NOTES

This section is devoted to brief research and exposttory articles on methodology
and other short items.

o

A USEFUL CONVERGENCE THEOREM FOR
PROBABILITY DISTRIBUTIONS

By HeENRY ScHEFFf

University of California at Los Angeles

In problems of establishing limiting distributions it is often apparent that the
probability density p,(x) of a random variable X, has a limit p(z); throughout
this paper n = 1, 2, 3, --- , and all limits are taken as n — «. If p(x) is the
density of a random variable X, what we really care about then is whether the
limits apply to probabilities, which involve integrals of the densities: Does
lim Pr{X,in 8} = Pr{X in S} for all' Borel sets S, or, does

1) lim Lp,,(:c) dr = fp(:c) dx ?

The question is thus one of taking a limit under an integral sign. Perhaps the
most widely used justification of such a process is the following theorem of
Lebesgue [1, p. 47; 2, p. 29]: If for a sequence {f.(x)} of integrable functions,
lim f,(x) = f(z) for almost all # in S, then a sufficient condition that

lim fs falx)dx = /s f(x) dx

is that there exist an integrable function g(x) which uniformly dominates the
sequence {f(z)}, thatis, |f(z) | < g(x) foralln and all zin S, and f g(x) de <o,
S

For example, in the excellent new treatise by Cramér the limiti: g form of the
{-distribution is treated as follows (1, p. 252; other examples «(n pp. 369,
371]: For n degrees of freedom the ¢-variable has the density

(2 Pa(®) = ca(l + x2/n)—§(n+1)’
where
3) ¢n = (nm) TG + 1))/T(Gn).

It is shown fairly easily that lim p.(x) = p(x), the density of N(0, 1), where

1 In defining the convergence of a sequence of distributions to the distribution of a dis-
continuous random variable X it is desirable to modify this requirement so that it is de-
manded only of sets S which are continuity intervals of X [1, p. 83]. We are concerned here
however only with the ‘“absolutely continuous case’” where X has a probability density p(x).

434

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Mathematical Statistics. MINGIS ®

Www.jstor.org



A CONVERGENCE THEOREM 435

N(m, ¢°) denotes the normal distribution with mean m and variance ¢>. Then
to prove

lim f_ : pul@) do = f_ : p(2) da,

Cramér shows that {p.(z)} is uniformly dominated by an integrable function.
It is instructive to consider some examples where

¢
4) lim [ Pal) dz
does not equal
. ¢
(5) f lim p,(z) dx.

In the examples (7), (47), (4%7), lim p,(x) = O for all x and hence (5) is zero for
all £.
(%) pa(x) = 1for —n — 1 < 2 < —n, zero elsewhere. Then (4) equals 1 for all £.
(%) pa(@) = 1/n for —in < z < in, zero elsewhere. Here (4) equals % for all

¢

(#95) pa(x) = 2n’x for 0 < & < 1/n, zero elsewhere. Now (4) is zero for
£ < 0, unity for & > 0.

An example in which lim p,(x) £ 0is

() pa(x) = %h.(x) + po(x)], where h, is the p, of one of the above examples
and po is a fixed density. Then lim p,(x) = ip(x). Now (4) exceeds (5) by
half the amount it did in the corresponding above example.

The essential features of these examples could be obtained with normal
distributions but would involve a little more computation, for instance, N(—n, 1),
N(0, n%), N(1/n, 1/n%), for examples (2), (%), (#45), respectively.

We note that in none of these examples is lim p,(x) a density. This suggests
that the trouble might perhaps be prevented by requiring that lim p.(x) be a
density—which happens in the case from which we started. This surmise is
correct. We may formalize the situation as follows:

DeriNiTION. A function f(x) will be called a density if it is non-negative and

f f(x) de = 1. Here R denotes the whole space of x.
R

The reader may think of a univariate density, where z is a real variable and
R is the real axis, but theorem and proof run the same for a k-variate density,
where z is a point in a k-dimensional Euclidean space R.

TarorEM’. If for a sequence {p.(x)} of densities

lim pa(z) = p(x)

2 The hypotheses of this theorem, while perfectly adapted to applications in probability
and statistics, would not seem the ‘‘natural’’ ones in real variable or measure theory. Pro-
fessor A. P. Morse has remarked to the writer that, if the theorem has not been stated in this
form before, it is at least an easy corollary of some more general results known in that field.
Nevertheless our direct proof based only on the familiar Lebesgue theorem and using only
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for almost all x in R, then a sufficient condition that
lim f Palz) do = f p(x) dz,
S S

uniformly for all Borel sets S in R, is that p(x) be a density.

