The optimum estimate of ¢:; on the basis of the ob-
servations ;. and ys is given by the sample covariance

N1 Ny
> ia — E)(@ja — &) + O Wis — §)Wis — F5)
(6) sij = B
Ny+ N, — 2
Z Tia Z Yis

where i; = “Nl and §; = —ﬂN—Z.
given by &; and 7; respectively (z = 1, ---, p). Hence for testing H, it seems
reasonable to use the statistic R which we obtain from the left hand side of (5)
by substituting the optimum estimates for the unknown parameters. Thus E is

given by

The optimum ‘estimates of u; and »; are

(7 R=2 2 s@—2)e;i— %) — (& — 9 — 9,
7 3
where || s7 || = || si7]| ™. The critical region for testing H, is given by the in-
equality
® R 2C,

where C is a constant determined in such a way that the critical region should
have the required size. It is interesting to notice that R is proportional to the
difference T7 — T3 where T; (i = 1, 2) denotes the generalized Student’s ratio®
for testing the hypothesis that the set (21, - - - , 2,) is drawn from the population
x:. In our case the statistic T cannot be used for testing H; , since T is appro-
priate for this purpose if the class of alternative hypotheses contains all p-variate
normal populations having the same covariance matrix as 1. In our case the
class of alternatives consists merely of a single alternative, namely, the alterna-
tive . .

For the sake of certain simplifications we shall propose the use of a statistic U
which differs slightly from the statistic B. In order to obtain U, we consider the
inequality (5). Since ¢* = «"* this inequality can be reduced to

) Ey 2; v — u) 2 ¥,

where k&’ denotes a certain constant. The statistic U is obtained from the left
hand side of (9) by substituting the optimum estimates for the unknown para-

3 See. in this connection H. HoTeLLING, “The generalization of Student’s ratio,” Annals
of Math. Stat., Vol. 2, and R. C. Bost and 8. N. Roy, “The exact distribution of the Stu-
dentized D? statistic,” Sankhya, Vol. 3.
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meters. Thus

(10) U = 22s%:(5; — %)),
and the critical region is given by the inequality
(11) U > d,

where the constant d is chosen so that the critical region should have the re-
quired size. The statistic U differs from R merely by a term which does not
depend on the quantities z1, -+, 2,. If N1 and N, are large the difference
U — R is practically constant and therefore the critical regions (8) and (11) are
identical. The use of U seems to be as justifiable as that of R and because of
certain simplifications we propose the use of the critical region (11).

The statistic U is closely connected with the so called discriminant function*
introduced by R. A. Fisher for discriminating between the two populations =
and m. The discriminant function D is given by

12) D = bydy + bedy + -+ + bydy

where d; = §; — Z; and the coefficient b is proportional to > s¥;. The co-

=1
efficients by, - -+, b, are called the coefficients of the discriminant function.

D

We see that U is proportional to the statistic > biz; which is obtained from the
=1

right hand side of (12) by substituting z; for d; .

4. Solution of the problem when N; and N, are large. Denote by F(U. N1,
N | 7;) the cumulative probability distribution of U under the hypothesis that
the set (21, --- , 2p) has been drawn from the population =; (z = 1, 2). If N
and N, approach infinity the distribution F(U, N1, N | 7:) converges to a normal
distribution, since the variates s;;, &; and ¢ converge stochastically to the con-
stants o;;, us and »; respectively (7,5 =1, ---,p). Let us denote lim F(U,

N1=Ng=w
N1, Ny | m) by ®(U | m:) (@ = 1, 2). Furthermore denote by a; the mean value,
and by o; the standard deviation of the distribution ®(U | ;) (0 = 1, 2). Itis
obvious that o1 = o2 = ¢ (say). It is easy to verify that the variates

(13) & = 2287 %(5; — &),
(14) & = 2287 §:(g; — %),
Zp: 2’: S G — TG — T)si;
(15) »
=2, 2 G — TG — &),
k=1 l=1

converge stochastically to the constants oy, a2 and ¢ ? respectively.

4 R. A. FIsHER, “The statistical utilization of multiple measurements,”’ Annals of Eugen-
ics, 1938.
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Hence for large values of N; and N: we can assume that U is normally dis-
tributed with mean value &; and standard deviation & if the hypothesis H; ({ =
1, 2) is true. Thus the critical region for testing H, is given by the inequality

(16) U > a + s,

1 -]
where the constant A is chosen in such a way that \/_2_1r f e dtis equal to the
A

required size of the critical region.

