UNBIASED ESTIMATES FOR CERTAIN BINOMIAL SAMPLING
PROBLEMS WITH APPLICATIONS!

By M. A. GirsHiCcK, FREDERICK MOSTELLER, AND L. J. SAVAGE

U. S. Department of Agriculture; Statistical Research Group, Princeton Univer-
sity; and Statistical Research Group, Columbia University

1. Introduction. The purpose of this paper is to present some theorems with
applications concerning unbiased estimation of the parameter p (fraction de-
fective) for samples drawn from a binomial distribution. The estimate con-
structed is applicable to samples whose items are drawn and classified one at a
time until the number of defectives ¢, and the number of nondefectives 7, simul-
taneously agree with one of a set of preassigned number pairs. When this
agreement takes place, the sampling operation ceases and an unbiased estimate
of the proportion p of defectives in the population may be made. Some examples
of this kind of sampling are ordinary single sampling in which n items are ob-
served and classified as defective or nondefective; curtailed single sampling where
it is desired to cease sampling as soon as the decision regarding the lot being in-
spected can be made, that is as soon as the number of defectives or nondefectives
attain one of a fixed pair of preassigned values; double, multiple, and sequential
sampling. In the cases of double and multiple sampling the subsamples may
be curtailed when a decision is reached, while for sequential sampling the proc-
ess may be truncated, i.e. an upper bound may be set on the amount of sampling
to be done. In section 3 expressions are given for the unique unbiased esti-
mates of p for single, curtailed single, curtailed double, and sequential sampling.

One or two of the illustrative examples of section 3 may be of interest because
their rather bizarre results suggest that some estimate other than an unbiased
estimate may be preferable; but the discussion of estimates other than unbiased
ones is outside the scope of this paper.

2. The estimate . For the purposes of the present paper the word point will
refer only to points in the zy-plane with nonnegative integral coordinates.

We shall need the following nomenclature. A region R is a set of points con-
taining (0, 0). The point (22, ye) is immediately beyond (x:, y1) if either x; =
n+ Ly=yora, =x,y =y + 1. A pathin R from the point ay tothe
point «, is a finite sequence of points ag, a1, - -+, a, such that a; (¢ > 0) is
immediately beyond a;—;, and o, ¢ R with the possible exception of a,. A
boundary point, that is, an element of the boundary B of R, is a point not in R
which is the last point «, of a path from the origin. Accessible points are the
points in R which can be reached by paths from the origin, while snaccessible
points are the points which cannot be reached by any path from the origin.

1 This paper was originally written by Mosteller and Savage. A communication from
M: A. Girshick revealed that he had independently discovered for the sequential probability
ratio test the estimate p(a) given here and demonstrated its uniqueness. For purposes of
publication it seemed appropriate to present the results in a single paper.
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14 M. A. GIRSHICK, F. MOSTELLER AND L. J. SAVAGE

All points are thus divided into three mutually exclusive categories: accessible,
inaccessible, and boundary points. The index of a point is the sum of its co-
ordinates, and the ¢ndex of a region is the least upper bound of the indices of its
accessible points. A finite region is a region for which the indices of the acces-
sible points are less than some number n. In particular a region containing
only a finite number of points is finite.

Paths may be thought of as arising by a random process such that a path
reaching a; = (x,y), a; ¢ R, will be extended to a;4+1 = (z, ¥ + 1) with probability
por to aiy; = (x + 1, y) with probability ¢ = 1 — p. We exclude p = 0, 1
unless these values are specifically mentioned. When a path is extended to a
boundary point of R the process ceases. It is clear from the definitions that for
a finite region R, paths from the origin cannot include more points than n + 2
where 7 is the index of the region. This means that a path from the origin can-
not escape from a finite region and that the probability that it strikes some
boundary point is unity. It is clear that each path from the origin to a boundary
point or an accessible point has probability p’¢®, if the point has coordinates
(z,y). We will need the following statements which are immediate consequences
of the discussion above:

‘A. The probability of a boundary point or an accessible point being included in a
path from the origin is P(a) = k(a)p¥q®, where k{a) is the number of paths from the
origin to the point. We shall call P(c) the probability of the point.

B. For a finite region 2, P(a) = 1, i.e. the sum of the probabilities of the

aeB
boundary points is unity.
Any region for which > P(a) = 1 will be called a closed region.

aeB

Of course, all finite regions are closed; but it is convenient to have a condition
such as that supplied by the following theorem guaranteeing the closure of some
infinite regions as well.

