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1. Summary. It is shown that E[f(z) E(y | )] = E(fy) whenever E(fy)
is finite, and that c’E(y | x) < o’y, where E(y | z) denotes the conditional ex-
pectation of y with respect to x. These results imply that whenever there is a
sufficient statistic » and an unbiased estimate ¢, not a function of » only, for a
parameter 6, the function E(¢ | «), which is a function of % only, is an unbiased
estimate for § with a variance smaller than that of . A sequential unbiased
estimate for a parameter is obtained, such that when the sequential test termi-
nates after ¢ observations, the estimate is a function of a sufficient statistic for the
parameter with respect to these observations. A special case of this estimate is
that obtained by Girshick, Mosteller, and Savage [4] for the parameter of a
binomial distribution.

2. Conditional expectation. Denote by = any (not necessarily numerical)
chance variable and by y any numerical chance variable for which E(y) is finite.
There exists a function of x, the conditional expectation of y with respect to z
[3, pp- 95-101, 5, pp. 41-44] which we denote, as usual, by E(y | ) and which is
uniquely defined except for events of zero probability, such that whenever f(z)
is the characteristic function of an event F depending only on z (i.e. f = 1 when
F occurs and f = 0 when F does not occur), the equation

¢ E[f@E(y | ©)] = Elf(x)y]

holds. Now if f(z) is a simple function, i.e. a finite linear combination of char-
acteristic functions, it is clear from the linearity of expectation that (1) continues
to hold. Quite generally, we shall prove

THEOREM 1: The equation (1) holds for every function f(x) for which E[f(x)y]
18 finite.

To simplify notation, we write E(z | ) = E,z for any chance variable z. The
following corollary to Theorem 1 asserts simply that the operations E. and
multiplication by f(x) are commutative. This fact, which is trivially equivalent
to Theorem 1, has been stated by Kolmogoroff [5, p. 50].

CororrAry: If E[f(x)y] is finite, then E.[f(x)y] = f(z)E.y.

Proor oF CoroLLARY: If g(x) is a characteristic function, then E(gfE.y) =
E(gfy) by Theorem 1. Since E.(fy) is unique, the Corollary follows.

Proor or THEOREM 1: Since Theorem 1 holds when f(x) is a simple function
and the product of a simple function and a characteristic function is a simple
function, the Corollary holds when f(z) is a simple function.

1 The author is indebted to M. A. Girshick for suggesting the problem which led to this
paper and for many helpful discussions.
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Now let f(x) be any function for which E(fy) is finite. There is a sequence of
simple functions f,(z) such that f.(z) — f(x) and | f.(z) | < | f(z) |. For instance
we may define f.(z) = m/n when m/n < f(x) < (m + 1)/n,0 < m < 0, f.(z)
= m/n when (m — 1)/n < f(x) < m/n,0 > m > —n’, f.(x) = 0 otherwise.

We recall the following proposition of Doob [2, p. 296]:

2) | By | < E: |y |

with probability one. Then, using the Corollary (for simple functions) and
(2),wehave | fuE.y | = | E.(fay) | < E. |fuy | < E.|fy|. Also

®3) E(faEzy) = E(fwy).

Since the two sequences of functions f,E.y, f.y are bounded in absolute value by
the summable functions E. | fy | , | fy | , Lebesgue’s theorem [8, p. 29] applied
to (3) yields (1).

In section 3 we shall use the fact that if « is a sufficient statistic for a parameter
6 and f is any unbiased estimate for 6, then E(f | w) (which, since u is a sufficient
statistic, is a function of « independent of ) is an unbiased estimate for 6. Thisis
obvious, since it follows from the definition of conditional expectation that the
two chance variables f and E(f | u) have the same expected value. The interest-
ing fact is that the estimate E(f | u) is always a better estimate for than f in the
sense of having a smaller variance, unless f is already a function of % only, in
which case the two estimates f and E(f | u) clearly coincide. This is simply the
fact that the variance of the regression function of f on u is not greater than the
variance of f. In the case of Gaussian variables, where the regression is linear,
this fact has been noted by Doob [1, p. 231].> Our statement is embodied in

THEOREM 2: If oy is finite, so s o By, and o"E.y < o'y, with equality holding
only if E.y = y with probability one.

Proor: Denote by m the common expected value of y and E.y. Suppose for
the moment that ¢’E.y is finite. By the Schwarz inequality E[yE.y] is then
finite. Then ¢’y = E(y — m)’ = E[(y — E.y) + (E.y — m)]’ = E(y — E.y)*
+ o’E.y, since E[Ey(E.y — m)] = Ely(E.y — m)] by Theorem 1. Thus o’y
exceeds o’E.y by E(y — E.y)?, which is positive unless y = E.y, i.e. y is a func-
tion of . Thus we obtain the usual decomposition: the variance of y is the
variance of the regression of y on x plus the variance of y about the regression of
yon x.