Finally, some remarks about the proper choice of the size of the critical region
may be of interest. Two kinds of error may be committed. H; may be rejected
when it is true, and H; may be accepted when H, is true. Suppose that W, and
W, are two positive numbers expressing the importance of an error of the first
kind and an error of the second kind respectively. If the purpose of the statisti-
cal investigation is given it will usually be possible to determine the values of
Wiand W,. We shall deal here with the question of determining the size of the
critical region as a function of the weights W; and W.. Denote by P; the prob-
ability that (16) holds under the assumption that H; is true (+ = 1, 2). Then
P; is the size of the critical region (also the probability of an error of the first
kind), and 1 — P, is the probability of an error of the second kind. Both prob-
abilities P, and P; are functions of A and are given by the following expressions:

_ 1 ® —t2/2
Q17) Pl—\/2—1r£ e i,

and

1 L

= = T2
(18) P2 '\/21[‘ e dt.

~[((&1—&2)/5)+)\

From (13) and (14) we obtain

(19) @ — =2, >, 8 (G — 2@ — T).
7 i

Since the right hand side of (19) is positive definite, we have a; > &, . Hence
because of (17) and (18) we also have P, > P;. By the risk of committing a
certain error we understand the probability of that error multiplied by its
weight. Hence the risk of committing an error of the first kind is given by WP,
and the risk of committing an error of the second kind is given by Wa(1 — Ps).
It seems reasonable to choose the value of A so that the two risks become equal
to each other, i.e. such that

(20) W1P1 = Wz(l - Pz).

Hence using (17) and (18) we obtain the following equation in A

((a1—a2)/a)+\

1 © 1
(21) Wi ’\/—Z_ﬂ'-/; e dt — W —\/_7; [m el dt = 0.
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Using a table of the normal distribution, the value of A which satisfies the equa-

tion (21) can easily be found. For W; = W, the solution of (21) is given by

as —
26

and the critical region is given by the inequality

A =

>

U>a+rN=a+2

—&1=5¥1+5¢-
2 2

6. Some results concerning the exact sampling distribution of the statistic U.
If N; and N; are not large the solution given in section 4 cannot be used and it
is necessary to derive the exact sampling distribution of U. Let

s — T __N1N2 = I ) — e
(22) (s ;) N+ N, 2; (t=1, , D).

Then

N1+N2 ij
(23) U= NN, Z Z]: s92:2;

where the variates z1 , - - - , 2, are distributed independently of the set (z;, - - - |

2p), the mean value of z; is equal to (v; — ws) il and the covariance
N1+ N.

between z; and z; is equal to o;;. It is known that the set of covariances s; ;18
distributed independently of the set (21, - -, 2, , 2, z',,) and therefore the
distribution of U remains unchanged if instead of (6) we have

n

Dt

(24) 8ij = “jb (n = N1+ N: — 2),
where the variates ;. are distributed independently of the set (21, :--, 2z,,
21, -+, 2,), have a joint normal distribution with mean values zero, o, o = 045
and o, = 0if @ 5 B. It is necessary to derive the distribution of U under
both hypotheses H; and H,. In both cases the mean values of z;, --- , z,,

zi, -+, 2, are not zero. Instead of U we will consider the statistic

b2,
=22 Pz

=1 j=1

which differs from U only in the proportionality factor N]t/'*‘NN? . The distri-
14V2

butions of U’ under the hypotheses H; and H, are contained as special cases in
the distribution of the statistic

(25) V= Z z Sij t{,n+1 tj,n..;.z ,
i 1
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where s;; is given by (24) and the joint distribution of the variates ¢
Z=1,---,p;8=1,---,n + 2)is given by

12 2 &
1 -3 Elﬂ’i[ z tiatia+(t.',n+1—5.')(t;,n+1—‘<‘j)+(ti,n+2—ns)(ti,,.+z—nj)]
P ] i=1 i= a=1
Q1) P(n+2)/2 Gnt?2
nt+2 p
X D dlis.
B=1 =1
.- 9
The quantities &, -+, £, m, --+, 7, are constants and ¢ denotes the de-

terminant value of the matrix || oy .

We will deal here with the distribution of the statistic V given in (25) under
the assumption that the joint distribution of the variates tis (¢ = 1, ---, p;
B=1,---,n 4 2)is given by (26).

In order to derive the distribution of V we shall have to prove several lemmas.