TueoreEM 1. A sufficient condition® that a region R be closed is that lim inf

A()/N/n = 0, where A(n) is the number of accessible points of index n.

Proor. We consider the ascending sequence of finite regions K, , each con-
sisting of the points of R whose indices are less than n. The boundary B, of
R, can be written as the set theoretic union K, J 4., where K, is B, 1 B, and
A, are the accessible points of R of index n. If a € B, and P,(e) is the prob-
ability of & with respect to R, , it is easily seen that for a € K., Pn(a) = P(a).
Since every point of B is ultimately contained in the ascending sequence K, ,

S P) = lim Y P@) =lim Y P.(a) < 1,

aeB n—w aeK, n—0 aeKy
the inequality being a consequence of statement B. But E P,(a) is mono-
a€dy,

tonically decreasing because D, P,(a) is monotonically increasing with n

aeKy

while X P.(a) = 1, from statement B.

a€By

2 If it is desired to admit p = 0, 1, the existence of boundary points (z,0) or (0,y) re-
spectively must be postulated.
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If we can show lim », P.(a) = O under the condition of the theorem,

n—w aedp
the proof is complete. For any point a e A,, P.(0) = k.(a)p'q""" which for
fixed p is O(1/A/n). The sum over A4, is O(4(n)/~/n) and therefore since the
hypothesis of the theorem implies that A (n)/+/n attains arbitrarily small values
for arbitrarily large values of n, the sum in question decreases monotonically
to zero.

CoOROLLARY. If the number of accessible points of R of index n is bounded, the
region s closed.

That the condition given in Theorem 1 is not a necessary condition may be
seen by examining the region R consisting of all points except points of the form
(2z + 1, 2y + 1) and (3, 0) and (0, 3).

TaEOREM 2. If R s closed and R contains S, S is closed.

Proor. The proof is essentially similar to that of Theorem 1.

Any reasonable estimate of p will be a function defined on the boundary points,
because the boundary points constitute, so to speak, a sufficient statistic for p.
That is, the probability of any path from (0, 0) given the boundary point « at
which it terminates is independent of p, and is in fact 1/k(c).

We shall construct an unbiased estimate of p for closed regions R, that is a
function p(a), o € B, such that Z p(a)P(a) = p (absolutely convergent).’

aeB

ConsTRUCTION. Let k*(a) be the number of paths in R from the point (0, 1)
to the boundary point a, and let p(a) = k*(a)/k(a). We remark that the defini-
tions imply £*((0, 1)) = 1, when (0, 1) is a boundary point.

TreorREM 3. For any closed region R p(a) 1s an unbiased estimate of p.

Proor:

> p@)Ple) = 3 ’“—@5) k(@) 9" ¢

a@eB aeB k(a

= 2 W@)p's
If (0, 1) is a boundary point, then £*((0, 1)) = 1 and k*(a) = 0, « # (0, 1), in
which case the sum in question consists of the single term p. If (0, 1) is not a
boundary point, consider the region R’ obtained by deleting (0,1) from R, and
k'(a), the number of paths in R’ from the origin to the boundary point « of R.

k(o) = k(@) — k()
2 k*a)p'q" = g k(@) p'q" — ;B K (a)p* ¢

aeB

=1-2 K@p'd.

a 6B

Now R’ is closed (Theorem 2); except for (0, 1) every boundary point of R’ is

3 Even if such a sum were p for a region which was not closed, we would not call the
estimate an unbiased estimate.
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easily seen to be a boundary point of R; and %’(«) vanishes except for the bound-
ary points of R’. Therefore

» + }'_; K(a)p’q" =1,

and the proof is complete.

It is clear from the construction that 0 < p(a) < 1; this is rather satisfying,
since an estimate of p outside of these bounds would be received with some mis-
givings.

Theorem 3 may be generalized to yield unbiased estimates of linear combina-
tions of functions of the form p‘q" provided the points (u, t) are not inaccessible
points. We need only let the point (u, ¢) play the role of (0, 1). Even though
the point (u, ¢) is inaccessible it may be possible to represent p‘q“ as a polynomial,
none of whose terms correspond to inaccessible points.

It is clear from Theorem 1 that p(«) is an unbiased estimate of p for the usual
sequential binomial tests, but the computation may be quite heavy. It should
be noted that the coordinate system used here differs slightly from the coordinate
system customarily used in sequential analysis. The custom is to let the z
coordinate represent the number of items inspected, whereas we use it to repre-
sent the number of nondefectives; this is the only difference between the co-
ordinates. We understand that in applications the customary procedure seems
preferable, but we find the present coordinates more convenient for the purposes
of ths article.

