A CORNER TEST FOR ASSOCIATION
By Paur S. OumsteEAD AND JoHN W. TUKREY

Bell Telephone Laboratories and Princeton University

1. Summary. This paper proposes a new test (the ‘“quadrant sum”) for
the association of two continuous variables. Its notable properties are:

(1) Special weight is given to extreme values of the variables.

(2) Computation is very easy.

(8) The test is non-parametric.
Significance levels (for the quadrant sum) are given to the accuracy needed for
practical use. To this accuracy they are independent of sample size (see Fig. 1).
The generating function of the quadrant sum is given for the null hypothesis
(no association = independence). A limiting distribution is deduced and com-
pared with the cases 2n = 4, 6, 8, 10, and 14. Extension to higher dimensions
and application to serial correlation are discussed.

2. Description of test (even number in sample). We shall describe the
test as though a scatter diagram had already been drawn. The possibilities of
direct computation from tabular data are indicated by the examples in sections
8 and 9.

In the scatter diagram, draw the two lines, # = Zm , ¥ = Ym , Where 2, is the
median of the z-values without regard to the values of y, and ¥, is the median
of the y-values without regard to the values of x. Think of the four quadrants
or corners thus formed as being labelled 4+, —, 4, —, in order, so that the upper
right and lower left quadrants are positive. Beginning at the right hand side
of the diagram, count in (in order of abscissae) along the observations until
forced to cross the horizontal median. Write down the number of observations
met before this crossing, attaching the sign + if they lay in the + quadrant,
and the sign — if they lay in the — quadrant. Repeat this process moving
up from below, moving to the right from the left, and moving down from above.
The quadrant sum is the algebraic sum of the four terms thus written down.
This process is illustrated in Fig. 2, where the black dots represent contributions
to the sum, and the dotted lines, crossings.

When there are an even number of pairs (z, ¥) and no ties, the medians will
pass between the points. In this, the simplest case, the distribution of the
quadrant sum is known for the hypothesis of no association (that is, of inde-
pendence), and significance levels are given in Table 1 for the magnitude (abso-
lute value) of the sum. It will be noticed that the sample size does not enter in
any important way.

The cases of an odd number of observations and of ties are discussed in the
next two sections. Simple devices make the test usable in most cases. A very
great tendency toward ties, however, will make it inapplicable. This will be
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unimportant in most applications because of the fact that attention is being

directed to the periphery.

INDIVIDUAL TERMS
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Fi16. 2. Scatter diagram of 116 pairs of observations

The set of data which prompted the development of the test is shown in Fig. 2.
The accompanying report described it as follows: “The various points appear
to be scattered almost completely at random and give little indication of corre-
lation.” The quadrant sum is 1614 which is significant at the 0.59, point.
Intuitively, the significant association of the peripheral points is clear.
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3. Description of test (odd number in sample). If the sample size is odd,
then we may usually follow the process outlined above. We will have difficulty
only when the counting process meets a point, one of whose coordinates is a
median. In this case we employ a simple device, namely:

Given a sample of 2n 4 1 pairs, let 2* and y* be the medians of the z-values
and of the y-values, respectively. Let the pairs in which they occur be (z*, yx)
and (zn. , y¥*), respectively. Replace these two pairs by the sing'e pair (%, , yr).
There are now 2. pairs and the regular method can be applied.

The quadrant sum so obtained from an unassociated population has the same
distribution as that formed directly from 2n pairs.

4. Description of test (treatment of ties). The behavior of the test is known
when (1) there is no association, (2) the probability of a tie in z-values or y-values

TABLE 1
Working significance levels for magnitudes of quadrant sums
Significance level (Conservative) Magnitude of quadrant sum*

109, 9

5% 11

29, 13

19, 14-15

0.59% 15-17

0.29, 17-19

0.19 18-21

* The smaller magnitude applies for large sample size, the larger magnitude
for small sample size. Magnitudes equal to or greater than twice the sample
size less six should not be used.

is zero. The following approximation, which has an unknown effect on the
distribution, is suggested when ties are present:

When a tied group is reached, count the number in the tied group favorable
to continuing and the number unfavorable. Treat the tied group as if the
number of its points preceding the crossing of the median were

number favorable
1 -+ number unfavorable’

It seems likely that this approximation is conservative.