Lemma 1. Let || Nij]] (G, 5 = 1, -+, p) be an arbitrary non-singular matriz,
and let

yd
t§a=21x;jtjp G=1,--,p;8=1,---,n+2).
-

Let furthermore s;; be given by

¥] i1, ’ . o g . . .
Then 8"t myitjnre = 8% niatinye, 1-€. the statistic V is invariant
— L +1%5,n+ 4 - +1v5,n42y
F] J 7 +
under non-singular linear transformations.

Proor.We obviously have

y 4
27 t;.n+l t;’.n+2 = Z E Nk Njibeni1 binaee

D
=1 l=1,

bl

Furthermore we have

y 4 P

(28) 8:’_1' =, Z Nik Aj Sk, .
k=1 I=1

Hence

(29) sisll =11 Nas ] lsas 1] R 11

where 5\.‘,' = X,',' .
From (29) we obtain

(30) s 11 = 1A AL

and therefore
D

p . .
31 § = D DT AN

k=1 l=1
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Hence from (27) and (31) we obtain

32) 202 St = 2 2 zk: le PP IO LD CFL VD W ST A
f) K 7 D u v

The coefficient of ¢u,n41fs,n+2 On the right hand side of (32) is given by

) I Z,,: Z;‘ NN Ny = ; ; {2 N ) (3 N hg0) 87} = 5.

Lemma 1 follows from (32) and (33).
Lemma 2. The distribution of V remains unchanged if we assume that the co-
variance matrix || o:; || is equal to the unit matriz, i.e. the joint distribution of the

variates tig (1 =1, --- ,p; 8 =1, --- , n + 2) is given by
2 3 2 :
1 —3| 2 Z tiat 2 Gint1—edt+ 2 (lc,n+2—§'s‘)2]
(34) @R ® e ‘ ;

where the constants p; and ¢; are functions of the constants &1, <+ , Ep, M1, *** 5 Mp
and of the o; . ’

Lemma 2 is an immediate consequence of Lemma 1. Hence we have to derive
the distribution of ¥V under the assumption that the variates t;; have the joint
distribution given in (34).

Let R; (¢ = 1, - - -, p) be the point of the n + 2 dimensional Cartesian space

with the coordinates i, «-- ,ting2. Let P = (w1, -+, Unp2) and Q@ =
n+2

(1, - -+, ¥ny2) be two arbitrary points such that Y, ugws = Oand 2 us = v = 1.
=1

Denote by 0 the origin of the coordinate system and let ;.1 be the projection
of the vector OR; on the vector 0P. We have

n+2
(35) bimg = BZ‘I tigug @=1,-.-,p).
Similarly, the projection Z; .42 of the vector OR; on 0Q is given by

n+2
(36) Z.',,H.z = ‘; tigvg .

Let B; (¢ = 1, ---, p) be the projection of the point R; on the n-dimensional
hyperplane through 0 and perpendicular to the vectors OP and 0§. Denote
the coordinates of B; by 7, - -+, 7in42 respectively and let 3;; be defined by
n+2
Z TigTi8

(37) 8 = b= p
If we rotate the coordinate system so that the (n + 1)-axis coincides with OP
and the (n 4 2)-axis coincides with 0Q, and if iy, - -+, fi,n42 denote the co-
ordinates'of R; (¢ = 1, - - - , p) referred to the new system, then we have

n+2 n
1< -
(38) §ij== 2, rigris = = D bialja, and
N B=1 N a=1

n+2 n+2

(39) D tistip = 2 tislis .
b= =1
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From (38) and (39) we obtain
n+2 _ _ _ _
ﬁ; ligtip — tintatjmir — tingatjnge

@) & = -
We will now prove
LemmA 3. Let V be defined by

(41) V = Z Z 5 i.‘,n+1 t-j,n+2 ,

7

where i ny1, liniz and §i; are given by the formulas (35), (36) and (40) respec-
tively. Let furthermore the joint probability distribution of the variates tig (i =
1,---,p;8=1,--+,n 4 2) be given by

12 n+2

1 —35| Z 2 (ig—piug—tive)?
(42) (2m)r(ntD)r2 £ 2[’=1 p=t ] I;I I;;I diis .