In general p is not the only unbiased estimate of p. A necessary condition for
uniqueness is that the region be simple, that is that all the points between any
two accessible points on the line + + y = n be accessible points. In other
words no accessible points of index n shall be separated on the line z + y = n
by inaccessible points or boundary points.

TarEOREM 4. A necessary condition that the estimate p be the unique unbiased
estimate for the closed region R is that R be simple.

Proor. For a region that is not simple we shall construct a function m(e)
not identically zero, such that
1) EB m(a) P(a) = 0.

But p(@) + m(a) will be an unbiased estimate of p different from 7.

Suppose we have a closed region B which is not simple. We consider the
lowest index n where the accessible points are separated. There will be at least
one uninterrupted sequence of points between some pair of accessible points
that are not accessible points. It is easy to see that all the points of this un-
interrupted sequence are boundary points of B. Let this sequence be the points
a; = (o — %, yo+1),1=0,1, - ,¢ 2 + yo = n. To begin the construction
of m(a) let m(e;) = (—1)’/k(a), 0 £ j < t. The coordinates of the point o’/
above the top point of the sequence are (xo — ¢, yo + ¢ + 1), and the number of
paths from o'’ to any point on the boundary is I'’(«), where if &’ is a boundary
point the number of paths I"(«’’) = 1; similarly o’ = (x5 + 1, yo) and I'(a) is
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the number of paths from o to the boundary point « with the same convention
if o’ is a boundary point. To complete the construction of m(a), let m(a) =
—['(@) + (=1)1"(a))/k(e) for boundary points not members of the sequence
under consideration. Before proceeding to check equation (1), we show that
®) 2 U@p'q = p"g" s 2 V@) p'q" = "

Because of symmetry we need only carry out the demonstration for the first sum.
If o is a boundary point !'(¢’) = 1, and for all other points « I'() = 0, and the
sum is the single term p*°g**". If o’ is not a boundary point consider the region
obtained by deleting o’ from R and the corresponding k’(a), the number of paths
from (0, 0) to the boundary points of the new closed region R’. Every boundary
of R’ except o is a boundary point of R. Let us extend the definition of k'(«)
to the whole boundary of R by defining k'(e) = 0 for « not in the boundary B’
of R’. Then it is easy to see that

k(a) = k() (a) + k'(a).
Now

1= Z; k(a)p” ¢

K (o) Z; U()p'q + aZB K ()p' ¢

= k(o) g Vp'd + 1 — K ()p* g™

establishing equation (2).
We now check that m(a) satisfies equation (1):

.

2 m(a)k(a)p’¢* = g (=1p*H g7 — g Va)p'e” — g (=1 V" (p" ¢

aeB

t
— Z (_ l)jpyo+.7 q:o—J _ pyo qzo+1 _ (_l)tpyo+¢+l q:o—t

7=0
t
— pyo q:ro—t (ZO (_1).1 pJ qt-—J _ qt+1 . (_l)tpt+l)
7=
= 0.

THEOREM 5. A necessary condition that p(a) be a unique unbiased estimate of p
Jor the closed region R is that there be no closed region R’ whose boundary is a proper
subset of the boundary of R.

Proor. Again supposing that the condition is not satisfied we shall construct
a function m(a) not identically zero such that equation (1) is satisfied. Let
k'(e) be the number of paths in B’ to @ in B of R, understanding, of course, that
kK'(a) = 0if ais notin B’ of R’. Consider m(a) = 1 — k'(a)/k(), m(a) is not
identically zero because k’(a) vanishes for at least one a, but k() does not.
From the closure of R and R’ it is obvious that m(a) satisfies equation (1).



18 M. A. GIRSHICK, F. MOSTELLER AND L. J. SAVAGE

Two simple examples will suffice to show that neither simplicity nor the
condition of Theorem 5 is alone sufficient to insure the uniqueness of p. The
region consisting of the points whose coordinates are given in the following con-
figuration and whose boundary points are

z
©, 3) x

0, 2) x

©, 1) 1, 1) x x

(0, 0) 1, 0) 2,0) 3, 0) x

indicated by the z’s satisfies the condition of Theorem 5 but is not simple. On
the other hand the region consisting of all points for which y < 3, except for the
two points (1, 0), (1, 1) is simple but does not, satisfy the conditions of Theorem 5,
because the region consisting of all points except (1, 0) with ¥y < 3 can play the
role of R’.