6. Discussion. When a moderate number, say 25 to 200, of paired observa-
tions on two quantities are plotted as a scatter diagram, visual examination
frequently detects what seems to be definite evidence of association between
the variables. Often in such cases, the usual methods for measuring associa-
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tion do not find statistical significance of association. Visual judgment, par-
ticularly by engineers or scientists who may wish to take action on the basis
of their findings, gives greater weight to observations near the periphery of the
scatter diagram. This is not always desirable—but often it is very desirable.
A quantitative test of association with such concentration on the periphery has
been lacking. The quadrant sum test was developed to fill the gap. Its fea-
tures of speed and non-parametricity are useful but secondary from' this point
of view.

When uniform attention to the whole scatter diagram is desired, the quadrant
sum test is of unknown usefulness. We know little enough of the operating
characteristics of the more conventional tests, such as:

1. The product moment correlation coefficient

2. The four-fold table formed by the medians

3. The biserial correlation coefficient

4. The rank correlation coefficient
and less about the operating characteristics of the present test. In this case,
the quadrant sum test can only be recommended definitely for exploratory
investigations of large amounts of data.

There are many situations, however, where we do not know where to concen-
trate our attention, and where speed and non-parametricity are cardinal virtues
in a test. One example is the use of serial correlation in studying industrial
processes. We may guess that here we are interested in the periphery, but
neither theory nor experience can, so far, prove this. In such situations the
quadrant sum is by far the fastest to use of any of the tests known to the authors,
and we believe one of the most useful.

6. Elementary derivations. We can easily find the distribution of
1. An individual term of the quadrant sum
a. For fixed sample size
b. In the limit
2. The quadrant sum itself
a. For fixed sample size
b. In the limit, assuming asymptotic independence of the four terms.
This we shall do now, leaving the proof that 2a actually converges to 2b to a
later section. i
Consider a sample of 2n pairs (21, 1), * - , (%2s , Y2s) from a population in
which z and y are independent. It is both clear a.nd easily verifiable that
1. The set of 2n z-values, 21, *++ , Z2n
2. The set of 2n y-values, y1, -+, ¥2n
3. The permutation of the order of the y-values when the pairs are ordered
by the z-values
which together determine the sample, are independently distributed, and that
any permutation is as likely as every other. (We have assumed no ties, which
is a consequence, with probability one, of the continuous cumulative distribu-
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tions of z and y). Since the quadrant sum depends only on the permutation,
its distribution in the absence of association does not depend on the distribu-
tions of z and y.

We must solve, then, certain purely combinatorial problems—under the
hypothesis that the 2n! permutations of the y-values are all equally likely.
It may simplify matters to assume that the values of x in the sample are 1,2, -- -,
2n and that those of y are the same. How, then, do we calculate the distribu-
tion of a single term of the quadrant sum. Let us begin with small z-values,
and the pair (1, ). If y1» = 1, 2, ---, n, we count “one’” positive, and if
y =n+ 1,n+ 2, ---, 2n, we count “one” negative. We pass on to (2, y»)
and so on. How many permutations yield a count of exactly & positive values?
Those in which 1, %2, - - - , ¥& are equal to or less than n, yi.1 equal to or greater
than n + 1, and the other (2n — &k — 1)y’s are arbitrary. There are:

an—1D"nm—k+1)-m)2n —k—1)!
such permutations, the fraction of all (2r)! permutations being:

) nn—1) - n—k+ 1)n
@2n)(2n — 1) ... (2n — k- + 1)(2n — k)

which is, then, the probability that this contribution will equal 4%, or by sym-
metry, the probability that it will equal —k, k& 5= 0.
For large n, this becomes merely:

2) pe =27 e,

In order to obtain the distribution of the quadrant sum itself, we must concern
ourselves with the lack of independence of the four terms. This is indicated
most clearly in the case of 2n = 2, where the 2! = 2 permutations yield
41414141 =4and —1 —1 —1 —1 = —4. Here, there is complete lack
of independence. We shall see later that theie is effectively independence in
the limit, so that it is worth while to calculate the sum of four independent
terms with the limiting distribution (2) and find that it satisfies:

ok® + 9k* + 168k + 208
216..2%

(8) Pr(] independent sum of 4 terms | >k) = ,k>0.