Then the distribution of V calculated under the assumption that the quantities
U, ** 5 Ung2, V1, " ** , Unqe are constants and the joint probability distribution of
the variates tig is given by (42), is the same as the distribution of V calculated under
the assumption that the joint probability distribution of the variates t.g is given by (34).
Proor. If we rotate the coordinate system so that the (n 4 1)-axis coincides
with OP and the (n + 2)-axis coincides with 0Q, and if £, - - - , #; .2 denote the
coordinates of R; ({ = 1, ---, p) in the new system, then f;,,1 and Z; .2 are
given by the right hand sides of (35) and (36) respectively. Furthermore

n
Z tt'a'tja
8y = 2= w

Hence the distribution of ¥ is certainly the same as that of V if the
joint probability distribution of the variates I (¢ = 1,---,p; B8 =
1, .-+, n 4 2) is given by the expression which we obtain from (34) by sub-
stituting Zis for t;5. Thus, in order to prove Lemma 3 we have merely to show
that if the variates ;s have the joint probability distribution (34), the variates
t:s have the joint probability distribution (42). Since the variates ti, -« -, t;nie
are obtained by an orthogonal transformation of the variates &, -, i ns2,
it follows that the variates ¢ (1 = 1,---,p; 8 = 1,---,n + 2) are inde-
pendently and normally distributed with unit variances. We have
n+2

(43) tiy = 7‘2"”’ Tiy

where gy is equal to the cosine of the angle between the g-th axis of the original
system and vy-th axis of the new system. Since

Myt = us  and  Agnq2 = vp,
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and since E(f;,) = Ofory =1, - -+, n, E(fi ny1) = piand E(fi,a12) = &, it follows
from (43) that

(44) E(tg) = pug + s

Hence Lemma 3 is proved.
We will now prove

LemMma 4. Let P be a point with the coordinates uy, - - , Unie and Q a point
with the coordinates vy , - -+ , Vni2 Such that Sugvg = 0 and Sug = Zvg = 1. Denote
by L, the flat space determined by the vectors ORy , - -+ , OR, (Ri = (ta, =+ , tin42))

and let P be the projection of P on L, and Q the projection of Q on L, . Denote
furthermore by 6y the angle between the vectors OP and OP, by 0; the angle between
OP and 0Q, by 0, the angle between 0Q and 0Q, by 0; the angle between 0Q and OP,
and finally by 05 the angle between OP and 0Q. Then the statistic V defined in (41)
18 equal to

0 a1 o

by an ae
45) 7=k oo o

an Q2

Q12 O22
where

(46) @ = cos’0i; @ = cos 6y cosf; b = cosf cosfy; by = cos G;

2 2
cos’ 6, — a; — b} cos’ 6; — a3 — b;
au = ’ g2 =

n n

(47)
.€os 6; cos 0; cos 03 — a1 as — bibe

n

and a =

Proor. If we rotate the coordinate system in such a way that the (n + 1)-
axis coincides with OP and the (n 4 2)-axis coincides with 0Q, and if

fa, -+, Linee are the coordinates of R; in the new system, then
n
Z iia Zja
§ij = 2= .
n

According to Lemma, 1 the statistic V is invariant under linear transformations
of the variables ¢;3. Hence ¥ is also invariant under linear transformations of
the variables ;3. Thus the value of V remains unchanged if the points

R;, ---, R, are replaced by arbitrary points Ry, -, R; of L, subject to the
condition that the vectors OR;, -, OR;, be linearly independent. Hence
we may assume that the vectors OR;, - - - , OR, are perpendicular to each other

and lie in the intersection of L, with the n-dimensional flat space which goes
through 0 and is perpendicular to OP and 0Q. Furthermore we may assume
that Ry = P and R, = Q. Then OR; is perpendicular to 0P, 0Q, OR, and OR.

(i=37”')p)'
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The statistic V can obviously be written in the form:
_ 0 .t-l,u+1 e me+1
biniz 8n c-- §ip

(48) V= — .t-pm+2 8m

§11 c e slp

Spp

Spr ° - §pp

Because of our choice of the points R, ---, B,, we have

(49) ii,n+l=f1'.n+2=0 (1:=3’~-.,p)
and

'n+2_ _
(50) Dlals =0 if i @=38 - ,pj=1-,p.

From (49) and (50) it follows that §;; = 0 for 7 5 j except S Whlch is not neces-
sarily zero. Hence V reduces to the expression

0 finir  Bangt
hinee S S’
lonyz  Si Son

(51) V=-

Su S
812 S

We obviously have & n41 = @1, bnp1 = G2, inge = biand nq2 = bs .

For any two points A and B denote the length of the vector AB_lg_y AB. Since
ndn + (&, n+1) + (fng2)’ = OP nin + (w4’ + (omse)’ = 0Q° and née +
Bimitbenss + fingolenie = OP- ()Q cos 03, we can easily verify that 51 = au,
Si2 = ap and 32 = a. Hence Lemma 4 is proved.