The authors are unable to decide whether the two conditions together guaran-
tee the uniqueness of p as an unbiased estimate of p, and supply the following
sufficient. condition which is adequate for many practical purposes.

THEOREM 6. A sufficient condition that a closed region have p(a) @ unique un-
biased estimate of p 1s that the region be simple and that there exist g, h (0 < g, h = 1)
such that for all boundary points | gx — hy | < M.

Proor. If there were an unbiased estimate of p different from p, subtracting
it from p would yield an equation of the form (sum absolutely convergent):
3) 2 m(@p'q =0,
where m(a) is not identically zero. But this will be shown to be impossible: If
m(a) were not identically zero, there would be an «, such that m(a) # 0 and
1) m(e) = 0 for all boundary points of index less than that of «,, and 2) one of
the coordinates of o, is less than the corresponding coordinate of any other
boundary point for which m(a) # 0. This follows easily from the simplicity
requirement which implies that the boundary points of index n are broken into
two sets a) those whose y coordinates are less than the y coordinates of the ac-
cessible points of index n, and b) those whose z coordinates are less than the z
coordinates of the accessible points of index n.! Since the situations @) and b)
are symmetrical we suppose without loss of generality that ao is a boundary
point whose y coordinate is less than that of any other boundary point with
m(a) # 0. Equation (3) may be written.

@ mao)p** g™ + p* 2 m(@p* T = 0,

agbag

4 It will be seen as the proof proceeds that if there are no boundary points to which
alternative a) applies, the restriction g > 0 may be removed and replaced by g = 0, simi-
larly if there are no boundary points to which b) applies the condition A > 0 may be re-
placed by & = 0.
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where the exponents appearing in the sum are nonnegative. But it will be shown
that for sufficiently small p
¢ [m(a) | > p| 2, m)p™'¢" |,

ae

ayba g

©)

which contradicts equation (4). Now

(6) | 2m(a)p"™7'¢" | < 2 | mla) | P 7"
_<_ 3 I m(a) I py—uo—-l qz—(hyo+h+ll+u—hv)/a

= ¢ | m(a) | (pg?) ™
< q—lh(yo+1)+2ullaz [ 'm(a) l pv—vo—lqz,

where all the summations range over the values indicated in (5). The summa-
tion indicated in (5) is thus seen to be dominated by a convergent power series
: hlo
in pg™’°.

Thus Theorem 6 shows that $ is a unique estimate for the sequential binomial
tests.

THEOREM 7. A mnecessary and sufficient condition that p be the unique unbiased
estimate of p for a closed finite region R is that R be simple.

Proor. The proof follows immediately from Theorems 4 and 6.

3. Applications and illustrative examples.

A. Single sampling. In single sampling a random sample of n items is drawn
from a lot containing items each of which is either defective or nondefective. It
is customary to estimate p, the proportion defective by the unbiased estimate
i/n, where 7 is the number of defectives observed. The boundary of the region
defined by a single sampling plan consists of all points of index n. Now

E((n—1,7) = <7:) and k*((n — 7,2 — 1)) = (? : }) Consequently the unique

unbiased estimate of p is

, .. -1 .
=i =(321)/(3) = im,
the result above.

It may be of interest to note that an unbiasqd estimate of the variance pg/n
of the proportion p, is <7: _ 12 ) / [(’:)n] = n::((r:z *___"1))’ (n > 1); this estimate
is obtained by the method suggested immediately following Theorem 3.

B. Curtailed single sampling. In single sampling schemes, there is usually
given a rejection number ¢ as well as the sample size n. If ¢ or more defectives
are found in the sample the lot is rejected, but if less than ¢ defectives are found
in the sample the lot is accepted. It is customary to inspect all the items in
the sample even if the final decision to accept or reject the lot is known before
the completion of the inspection of the sample. One reason sometimes men-
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tioned for this procedure is that an unbiased estimate for p is not known when
the inspection is halted as soon as a decision is reached. We provide the un-
biased estimate in the following paragraph.