¢
The details will be omitted. '

A simple device, reminiscent of Wald’s [3, 1943] establishment of the two-
dimensional tolerance limits enables us to avoid difficulties with lack of inde-
pendence and compute the exact distribution of the quadrant sum for any =.
We decompose the permutation of the y-values into the following parts, which
together specify the permutation:

(a) The number, 7, of pairs in the upper right quadrant.

(b) The set of § values of = between n» + 1 and 2n corresponding to pairs in

the upper right quadrant.
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(c) The set of j values of y between n + 1 and 2n corresponding to points
in the upper right quadrant.

(d) The set of j values of = between 1 and n corresponding to pairs in the
lower left quadrant. (Note that the use of medians ensures that the
lower left and upper right quadrants contain the same number of points.)

(e) The set of j values of y between 1 and n corresponding to pairs in the
lower left quadrant. ,

(f) The permutation of j objects defined by the pairs in the upper right
quadrant. :

(g) The permutation of n — j objects defined by the pairs in the upper left
quadrant.

(h) and (i) the permutations from the remaining quadrants.

It is easily verified that: (1) given j, items (b) to (i) can be assigned at will, (2)
each assignment of (a) to (i) corresponds to one and only one permutation, (3) the
quadrant sum depends only on items (b) to (e). In fact, the right hand term
depends on item (b), the upper term on item (c), the left hand term on item (d)
and the lower term on item (e). While j remains fixed, the terms behave
independently.

For fixed j, what is the distribution of a single term? If a set of j z-values

gives the term +%, it must contain the k largest 2-values and not contain the

next. There are:
<n—k—1
n—j-—1

such sets. The generating function for a single term, is, then:

ifn—k-—1 nifn—Fk—1
() > (" # 2 o,
k=1\n —j —1 k-l‘,j—l

Since the terms are independent for fixed j, and there are G — HH?
ways to supply the permutations forming items (f) to (i), the generating func-
tion for the quadrant sum, S, , is:

% GD(n — Hy? i fn—k—1\ n=ifn—Fk—1 ¢
Guz) = > W@ =Y o .

®) G:(=) ,E-:o (2n)! 2 n—j—l) +§ i-1 )
The exact probability of equalling or exceeding each value of S, has been

computed for 2n = 2, 4, 6, 8, 10, and 14. Table 2 gives these probabilities
and Fig. 3 shows the values of

%" + logi Pr( | quadrant sum | > m)

this particular function being chosen for its relative constancy. The maximum
value of the quadrant sum is 4n, and for values of k less than 4n — 6, there



TABLE 2

Probability of a Sum of Absolute Value Equal to or Greater than k when a Sample
of 2n is Drawn from an Unassociated Population