The angles 6; and 6; can be expressed in terms of the angles 6;, 6, and 6.
In order to show this, let us rotate the coordinate system so that the first p
coordinates lie in the flat space L,, defined in Lemma 4. Let uy RN u',,+2 be
the coordinates of P and v; 9ty Vn42 the coordinates of Q referred to the new
axes. Then, since 0P = 0Q = 1, we have

~Fy 73 u'v'+ +ulv'
2 2 / 1V1 M
cos 6, = Vu, 4 e Uy cos 6; = — ”,2”;
Vo' + - 40
4 ’
7 7 u101+ cF u,v
cos b, = Vv + v 40y cos 65 — ”,2”;
\/ul + e AU,
7 ! 1 !
U v oo Uy
and cos 03 = 101 + L

72 TR TN
Vur + oo +upVol + o+ oy
Hence

’ /
cos i = cos 6; cos s and cos 02 = cos 62 cos 6.
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Introducing the notations

2 2
my = cos 0, me = cos 8 and ms = cos 6; cos 6 cos 03,

we have

ay = my, a, = mg, b1=m3, b2=')')?,2;

2 2
_ M= My — M3 7n3(1—m1—m2)

any = —, Q2 =
n n

{ mg—m2-—m2

pm am = T T = s

n

Substituting the above values in (45) wé’ obtain
mg
ms — 1 4+ my + my — myme

V=-n

cos 6y cos 03 cos 03
—_n . . 9 . B
cos’ 6; cos® 6, cos® 63 — sin® 6; sin® 62

Hence, Lemma, 4 can be written as

LeEmMA 4’. Let P be a point with the coordinates uy, « -+ , Uny2 and Q a point
with the coordinaies vy, « -+ , Vage . Denole by L, the flat space determined by the
vectors OR; , - -+ , OR, and let P be the projection of P on L, and Q the projection of
Q on L,. Denote furthermore by 6, the angle between OP and OP, by 0, the angle
between 0Q and 0Q and by 8; the angle between OP and 0Q. Then the statistic V
defined in (41) is equal to

cos 01 cos 0 cos 03

cos” 6, cos’ 6, cos® 5 — sin® ; sin® 6,

(45") V=-n

If P is a point of the (n + 1)-axis and @ a point of the (n + 2)-axis, then V
is identical with the statistic V given in (25). Hence we obtain the following

Geometric interpretation of the stalistic V defined in (25). If 6, denotes the
angle between the (n + 1)-axis and the flat space L, determined by the vectors
OR:, --+, OR,, 6, the angle between the (n + 2)-axis and the flat space L, ,
and if 6; denotes the angle between the projections of the last two coerdinate
axes on L, , then the statistic V is equal to the right hand side of (45').

Denote by S the 2n + 1-dimensional surface in the 2n 4 4-dimensional

space of the variables wi, -+, Unt2, 01, ***, Unye defined by the following
equations

n+2 n+2 n+2
(52) U= v =1 2 ups = 0.

8=1 B=1 B=1

denote by C the 2n + 1-dimensional volume of the surface S, i.e.

(53) C = fs ds.
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Now we will assume that w;, -+, Un42, 91, - -+, Vny2 are random variables
and the joint probability distribution function is defined as follows: the point
(Uy, *++ ) Ung2, V1, *** , Ungs) is restricted to points of S and the probability
density function of S is defined by

ds

_C—' .

Hence for any subset A of S the probability of A is equal to the 2n + 1-dimen-
sional volume of A divided by the 2n + 1-dimensional volume of S. It should
be remarked that the probability density function (54) is identical with the
probability density function we would obtain if we were to assume that
Up, *** , Uny2, V1, *°* , Unqe are independently, normally distributed with zero
means and unit variances and calculate the conditional density function under
the restriction that (w1, -+, Uni2, 1, ** -, Uny2) is a point of S.

LeEMMA 5. The probability distribution of V defined in (41), calculated under
the assumption that the joint probability density of the variables wy, - -+ , Uny2,
Vi, s Unpeltis G =1, ,p;8=1,---,n 4+ 2) 1is given by the product of
(54) and (42), is the same as the distribution of the statistic V calculated under
the assumption that the variables t;s have the joint probability density function given
i (34).

Lemma 5 is an immediate consequence of lemma 3.