In curtailed single sampling the boundary points when rejecting are (z, c),
¢ 4+ z £ n, when accepting (n — ¢ + 1, y), y £ ¢ — 1. The region is arec-
tangular array and obviously simple. The unique unbiased estimate along the
horizontal line corresponding to rejection with ¢ > 1 therefore s

s _fec—2+=x c+z—1\_ c¢—1
,P«“‘))—( ¢—2 )/( ¢—1 ) P

or in words, one less than the number of defectives observed divided by one less than
the number of observations. The unique unbiased estimate along the vertical line
corresponding to acceptance for ¢ > 1 1s

X _rn—c-l-i-—-l ’n—c+1: ___i—
p((n-—c+1,y))—( n—c )/( n—c)_n—c+i

that is, the number of defectives observed divided by one less than the number of ob-
servations. We reserved the case ¢ = 1 because it is rather illuminating. The
construction of Theorem 3 works as usual, and we note that p((0, 1)) = 1,
P((n, 0)) = 0 as we might expect, but p((z, 1)) = 0,0 < z < n.

It is somewhat startling to find that the only unbiased estimate of p for cur-
tailed single sampling with ¢ = 1 provides zero estimates unless a defective is
observed on the first item. We remark that the variance of this estimate is pg.
In other words, curtailed single sampling with ¢ = 1 is no better for estimation
purposes than a sample of size one when the unbiased estimate p is used.

A limiting case of curtailed sampling when n is unbounded has been con-
sidered by Haldane® as a useful technique in connection with estimates of the
frequency of occurrence of rare events. The region would not be closed unless
p = 0 were excluded. In our nomenclature there is a ‘rejection number” ¢
(c > 1), and we continue sampling and inspecting until ¢ defectives have been
observed. The unbiased estimate® is (¢ — 1)/(j — 1), where j is the total num-
ber of observations, and of course this is the estimate given by Haldane.

C. A general curtailed double sampling plan. The following example will
illustrate the sort of calculations involved in computing p for multiple and se-
quential plans. A sample of size n; is drawn and items are inspected until 1)
rn(l < r; £ ny) defectives are found, or 2) n; — a + 1 (¢ = 0) nondefectives are
found, or 3) the sample is exhausted with neither of these events occurring. If
case 3) arises, a second sample of size n is drawn and inspection proceeds until
a grand total of r2(r; £ 12 £ ny + ne) defectives is found orny + n2 — 1 + 1

5 J. B. S. Haldane, Nature, Vol. 155 (1945), No. 3924.
¢ For the uniqueness, see footnote 4,
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nondefectives are found. In this scheme we call r, and r. rejection numbers
and a an acceptance number. The unique unbiased estimate D is as follows:

L -1 )
(a) p((F, m) = 7'—11-:-—:7'—:-—1’ =01, 00, — 11 ;
p ) ———i———' ._ LU .
(&) pm —a+1,9) = = i=01-,6
z$o+yo—1(x—xo+r2—yo,_1)
D Zo e — Yo — 1
c) x,r = ,
() P, re)) E(xo+yo)(x—xo+r2—yo_1)
Zo Tz_yo—l

m-—n<z=m+n,;
xo-l—yo—1)<n1+na—rz+y—yo—xo)

*(
@ p((m+nm—r+1,y) =

Zo Y — Y
E(xo+yo)(n1+nz—r2+y—yo—a:o)
Zo Yy — Y

a<ys=m-+n;

where the summations extend from yo = a + 1toyo = 1 — 1, and 2o + yo = m1.
In the above equations (a) and (b) are the estimates corresponding to rejection
and acceptance on the basis of the first sample, while (¢) and (d) correspond to
rejection and acceptance when a second sample has been drawn. Rather than
use the sums indicated in (c¢) and (d), some may find it preferable to make the
estimation entirely on the basis of the first sample. If there is no curtailing,
the procedure of estimation is equivalent to single sampling, and the estimate is
again 7/n; as mentioned in paragraph A above. If the first sample is curtailed
and the estimate is made on the basis of the results of the first sample only, the unique
unbiased estimate is given by formula (a) when rejecting, by formula (b) when ac-
cepting, and by i/n, when a second sample is to be drawn. It will be noted that
(a) and (b) are identical with the expressions derived in paragraph B over the
range of values for which they are valid.

D. The sequential probability ratio test. Using the nomenclature of sequential
analysis,” the criterion for a decision is given by two parallel straight lines in the
dn-plane

) dy = h; + sn (lower line)
d2 = hs + sn (upper line),

where d is the number of defectives and » is the number of observations. The
acceptance and rejection numbers for any n are given by a, and r, , respectively,

7 See, for example, Sequential Analysis of Statistical Data: Applications, Section 2,
Columbis University Press, 1945.
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where a, is the largest positive integer less than or equal to d, and r, is the
smallest integer greater than or equal to d. We let k.(n) be the number of
paths from the origin which end in a decision to accept on the nth observation;
k.(n) is similarly defined when rejection occurs on the nth observation. We
also require an auxiliary sequential test with acceptance and rejection numbers
@y = @n — 1, 1= r, — 1 (which is equivalent to replacing k; and ks by ky +
1 — sand hy — 1 + s in the equations (7)), and with k,(n) and k;(n) the number
of paths from the origin which lead to acceptance or rejection on the nth observa-
tion for the new test. A graphical comparison of the two plans shows that:
The unigque unbiased estimate of p is

p(n) = kaln — 1)/ka(n)
when the original test leads to a decision to accept, and
p(n) = ki(n — 1)/ka(n)

when the original test leads to a decision to reject on the nth observation.