N\
N
N 2 2 4 6 8 10 12 14 - o*
%]
N
0 1.0000| 1.0000]| 1.0000| 1.0000] 1.0000 1.0000{ 1.000000
1 1.0000] 0.7500( 0.9333] 0.9036{ 0.9106 0.9115] 0.912037
2 1.0000| 0.7500] 0.7556| 0.7544| 0.7567 0.7580| 0.754630
3 1.0000 0.4167| 0.6000| 0.6000 0.6008 0.6039( 0.599537
4 1.0000| 0.4167| 0.4667| 0.4619| 0.4662 0.4690| 0.462963
5 0.0000} 0.3333| 0.3111] 0.3508| 0.3519 0.3547| 0.346933
6 0.0000| 0.3333| 0.2222| 0.2619| 0.2589 0.2611| 0.252025
7 0.0000| 0.3333| 0.1556| 0.1821| 0.1867 0.1876| 0.177662
8 0.0000| 0.3333| 0.1111| 0.1258| 0.1333 0.1322( 0.121817
9 0.0000| 0.0000{ 0.1000] 0.0839( 0.0928 0.0918| 0.081471
10 0.0000| 0.0000{ 0.1000] 0.0554| 0.0642 0.0632| 0.053295
11 0.0000| 0.0000| 0.1000| 0.0375| 0.0436 0.0432| 0.034189
12 0.0000| 0.0000] 0.1000{ 0.0304] 0.0290 0.0296| 0.021557
13 0.0000{ 0.0000] 0.0000{ 0.0286| 0.0190 0.0202| 0.013386
14 0.0000| 0.0000| 0.0000{ 0.0286| 0.0127 0.0139| 0.008200
15 0.0000| 0.0000| 0.0000{ 0.0286| 0.0095 0.0096/ 0.004963
16 0.0000| 0.0000| 0.0000{ 0.0286] 0.0083 0.0066] 0.002972
17 0.0000{ 0.0000] 0.0000( 0.0000] 0.0079 0.0045| 0.001762 .
18 0.0000| 0.0000{ 0.0000| 0.0000| 0.0079 0.0031| 0.001036
19 0.0000| 0.0000; 0.0000| 0.0000; 0.0079 0.0021{ 0.000604
20 0.0000| 0.0000{ 0.0000] 0.0000, 0.0079 0.0014| 0.000350
21 0.0000| 0.0000{ 0.0000] 0.0000{-0.0000 0.0010{ 0.000201
22 0.0000| 0.0000; 0.0000/ 0.0000; 0.0000 0.0008| 0.000115
23 0.0000] 0.0000; 0.0000| 0.0000] 0.0000 0.0006| 0.000065
24 0.0000| 0.0000| 0.0000f 0.0000; 0.0000 0.0006| 0.000036
25 0.0000| 0.0000] 0.0000| 0.0000] 0.0000 0.0006| 0.000020
26 0.0000| 0.0000( 0.0000; 0.0000| 0.0000 0.0006| 0.000011
27 0.0000]| 0.0000] 0.0000{ 0.0000| 0.0000 0.0006| 0.000006
28 0.0000| 0.0000| 0.0000{ 0.0000| 0.0000 0.0006| 0.000003
29 0.0000| 0.0000| 0.0000( 0.0000; 0.0000 0.0000{ 0.000002
30 0.0000| 0.0000 0.0000/ 0.0000{ 0.0000 0.0000| 0.000001
31 or over | 0.0000/ 0.0000{ 0.0000( 0.0000, 0.0000 0.0000| 0.000000
Variance
of k 16 24 262 26% 2618 | 267%| 26143 24

* Probability for 2n = «, k > 0, is given by

9k + 9k* + 168k + 208
216 - 2*
502
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is quite good agreement between the curves for finite n and formula (3) at
the practically significant percentage points. The situation for very small
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probabilities suggests a careful consideration of the limiting behavior of the
quadrant sum distribution (see section 10).
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The device for samples of 2n + 1 deserves a word of justification. If there
is no association, the 2n + 1 y-values are randomly paired with the 2n + 1
z-values, and, in particular, the y-value paired with the z-median is randomly
selected. If we pair it with the (randomly selected) z-value which was paired
with the y-median we still have random pairing. The pairing of the 2n pairs
is random, although neither the z-values nor the y-values make up a sample.
The randomness of pairing is all that has been used in the discussions of this
section.

7. Extension to higher dimensions. The same ideas that underlie the quad-
rant sum test for two variables may be extended in several ways to give tests
for various types of association among three or more variables. Only one
three-variable case will be discussed here, leaving further extension to the
reader. ,

Given three variables, z, ¥, and 2, and a sample of matched observations on
these, it is clearly possible to use the simple quadrant sum test for two variables
to investigate association between z and y separately, between y and z separately,
and between z and z separately. If the Pearson coefficient of correlation were
being computed and were found to be close to zero for each of these pairs, it
would be assumed that there was no detectable association through the second
moments. In a trivariate normal or Gaussian distribution, where the first and
second moments determine the whole distribution, if there is independence be-
tween the separate pairs of variables, there is no possibility of a three-way
association. It is of some interest, however, to notice that a corner sum test
can be devised that will measure the effect of such triple association in case it
does exist.

Consider the octants into which the three median planes for z, ¥, and z,
respectively, divide the three dimensional scatter diagram and label the octants
alternately plus and minus, in the manner suggested by Fig. 4. More precisely,
an octant is counted as plus if an odd number, that is three or one, of the vari-
ables are greater than the medians of the sample, and the remaining octants are
labelled minus. It is clear that we may repeat the process of coming in along
each axis passing from observation to observation as long as they remain in a
region of fixed sign, and writing down as a contribution to the final or octant
sum the number of such consecutive elements and the sign of the region in which
they were found. There will be six terms rather than four, as was the case
for the test based on quadrants, and so a new set of significance levels will be
required. Table 3, following, lists the situation for a very large sample.