LEmMA 6. Let L, be an arbitrary p-dimensional flat space in the n + 2 dimen-
stonal Cartesian space, and let M, be the flat space determined by the first p co-
ordinate ares. Assuming that the joint probability density function of wug, v,
tg(e=1,---,p;8=1,:+,n + 2) is given by the product of (54) and (42),
the conditional distribution of V calculated under the restriction that the points
Ry, -+, Ry lie in L, , is the same as the conditional distribution of V calculated
under the restriction that the points Ry, --- , R, lie in M, . The point R; denotes

(54)

the point with the coordinates tiy , - -+ , ting2 .
Proor. Let P be the point with the coordinates w1, - - - , #,42 and let @ be
the point with the coordinates v, :--, v,42. Let us rotate the coordinate

system so that the first p axes lie in the flat space L, . Denote the coordinates
of P in the new system by up, , u',Hz ,those of Q by vy, «- -, 1),”.4.2 , and those
of Riby fi, - ytimpp G =1, -+, p). Let 8 be the surface defined by

(55) Sug’ = 2 =1 and Zugvs = 0.

It is clear that the surface S’ is identical with the surface S defined in (52). It
is furthermore clear that if the joint density function of w, -+, Un42, v1, - -,
Vns2 18 given by %‘?, the joint density function of uy, -+, Uniz, V1, v, Ve

’
is the same, i.e. it is given by %’?ﬁ . It can readily be seen that for any given set

of values uy, <+, Untz, V1, - , Vate the conditional joint probability density
of the variates ;s is given by the function obtained from (42) by substituting
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tipg for ti, u,'g for us and vs for v, provided that for any given set of
values w1, *+, Unq2, V1, **, Unye the joint conditional distribution of the
variates t; is given by (42). Hence, if the joint distribution of w;, - -, Un+2,
V1, ,Unqeandig G =1, ,p;8=1---,n 4+ 2) is given by the product
of (54) and (42), the joint probability density function of the variates u;'; , V5,
s G =1,---,p;8=1,---.n + 2) is obtained from that of ug, vg, tig by
substituting S’ for S and #;s for ;s .

According to Lemma 4/, V can be expressed as a function of the angles 6,
6; and 6; defined in Lemma 4’. Each angle 6; (k = 1, 2, 3) can be expressed as
a function of the variables t;s, ug, vs . It is obvious that the value of §; remains
unchanged if we substitute ;5 for s, ug for us and v for vs. Hence also the
value of ¥ remains unchanged if we substitute ¢:s for t:s , us for us and vs for vs .
Lemma 6 is a consequence of this fact and of the fact that the joint probability
density of the variates t;s, us and v is identical with that of the variates &,
ug and vg .

Lemma 7. Assuming that the joz'.nt probability distribution of the variates
Ug,vg,tig(t=1,---,p;8=1,---,n -+ 2)is given by the product of (54) and
(42), the conditional joint probability distribution of Uy, +++ , Unyz, Vi, *** » Ungz,
calculated under the restriction that the points R; = (ti, + -+ , tijng2) G =1, -+, D)
lie in the flat space determined by the first p coordinate axes, is given by

-3 (PiuqgtEivy)
e lr=rtii=1 SQui, <2y Unya, V1, -0, Vage) dS
(56) 1 n+2 P ’
- X 2 (pguyttivy)?
2 K
fe y=p+1 i=1 (ul’ ...’un+2,vl’ ...,vn+2)dS
S

where S denotes the surface defined in (52), and f(ur, -+« , Uni2, V1, *** 5 Vng2)
denotes the expected value of

| n+2—p
[lrll o r]p __2_.._

‘ Toy ccc Top P
(57) [' . : (Ti,‘ = }:1 tia tja)
Tp1 *** Tpp J

calculated under the assumption that the joint distribution of the variates t;s s given
by (42).

Proor. Denote by E; the projection of B; on the flat space determined by
the first p coordinate axes, i.e. Ri= (ta, -+ ,tp, 0,---,0). Let l; be the
length of R, , and let I; be the distance of B; from the flat space determined by
the vectors OR;. -+ ,O0R:i; (¢ = 2, -+, p). Then, as is known,

(58) 2122“‘Zc'= (i"_‘l,"'?p)’

D
where r,; = Z tralia -

a=1
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We introduce the new variables

(59) th =3 (=1, py=p+1L ,n+2
Then the joint probability density function of the variates ug, vs, lia, £,
(7:= 1,...,1);6 - 1,...,n+2,a = 1’...,p,7 =p+1’...’n+2)
is given by

+o— 1 b4 P P nt+2 -
(- L)"? =3 22 iepina o 2 3 (lstn—ﬂsuv“ﬁ’"f)z]

W ¢ R i=1 y=p+1
(60)

X (I;I I,,,I dt,-a)(IiI g dtfv)rdS.