E. Regions with narrow throats. Let us consider the case of a closed region
which has only one accessible point of index n, n > 0 (n being the lowest index
not zero at which this phenomenon occurs). The number of paths from the
origin to this accessible point o’ we will denote m, while the number of paths
from o' to @, boundary points of index greater than n, will be denoted ().
Then the total number of paths to « from the origin is ml(e). We use the con-
struction preceding Theorem 3 to get (e). The number of paths from (0,1) to
« is similarly m*l(a), so for such points p(e) = m*/m. In other words, if a
closed region has a narrow throat such as that described, p(a) for « of index
higher than that of the accessible point o’ are independent of the shape of the
region beyond the line z + y = n, and in fact they are all identical. The cur-
tailed single sample with ¢ = 1 is a particular case of a region with a narrow
throat.

4. Estimation based on data from several experiments. In the previous dis-
cussion we have been concerned with estimation based on the result of a single
experiment. Various kinds of acceptance sampling plans have been suggested
as examples of the possible experiments. Acceptance sampling is one of many
activities where data toward the estimation of p are often accumulated in a series
of experiments. It has been pointed out by John Tukey that when information
is available from several experiments the estimate p will no longer be the unique
unbiased estimate of p. Little has been done on this problem of combining
information from several experiments, but to illustrate the point, we will discuss
a very simple example in terms of acceptance sampling.

Let us suppose that two large lots of the same size are inspected according to
the following curtailed single sampling plan: if a defective occurs at the first or
second observation, sampling is stopped and the lot is rejected; if the first two
items inspected are nondefective, we accept the lot.
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The total number of defective and of nondefective items in the two samples
form a sufficient statistic for p. In a single application of the sampling plan
the boundary points with their probabilities are (0, 1), »; (1, 1), pg; (2, 0), ¢
From this information we can generate the possible totals of defectives and of
nondefectives which may arise when samples are drawn from two lots, with their
probabilities by expanding

®) (P + pg + ¢ = p* + P’ + ¢* + 2 g + 2 pg® + 2pg%,

where a term on the right of the form mpvg® is the probability that in two samples
there will be z nondefectives and y defectives altogether. On the basis of the
observed number pair (z, ¥), which may be regarded as a possible terminal point
a for the two experiments performed successively, we wish to form an unbiased
estimate e((z, y)) = e(a). For the estimate ¢ to be unbiased the condition
Z e(a)P(a) = p must be satisfied, where in the present example the P(«) are the
six terms on the right of equation (8), and the e(«) are the estimates with which
the six probabilities are associated.

In the example under consideration the condition for unbiasedness will be
satisfied if and only if e((0, 2)) = 1, e((4, 0)) = 0, e((1, 2)) = %, e((2, 1)) =
[1 —e((2,2)]/2,e((3, 1)) = e((2,2))/2. Consequently a one parameter family
of unbiased estimates is available. Unfortunately the popular condition that
the variance be a minimum depends on the true value of p; in fact the variance
is minimized just when e((2, 2)) = 1/(2 4 p). So an unbiased estimate of uni-
formly minimum variance does not exist. In practical applications to accept-
ance sampling one might meet this difficulty by choosing a value of p near zero
for such a minimization scheme.

However it is clear that the last word has yet to be said about how best to
estimate p when one is faced with the results of several experiments.

6. Conclusion. We would like to call attention to a few problems raised by
but not solved in this paper: 1) find a necessary and sufficient condition that p
be the unique unbiased estimate for p; 2) suggest criteria for selecting one un-
biased estimate when more than one is possible; 3) evaluate the variance of 5.

In this connection, in a forthcoming paper by M. A. Girshick, it will be shown
for certain regions, for example for those of the sequential probability ratio test,
that the variance of p(a),

o3 > pa/E(x + y),

where E(x + y) is the expected number of observations required to reach a
boundary point.