To show that ¢°E.y is finite, we require the following

Lemma (ScawARrz INEQUALITY): If E(f°) and E(g°) are finite, then, with
probability one,

EX(fg) < E.(f)E.(g").

A proof can be constructed on the usual lines by considering the function
Q(z,\) = E.(f + N\g)®. There are, however, certain measure-theoretic difficulties

2 For functions of finite variance it is possible to interpret conditional expectation as a
projection in Hilbert space, when the statement becomes simply the Bessel inequality.
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in handling simultaneously the conditional expectations of the family of chance
variables (f 4+ \g)’; instead we shall give a simple direct proof based on the
ordinary Schwarz inequality for integrals.

We may suppose f > 0, g > 0 with probability one, since, from (2),

EX(Jfo) < E:(fllg))

with probability one. Unless the Lemma, holds there are three positive numbers
a, b, ¢ with @ > bc for which the event

{E.fg > d', E.(f) <b, Ef)<c}=H

has positive probability. Then denoting by h the characteristic function of H
and using the Schwarz inequality for integrals, we have

aP’(H) < E’hE.(fg)] = E’(hfg) < E(hf*)E(hg")
= E[hE.(f)|ERE(g")] < beP*(H),

which is impossible. This completes the proof of the Lemma.
The Lemma, with f = y, ¢ = 1, yields Ei(y) < E.(y°) with probability one,
which implies the finiteness of ¢"E,y and hence completes the proof of Theorem 2.

3. Unbiased sequential estimation. Consider ‘a chance variable z whose
distribution depends on a parameter 6. If we have an unbiased estimate #(z)
and a sufficient statistic u(z) (not necessarily a single numerical chance variable)
for 6, then, as mentioned in section 2, v(w) = E(t| u) is an unbiased estimate for 6
depending only on u.> We have shown that the variance of v is never greater
than that of ¢, and we shall see that it is sometimes much smaller (see example I1
at the end of this section). The estimate obtained in this section for the param-
eter of a sequential process is of the » type; its importance lies in the fact that
in many cases there is an unbiased estimate ¢ (generally poor) which is a function
of the first observation, and which will consequently be an unbiased estimate no
matter what sequential test procedure is used.

Let z,, 2, - - - be a sequence of chance variables whose joint distribution is
determined by an unknown point 6 in a parameter space. A sequential sample
(test) [9] is determined by specifying a sequence of mutually exclusive events

Si, Sz, - -+, where S; depends only on zy, --- , z; and
(4) > P(S:) =1 foralls.
=1 .

The event, S; is that sampling stops after the sth observation, and (4) ensures that
sampling stops eventually. Thus if we define the chance variable n = 7 when S;
occurs, n is the size of the sample.

3 It was pointed out by the referee that, strictly speaking, u does not have to be sufficient;
it is necessary only that v(u) be independent of §. The author is indebted to the referee for
many valuable suggestions.
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Denote by ui, uz, --- any sequence of chance variables such that u; =
w21, -+ -, x;) is a sufficient statistic for estimating 6 from z,, --- ,z;. There
will of course be many such sequences {u;}, but it often happens that there is
one which arises in a natural way from the sequential process; if we are sampling
from a binomial population, for instance, u; = number of defectives in the first ¢
observations is a sufficient statistic. We shall suppose that the sequential test
satisfies the following condition

(6) Si=WL(S + - + S,

where W, is an event depending on u; only. This condition means that when
the 7th observation is taken, the decision to stop at this point depends only on
the 7th sufficient statistic 4;. For the binomial example mentioned above, this
means that the decision to stop after 7 observations depends only on the number
of defectives observed at that stage, and not on the order in which they were
observed. The Neyman criterion for u; to be a sufficient statistic [7, 10, p. 135]
shows that (6) is no restriction whatever for the sequential probability ratio
test [9] since the ratio in terms of which the test is defined will be a function of

u; only.
Let 41, %, - - - be any sequence of chance variables such that ¢; is a function of
2y, -+ ,x; ;define ¢t = ¢; when S; occurs. If E(f) = 0, ¢is said to be an unbiased

estimate for 0 (relative to the particular sequential test {S;}). The theory of
sequential sampling has been formulated primarily for testing hypotheses; a
problem which arises naturally and often is the following: After a sequential
sample has been obtained, is there an unbiased estimate for §? Since a sample
of constant size is a special case of a sequentially selected sample, we cannot
hope to find unbiased estimates for arbitrary sequential samples unless such
estimates exist for samples of every constant size. This is equivalent to the
existence of a function #(x,) for which E(f) = 6 for all 6. Our problem is to
discover an unbiased estimate for 6 which, when n = 1, is a function of u; alone.
Such an estimate has been found by Girshick, Mosteller, and Savage [4] for
sequential samples from a binomial population. It turns out that whenever
there is any unbiased estimate at all for a particular sequential test, there is
also one of the type described. Thus, if there is an unbiased estimate ¢ for
samples of fixed size N, there will be an unbiased estimate of the type described
for every sequential test requiring at least N obsevvations, since ¢is itself an
unbiased estimate for such sequential tests.