Substituting zero for t/, (( = 1, -+, p,y = p + 1, .-+, n + 2) in (60), we
obtain an expression which is proportional to the conditional joint probability
density of the variates ug, vg, tia 8 = 1, -, n + 2;¢ =1, ,p,a =1,

-, p), calculated undef the restriction that the points R: (¢ = 1, ---, p)
fall in the flat space determined by the first p coordinate axes. Hence this
conditional density function is given by

LS % Gauttan?
-5 iUyt |
Ae Zr=pt1i=1 Pita K (1122 . Zp)”H'T’
(61) 1

P P
-5 2 Z (tia—p.'uu—riva)z]
X e “Li=ie= d8 I1 II dtie
3 a

where A denotes a constant. The conditional distribution of the variates
ug,vs 8 =1,---,n + 2) is obtained from (61) by integrating it with respect
to the variablestio 1 = 1, -+, p;a =1, ---, p). Because of (58), we see that
the resulting formula is identical with (56). Hence Lemma 7 is proved.

LemMAa 8. Let my = ui + -4+ up; my = o1 + -+ + vy, and
ms = Wy + -+ + U, . If the joint distribution of the variates uy, - - -, Unt2,
Vi, e, Unga 08 given by (54), then the joint distribution of my, msy, ms is given by

B

ms
(62) vml m2(1 - ml)(]- - mz) Fp(ml)Fp(’Ing)@p <\T—1"_{2> Fn+2+p(1 - ml)
—ms

X Fn+2-—11(1 — Mma)®ui2p (’\/(1 — m)(l — ms)

r(3)

1
63) Fu(f) = —~ OF 22 and &(t) = —— 7~ A=V
2"’21‘(]“ ;r(’“ _ 1)

) d7n1 dm2 d'm3

where B denotes a constant,

2

2
’ 2 2 / 2 2
Proor. Let mi = uop + + -+ Ung2, M2 = vy + o Vnye,
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My = Upiipi1 + + m i . d s _mi_ First we
3= Uppr¥py1 + - Unyolniz 5 M3 = and M3 = —5=— . First w
PPt At \/ml mlg , ‘\/mll mé
o . . . . —_ ! — .
calculate the joint distribution of my, m, , 73 my , mz , M3 under the assumption
that wy, -+, Unq2, 1, -+, Vuge are normally independently distributed with

zero means and unit variances. This joint distribution is given by
Fp(ml)Fp(m‘b’)(bp(m3)Fn+2—p<m;)Fn+2_p(m;)

X Bpi0p(Tis) dmy dme dimis dms dms dimis .

(64)

Hence the joint distribution of my , ma, ms, my , ms , ms is given by

1 ms
V mymam] my o)l (e}, V'mims
4

m
X Puiop (\7m—z—;n——é> dmy dms dms dmy dms dms .

) Fra () Fosap(m)
)

The required conditional distribution of m; , me, m; is equal to the conditional
distribution of m;, ms, ms; obtained from the joint distribution (65) under the
restrictions m; + m; = 1, me + ms = 1 and mz + ms = 0. Hence if in (65)
we substitute 1 — m, for my , 1 — my for ms and —mg for ms we obtain an ex-
pression proportional to the conditional distribution of m; , ms , ms . This proves
Lemma 8.

LemMMA 9. For any point (Uy, « -« 5 Ung2, V1, *** , Unya) Of the surface S defined
i (52) the expected value of (57) (calculated under the assumption that (42) is the
joint distribution of tig) is a function of my msy , and ms only, where my , me and ms
are defined in Lemma 8.

Proor. Let ||Nas|| (¢, 8 = 1, ---, p) be an orthogonal matrix such that
Ug
66 A = =1, -,
(66) 18 \/u§+._.+u2p ] )
and
ug + v
67) Mg = = (B =1+, p)
Y ?.:1 (us + Avp)’
where

Let

(68) tia = ‘;Z)x,,,,t..ﬁ (@a=1, -, p).
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Then the variates t;o are independently and normally distributed with unit
variances. Since for any point of S, E(tia) = pitta + (e« , We have because of
(66), (67) and (68)

E(ti‘y)‘_""o (7:=1)"'yp77=3y4’”°)p)1

E(ta) = gul(my, msy, ms),
and E(t12) = ‘Pi?(ml y M2, m3)'