The situation has been sketched for the case of 2n triples. If there are 2n 4 1
triples, then we may have trouble with the medians again. However, a similar
device works, except that we must agree on a last variable in order to form the
synthetic triples uniquely. For example, consider the triples (m, 3, 5), (9, m, 1),
(12, 4, m), where m denotes the median. Taking the order in which the vari-
ables are written, we get (12, 3, 5) and (9, 4, 1) as the synthetic triples. Other
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TABLE 3
Working significance levels for the magnitudes of the octant sum
Significance Level Magnitude of Octant Sum*

109, 11

5% 13

29, 15

19, 16

0.59, 18

0.29, 20

0.1 %. , 21

* Computed for large samples only and based on normal approximation, see
section 11 for discussion of this and higher dimensional cases.
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orders would yield (9, 3, 5) and (12, 4, I) or (9,3, 1) and (12,4, 5). This slight
dissymmetry is not pleasing but should give no difficulty.

8. Nongraphical example. The following example of 78 successive observa-
tions of four variables shows how this test may be applied without plotting and
how simple the computation still remains. The data concern a metallurgical

TABLE 4
) Excerpt from Tippelt’s Table
Time T* Fuel F* Material M* Articles A* Duration D*
1 - 246 + 1457 — 1895 + 168.5 +
2 — 196 — 2078 + 2121 4 152 +
3 — 192 — 1278 — 1437 — 153 +
4 — 202 + 1398 — 1497 — 145 —
5 — 206 + 1944 + 1592 + 153+
6 — 218 + 1464 — 1506 — 147.5 —
7 — 155 — 1541 + 1762 4 152 4
8 — 201 4 1502 + 1818 + 144.5 —
9 — 211 4 1950 4 1144 — 151.5 +
10 — 236 4+ 1768 -+ 1654 4 151.5 4
ete. to
78 + 185 — 1536 -+ 1442 — 152 -+
Median Median Median Median Median
39.5 199 1474 1588 149.5
* T,ocation of observation relative to column median; 4+ = above; — = below.
Tippett’s correlations (based on lightly rounded data)
Temy = + 0.243
Tra = + 0266
TMas = + 0681
ren.a = -+ 0.088
rema. = -+ 0.141.

problem in mass production and are taken from L. H. C. Tippett, Table XXII,
page 63 [2]. An excerpt from the data is given in Table 4 together with Tip-
pett’s calculated correlations. This table also shows the preliminary marking
of each individual measurement as above (4) for its variable, below (—), or
on the median (0). From this table we see, for example, that increasing T con-
tributes a term —3 to the quadrant sum for 7' and D. It is often desirable to
prepare auxiliary tables to assist in computing the components of the quadrant
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and hyperquadrant sums. Such a table is Table 5 for low values of Fuel (F—)
arranged in consecutive ascending numerical order. The entries on this table
for the five columns headed F, T, M, A, and D are directly comparable to the
entries in Table 4. For example, F = 155 is — with respect to the fuel median
and T =7, —; M = 1541, +; A = 1762, +; D = 152, +. The double, triple,
quadruple and quintuple headed columns contain simply the algebraic multi-
plication of the signs in the appropriate T, M, A, or D columns. Thus, TM
for F = 155 is —, MAD is 4+, and TMAD is —. The contribution to each
quadrant or hyperquadrant sum is simply the count of the consecutive like
signs from the top of a column. For column AD, we have 7 consecutive +
signs and since the contribution is to FAD and F is —, the contribution in this
case to the octant sum is —7. The results from the ten tables of which Table 5

TABLE 5

Sample Table for One Component of Quadrant and Hyperquadrant Sums. Low
Values of Fuel (F—)

Fuel F T | M| A|D |TM|TA|TD|MA|MD| AD | TMA |TMD |TAD |MAD |TMAD
98 — + — ===+ +|+]|+ |+ |+ -
135 — +l=|=|=|=|-]=|+|+|+|+ |+ |+ |- ] -
140 — ===+ |- - |+
146 — R e R e e e e e e e
147 — A+ == +]|=|=|-|=|+]|- |- |+ |+ |+
149 — Fl=| ==+ +|=|-|F|+ |+ |- |+ ]| -
151 — +l=|-1- |+ |+ |+ -] -
153 — A=+ =|=]+|=|=|+|-|- |+ |- |+ ]|+
155 — — |+ |+ |+ |- e R B i e o T

Contributions to Sums ‘
FT FM FA FD FTM FTA FTD FMA FMD FAD FTMA FTMD FTAD FMAD FTMAD

-2 44 +7 48 42 +2 +2 -4 —4 -7 -2 =2 -2 +4 +2

is a sample are then carried to the summary computation shown in Table 6.
The contribution from Table 5 is shown on line F—. The totals are computed
and their probabilities of occurrence determined.