Proor. Let us write the difference

(6) pn(x) - P(m) = 5,;(-’12).
Then

(7 n(x) =0

for almost all z in B. Also

® [g&,.dx=‘[gp,,dx—fspdx,

and so it suffices to prove that f 8, dz — 0 uniformly for all S in R, where S
8

henceforth denotes a Borel set. If in (8) we let S = R we get

(9) fmw=0
R

since p, and p are densities. We now split the difference 4,.(z) into its positive
and negative parts: Let
(10) =30+ 18]), &% =130 —]8&]),
so that

=014+ 0, & 20,. 5<0.
From (7) and (10), we find
(11) 6 —0

for almost all z in R, and from (9),

(12) Lﬁm+£am=u

very simple manipulations may be of interest to readers of the Annals. Professor Morse
also pointed out that the stronger result lim f | pa(x) — () | dz = 0 uniformly for all S,
]

may be stated. This follows from our proof since

flp,.—pldx=f6',’,'dx—fa§dx.
s s s
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By virtue of (6),8, > —p. Nowifs, < 0,8, =8, > —p, and if 6, > 0,0, =
0 > —p, and hence in every case 0 > &, > —p. Since we now have | 5;(2) | <

p(x) and f p(x) dz = 1, we may apply’ the Lebesgue theorem to get
R
limf 0n dzx = f lim 687 dx.
R R

The right member is zero because of (11). It then follows from (12) that

lim f 8% dx is also zero. The relations
R
0< fa:.‘dx < f otdr —0,
8 R
0> f 0, dzx > f ondx—0
8 R

guarantee that the quantities f 5% dx and f 87 dx have the limit zero uniformly
8 8

for all S, and hence the same is true of their sum (8).

Returning to the example (2), we remark that it is practically obvious that the
second factor on the right has the limit ¢ ***, but it is not quite so obvious that
lim ¢, = (2r)”%. This situation is typical of many applications where it is
more difficult to evaluate the limit of “the” constant than the limit of the re-
maining factors, and one wonders after obtaining the latter limit whether the
constant is not automatically forced toward the limit desired for it, and whether
the direct calculation of its limit could not be avoided. Let us put the question
as follows: Suppose that

{Pn(@) = cafal®)}

is a sequence of densities and that
p(x) = cf(x)

is also a density. Then if lim f.(x) = f(z) for almost all , may we conclude
that lim ¢, = ¢? If so, we could then apply the above theorem without having
evaluated the limit of the constant or produced a dominating function. Un-
fortunately the answer to this question is no, as shown by example (i) above:

2 Although our proof rests on the Lebesgue convergence theorem, this theorem is applied
wto 5(x) and not to pa(x). While in most cases of practical interest the sequence {p.(z)}
is uniformly dominated by an integrable function, it is possible to devise a simple example
where this is not true and yet our theorem applies: Let p.(z) = 1for 1/(n +1) <z <1

n

and for @n < % < any1, zero elswhere, where a, = 2 1/i. Then sup pn(x) = 1 for
i=1

all z > 0, nevertheless lim p.(z) is a density, namely that of the uniform distribution on
0, 1).
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If we let f.(x) = h.(z) + po(z), and f(x) = po(x), then lim f,(x) = f(x), but
¢, = %2 and ¢ = 1, hence lim ¢, > ¢. Employing the assumption that p,(x)
and p(x) are densities we see

1/c, = f fu(x) dz, 1/c = f f(z) dz,

and hence lim ¢, = c¢if and only if

(13) limf falz) dx = f lim f,(x) dz.

It follows that in such cases if we wish to establish a limiting distribution in the
sense (1), we may either prove lim ¢, = ¢, or we may justify (13), say by produ-
cing a suitable dominating function, but we need not do both. No doubt the
first alternative would be preferable at all but the most advanced levels of
teaching or exposition.
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AN EXPLICIT REPRESENTATION OF A STATIONARY
GAUSSIAN PROCESS

By M. Kac' axp A. J. F. SIEGERT

Cornell University and Syracuse University

1. In a paper which will soon appear in the Journal of Applied Physics [1]
the authors have introduced methods of calculating certain probability dis-
tributions which are of importance in the theory of random noise in radio re-
ceivers.

The complexity of the physical problem and occasional uses of heuristic reason-
ings may have obscured some of the mathematical points. For this reason the
authors felt that it may be worth while to illustrate one of the basic ideas on a
simple but important example.

2. A stationary Gaussian process is a one parameter family 2(¢) of random
variables such that:

(a). z(¢) is normally distributed; the mean and the variance being inde-
pendent of ¢

(b). the joint probability distribution of z(t,), z(f), - -+ , #({,) is multivariate
Gaussian whose parameters depend only on the differences ¢; — & .
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