Denote by ¢ any unbiased estimate for 6 relative to a particular sequential
test {S;}. Denote by w,, h; the characteristic functions of the events W,
C(S: + --- + 8, respectively, and define u = u, ,v = E(hi—t: | u:) /E(hiy | ;)
when n = <. To justify the definition of » we remark that the event {n = 1,
E(h;—1 | w) = 0} has probability zero, since gh;_1 < hi—; with probability one,
where g is the characteristic function of the event {E(hi | w;) > 0}, while

4 For any event 4, C'(A) denctes the event that .1 does not occur.
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E(qh:—x) = E[qE(hi—l l u;)] = E[E(hi- | u)] = E(hi—l)-

Since u; is a sufficient statistic for § with respect to z; , - - - , z; , v is a function of
u and 7 only, independent of §. The main result of this section is

THEOREM 3. v is an unbiased estimate for 6.

Proor: We shall show that v = E(¢| u,n). This not only shows that v is an
unbiased estimate for 8, but also interprets v in a very simple way and, as men-
tioned above, implies that the variance of v does not exceed that of ¢. It must
be verified that for every event D depending only on n and u, E(dv) = E(db),

where d is the characteristic function of D. Now D = Y, DS;, and DS; = D;8S;
=1

where D; is an event depending only on u;. It is sufficient, then, to show
E(diwhiw) = E(d;wihiat), where d; is the characteristic function of D; . Now

E(dwih;_w) = Eld;wh;1E(hiat; | w)/Ehiz | us)],

using the definition of ». The function in brackets is h;—; multiplied by a function
of u; ; by Theorem 1 its expectation is unaltered if hi_; is replaced by E(hi_1 |u;).
Thus the right member of the last equality equals

E[d,w;E(h,-_.lt, | u,)] = E(d,;’w,h,'_lh) = E(d,wih.;lt).

We conclude with two examples:

I. BinoMIAL AND POISSON DISTRIBUTIONS. Suppose ), 22, -- are inde-
pendent with identical distributions, either binomial or Poisson, with parameter
6. Thent = 2, (= ¢, for all 7) is an unbiased estimate for 8, and it is well known
that u; = 2; + - -- -+ x; is a sufficient statistic for estimating 6 from z; , - - - , z; .
For any sequential test satisfying (6) our unbiased estimate for 6 will be

) — E(hiyoy|us = u) _ E(hiy2.f)
- E(h,‘.qlui = ’M) - E(h,'_lf)

when n = 7, u; = u, where f is the characteristic function of the event u; = u.
Then

2 ki, 4)
2 ki, 9)
7=0

Icl(u, ’L)
2 ki(u, 0)

) for Poisson

v = for binomial

where k;(u, 7) denotes the number of possible scquences 2, - - - , x; for which
n>1,2+ - +2;=u,and x; = j. For the binomial case, thisis the estimate
found in [4].

II. SAMPLES OF CONSTANT sIzE. We consider the special case where a
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sample of constant size N is selected, z; , - -« , zx are independent with identical
distributions, and the density function for x; has the form

) p(x, 6) = r(6)s(6)*“q(x)

considered by Koopman [6)°. Suppose further that there is an unbiased estimate
t(z;) for 6. These conditions will be satisfied, for instance, if 8 is the mean of a
binomial, Poisson, or normal distribution, with w(z) = #¢x) = z. Thenuy
= w(z) + -+ + w(xy) is a sufficient statistic. Our estimate v becomes simply
v = E[t(x)) | ux]. Now E[t(z)) | ux] = -+ = E[t(zs) | ux], since uy is a sym-
metric function of 2, - -- , zy , which are independent with identical distribu-
tions. Consequently

v = E[Z t(x,-)/NluN:l,
so that
7w <o (‘Né,: t(xf)/N> = ¢’ t(z;)/N.

N
In the special case w(z) = #(x) = x, we have» = »_ x,/N, i.e. our estimate is
j=1

simply the mean of the N observations 2y, -+, Zy .
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