9. Serial example. The following example, a sample of 144 observations of
the thickness of inlay for relay springs cut consecutively from a single sheet of
material, allows us to compare the resolution of the present test with that of
the serial product-moment correlation. The data are from Shewhart [1, 1941,
Table 1] and the serial correlations from lag 1 to lag 22 are from recent calcu-
lations by Miss Dorothy T. Angell. The procedure for calculating the serial
quadrant sums is similar to that for obtaining the sums for section 8. A table
is prepared to show the observed consecutive order of the numerical values and
each is identified as above (+), below (—), or on the median (0). This gives a
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table similar to one of the elements, say Fuel, in Table 4. Four computation
tables similar to Table 5 are required, one for the equivalent of moving from
the right, one from below, one from the left, and one from the top of a lag cor-
relation scatter diagram. One table from each direction will take care of all
lags. In the first, the marginal entries are the observed values listed in descend-
ing numerical order. Opposite these are recorded from the previous table the
signs associated with observations for each lag with respect to each entry.
The second table would record the signs relating to the lags from the observed
values arranged in ascending order. The third table would record the signs
relating to leads from the ‘observed values arranged in ascending order and the
fourth, the signs relating to leads from the observed values arranged in descend-
ing order. The sign of the contribution from each group is the algebraic product
of the sign of the run and the sign of the marginal entries. The length of run
is determined in the same way as in Table 5. Table 7 illustrates the procedure

TABLE 7

Relation of Lagged Observations to Median (+ = above, — = below) for Smallest Observations in A ding Order
Thick- ' Lag ‘
ness

of1]2]|3|4|5|6|7(8]910{11|12(13 |14 [15[16]|17 |18 ] 19|20 2122 23|24/ 25
PO [ [ [ U U PO U Y Y Uy e )
8 || =|H | H | =] [ H | H = R
8 |- =|=|H ||| | HH === -
0 |- H | == | H A H === = - - -
13 [=| =] = =] =) H H H | H H H H ||| )| || e el en e dol e
N B I e I e e e I R IR Y IS I I S I [ IS B g I I g [y
A A R B I B e e [ e I R [ (R R I (R P I I (R B O [y [y
8 [~ HH o H A H A -
. 8| —2|+2|+1|—1|-+3|—1|+2|—5|+8|—1| 7| —1] ~3| —1| —a| —1| -3} —3| —2| 2| —2| 2| +1| +1

* Contribution to Serial Quadrant Sum.

of determining the contribution from lags associated with the observations
arranged in ascending order.

Two serial quadrant sums may be computed—a circular serial quadrant sum
or a noncircular serial quadrant sum. Circular items arise from considering
that the beginning of the set of observations is a continuation of the end in the
same way that this assumption is made in computing circular serial correlation
coefficients, In Table 7, circular items are shown in parentheses and are omitted
in calculating noncircular sums. In the particular table shown, the count of
the run lengths was identical for both types of sum, but in other cases this may
not be the case. Since the serial quadrant sum is relatively insensitive to
sample size, the noncircular serial quadrant sum has for all practical purposes
the same distribution as the circular quadrant sum. The correspondence in
this case between the serial correlation coefficient for each lag up to 22 and
the respective values of the two types of serial quadrant sums is shown in Fig. 5.
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Fia. 5..Comparative performance on a serial (autocorrelative) example

10. Convergence to the limiting distribution. We shall consider several
chance sums. One of these is S, which has the limiting distribution discussed
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in section 6. Another is St , which is the sum of four independent terms, each
distributed according to the limiting distribution curtailed at +k. Its generat-
ing function is

k . k . 4
Gy (.’E) = (Z 2—(s'+l) 7 + E 2—(l+l) x—i) .
tmal =1

The total probability assigned to Sy = —k, —(k — 1), --- , k, is less than unity,
so that there is nonzero probability that S is not defined. The third is S, ,
the quadrant sum itself, whose generating function is (5), and the fourth is the
result of the same sort of curtailment applied to S,. It will be denoted by
S, and its generating function is

_ 5 @ = s (r (0 )
Gn,k(x)_;__m)[—<i§1<n—j—l>x‘+"§< ji—1 >x—>

This again corresponds to a total probability less than unity.