Hence the joint distribution of the variates tiq@=1,---,p;a=1-,p)
’

P P
depends merely on m; , m; and ms . Since ri; = > tiatia = > tiabia, the ex-
a=1 a=1
pression (57) can be expressed as a function of the variables ;.. Hence the
distribution of the expression (57) depends merely on the parameters m;, ms,
and ms. This proves Lemma 9.
The main result of this section is the following
TaeoreM. Let V be the statistic given in (25) and let the joint distribution of the
variates tig G = 1, --- ,p;8 =1, -+, n + 2) be given by (34). Then the prob-
ability distribution of V is the same as the distribution of
ms
ms — (1 — m)(1 — ma)
where the joint distribution of my , me and ms ts equal to a constant multiple of the
product of the following three factors: the expression (62), the exponential

AomZettemZoitstmZi gnq the expected value of

T eee Tip |\ (vF2-P)/2

. . »
(70) . . (’I‘i,' = z:l tia t,-a> .
Tpl v Tpp

The expected value of (70) is calculated under the assumption that the variates tiq
are normally and independently distributed with unit variances and E(tia) = pitta +

» y4 yi
fWe(t=1,---,pja=1," ,p)whereZ:luf. =m1,2;1v,2, =m2andzvaua=
a= a= a=1

ms. The domain of the variables my , me and ms s given by the inequalities: 0 <
m <150 < mp < 1; =/ mame < mg < Vmums .

Proor. First we note that the expected value of (70) is a function of mi,
me and ms only. Let P be the point with the coordinates 1, <+ , Uni2, and @
the point with the coordinates vi, « -, ¥ny2. Assume that the points B; =
(tia, -, timy2) @ =1, -+, p) lie in the flat space determined by the first p
coordinate axes. Assume furthermore that uws + +++ + Unyonie = 0 and that
the lengths of the vectors OP and 0@ are equal to 1. Then

S _
cos01=\/u§+---‘+u2; cos82=\/vf+---+v§,
p

(69) —-n

and
wor + o0 A+ UpVp

Vul -I—\--- +lEVEF o+

cos 0; =



162 ABRAHAM WALD

where 6, denotes the angle between OP and the flat space L, determined by the
vectors OR; , - -+ , OR, ; 6, denotes the angle between 0Q and L, , and 6; denotes
the angle between the projections of OP and 0Q on L,. According to Lemma
4’ the statistic V defined in (41) is equal to

_ £0s 61 cos 6, cos 63

V=-— - n
" cos? 6, cos? 62 cos? 63 — sin? 6; sin? 6,
(71)
mz — (1 — m)(1 — ma)
where

2 2 2 2 2
(72) my =cos" 6 = uy + -+ + up, my = cos’ b = v; + -+ + 0},
and ms3 = cos 6y cos 02 cos O3 = uUwy + - + Uy .

It follows from Lemmas 5 and 6 that the distribution of V is the same as the con-
ditional distribution of ¥ calculated under the assumption that the unconditional
joint probability density of the variates us , vs and ¢ is given by the product of
(54) and (42) and under the restriction that the points B; (¢ = 1, --- , p) fall

in the flat space determined by the first p coordinate axes. Since
1 n+2 P

=3 2 2 (piuytfivy? .
e “r=ptl =1 is a constant multiple of

(73) e%(m1293+2m32ﬂif6+m22{3)

from Lemmas'7, 8 and 9 it follows readily that the joint conditional distribution
of my = ut + -+ + Uy, My = vy + - +vf, and mz = U + -+ + Uw, is
equal to a constant multiple of the product of (62), (73) and the expected value
of 70. This proves our theorem.

It can be shown that the variates m;, ms and m; are of the order —172 in the
probability sense. Hence

ms3
my; — (1 — m)(1 — ma

(74) —n ) = nmz(l + ¢€)

where ¢ is of the order % . Hence we can say: even for moderately large n the dis-

tribution of the statistic V is well approximated by the distribution of nms, where
the joint distribution of my, me and ms is equal to a constant multiple of the product
of (62), (73) and the expected value of (70).

If n + 2 — p is an even integer, the expected value of (70) is obviously an
elementary function of m;, me: and m;. Hence, if » 4+ 2 — p is even, the
joint distribution of m; , m, and m; is also an elementary function of m; , ms and
msz .

If the constants p; and ¢ (¢ = 1, ---, p) in formula (34) are equal to zero,
the expected value of (70) is a constant and the joint distribution of m; , me and
mg is given by (62).