It is clear that
Pr(Sax = m) < Pr(S, = m)
and
Pr(Sy = m) < Pr(S = m).
‘We shall soon show that
(6) Iim Pr(S.; = m) = Pr(S = m)

and this will imply that
lim Pr(S, = m)

n—>c0

Pr(S = m)
which is the desired result. The implication runs as follows: given ¢, we can
choose & so large that
Pr(S: defined] > 1 — ¢/3

whence

| Pr(Si = m) — Pr(8 =m) | < ¢/3
and then choose 7 so large that
| Pr(Sap = m) — Pr(Sy = m) | < ¢/(24k + 6)
form = —4k, —4k + 1, --- , 4k

whence

16k + 3

8k + 1
< —_— =
1= +6¢

Pr(Sn,;, deﬁned) Z 1 - 6/3 - m €S
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and hence
16% + 2

24k + 6 °
this inequality holding automatically for | m | > 4k. Hence,
| Pr(S, = m) — Pr(S = m) |
< | Pr(Sn = m) — Pr(Sus = m) | + | Pr(Snx = m) — Pr(Si = m) |

16k 42 1
sk yo Tarpoetie<e

This method is clearly of general application in such problems.

We turn now to the proof of (6). The expression for G, x(x) shows that we
may consider it the result of the following process: the integer j is a chance
quantity with the distribution

Pr(j = jo) = (f;jg,( >

For fixed j, G,.x is the average over j of

(n—i—l) (n—i—l) ¢
k . k .
s\w—J =Y N d-1 /=]

Goi@) = i1 n i=1 n
() ()

The first of these relations shows that j/n converges stochastically to % asn
approaches infinity. The second shows, since

| Pr(Spr = m) — Pr(S, =m)| <

+ | Pr(S; =m) — Pr(S =m) | <

<n -1 —1)
n—j—1 _m—i—Dn—NY _©®—-0D0OG—-1)--G—2+1)
(n) = -DIG DR -1 —2)...(n—7) .

J

<n -7 — 1>
j—1 _ (=17 —Dln — j5lj!
(n) == 9lG — Dl

J

_m-n—-j—-1)---tn—j—i+1)j
n(n — 1) .. (n — 1)

and both of these converge stochastlca,lly to 2741 a5 a,pproa,ches infinity,

that G ;(x) converges stochastically to Gir(x). Since these curtailed generat-

ing functions involve only powers of x in the finite range between —4k and -4k,

the limiting relation (6) follows at once.

11. Effectiveness of normal approximation. Fig. 3 shows the relation be-
tween the asymptotic distribution of the quadrant sum for large » and a normal
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distribﬁtion with variance 24, i.e., the same variance as that of the asymptotic
distribution. The normal approximation is calculated from

Pr(| .| > m)NPr(x 2”(/"5)

where 2z is normally distributed with zero mean and unit variance. The asymp-
totic and normal curves agree surprisingly well out to the 59 point, and an error
of a full unit in the significance level first occurs beyond the 0.59 point.

Since the asymptotic distributions for the quadrant, octant, hexadecant, do-
triacontant,—, sums become more and more normal, the normal approximation
will be even better for higher dimensions. In r dimensions, this approximation
¢ongists in treating

[Sul — %
V12r
as the absolute value of a standard deviate. This should be quite adequate for
large samples and r > 4.

12. Unsolved problems. The central unsolved problem in connection with
the quadrant sum is: '

(1) What is the operating characteristic?
‘This has as a corollary the more general question:
(2) How can the operating characteristic of a nonparametric test be de-
scribed so as to be useful to the users of the test?
‘There are, of course, minor problems which are much more easily soluble. A
few, listed in order of practical importance, are:
(3) What is the effect on the significance levels of the use of lagged values
of z as values of y?
(4) What are the exact distributions for moderate » in three or more dimen-
sions?
(5) Do the analogous limiting distributions hold for three or more dimen-
sions?
(6) What is a better approximation to the limiting distribution for moderate
n?

To encourage others to solve some of these, we close with the assurance that
they have our good wishes.
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