MULTIPLE SAMPLING FOR VARIABLES

By Jack SILBER

Roosevelt College

Summary. A multiple (sequential) sampling scheme designed to test certain
hypothesis is discussed with the following assumption: X is a random variable
with density function P(x) which is piecewise continuous and differentiable at
its points of continuity. Formulae are derived for the probability of acceptance
and rejection of the hypothesis and for the expected number of samples necessary
for reaching a decision. These formulae are found to depend on the solution of
a Fredholm Integral equation. Explicit solutions to the problem are obtained
for the case when P(x) is rectangular by reducing the fundamental integral
equation to a set of differential-difference equations. Several examples are
given.

1. Introduction. A multiple sampling scheme is here proposed which is
based on cumulative sums of random variables. Bartky [1] has developed a
theory of multiple sampling for attributes when the attribute can take only two
values with probability (p) and (1 — p) respectively. Formulae are there de-
rived for the probabilities of acceptance and rejection of the null hypothesis and
for the expected amount of sampling necessary for reaching a decision. In
this paper the same type of formulae are developed for the case of variable samp-
ling where the underlying probability law for the variable is given by a piecewise
continuous function for which derivatives exist at its points of continuity.

The whole theory of multiple sampling is closely related to Wald’s [2] theory
of sequential tests. The fundamental difference is that in the latter, probabil-
ities of errors of the first and second kinds are assigned, and acceptance and
rejection criteria derived therefrom, while in the former the problem is solved in
reverse order. There the acceptance and rejection criteria are assigned, and
probabilities of eventual acceptance and rejection derived. For different param-
meter values, these are the probabilities of making errors of the first and second
kinds.

The problem presented here is similar to that given by Wald [3] in his paper
on cumulative sums. In the present paper we waive the restriction that the
expected number of items necessary for termination of the cumulating process
be given explicitly as an integer. Since'the theory given here is from the point
of view of multiple sampling, the language appropriate to that theory will be
used.

2. The sampling scheme. Let X be a random variable with probability
density function P(x) which is piecewise continuous. One variate, say zi,
is selected and if z; > b, the hypothesis (for example the null hypothesis with
respect to the mean) is accepted, and if z; < a, the hypothesis is rejected. If,
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however, ¢ < x; < b, another variate z; is selected. In the latter case similar
criteria with respect to x; + z; determine whether the hypothesis is to be accepted
or this method of sampling continued. Or more formally, let

Sr=zlxi (7‘:17273)"')’
where the cumulative sums S, are formed sequentially as follows: for any integer
r the cumulating process is terminated by acceptance of the hypothesis if S, > b
and rejection if S, < a, but, if a < S, < b another variate z,,, is selected and the
sum S, formed. The acceptance and rejection criteria are then applied as
above. No attempt is made here to indicate the choice of the acceptance and
rejection criteria.

3. The probability of acceptance. If at the rth unit the hypothesis is neither
accepted nor rejected, then it must be true thata < S, < b. Let us denote the
probability that this condition holds by

G [ v as,,

where Y,(S,) is the probability density function for S, in the above described
sampling scheme. The probability density function for S,.; would then be given
by

b
(32) VeulSew) = [ VUSOP(Spa = ) dS,.

The probabilities of accepting or rejecting the hypothesis on the rth trial are
respectively
+00

(3.3) [ vs) as,, f“mmw”

and therefore the probabilities for eventual acceptance or rejection are given
by

(3.4) m=§£mmm” m=§fnmmp
The probability that ¢ < S, < b cannot exceed the probability that a < 7', =
2+ 22 + x3 + -+ + 2. < bon a single sample of n variates, that is Pr (¢ <
S, <b) <Pr(a<Ts <b). For distributions with positive variance, it can
be shown that the right member of the above inequality approaches zero asn — 0.
Therefore, the process of sampling as outlined above will eventually lead to
acceptance or rejection of the hypothesis. See Wald [3, p. 284] for a direct proof
that the probability that the left member of the above inequality holds for

n=1,2,3, - is zero.
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Consider the linear integral (Fredholm) equation
b
(3.5) Y@) = Vi(®) + ) f Pz — $)¥(s) ds,

where Y1(z) = P(z) and assume a solution of the form
(3.6) Y(x) = Yi(x) + \Ya(x) + NYVs(x) + --- .

That solutions, in power series in A, of the Fredholm equation exist when the
kernel P(x — s) and the function Y1(x) have finite discontinuities is well known
and the theory has been expounded by several authors. (For example see
Goursat [4].) If the power series in A is substituted in the integral equation we
obtain

Yi@) + MYa(e) + NVi(@) + -+

Il

b
Vi@) 4\ [ (1) + AFa(s) + X ¥als) + 1P — s) ds

6D o v@ 42 [ K@PE - 9 ds 3 [ N@Pe - o) d

b
+2 [ VPG — ) ds + - .
Equating coefficients of like powers of A we see that
b
(3.8) V@) = [ YoalP@ — s ds, (r=2,3,).

This, however, is the probability distribution for S,, r = 2, 3, --- under our
sampling scheme, and therefore from the equations,

) b

(3.9) Y@ = NV, = Y@+ Pa - )Y ds,
r=1 a

we have that the probability of eventual acceptance for A = 1, is

0 b o
(3.10) > [ vy s = [ Y@ dn.
Thus our problem of finding a formula for the probability of eventual acceptance
or rejection of the statistical hypothesis under the above sampling scheme re-
duces to that of finding a solution of a linear integral equation.

The argument in this section has, of course, been entirely formal. However
from the general theory of integral equations we know that the series solution
(3.6) converges uniformly for A < 1/M (b — a) where P(x) < M, since P(x)
is a probability density function. In equations (3.4) and (3.10) we give solutions
for A = 1 and of course we assume that M(b — a) < 1. Since (3.6) is uniformly
convergent the interchanges of integration and summation in (3.10) and (4.3)
in the following section are allowable.
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4. The expected amount of sampling. Since
b
4.1) [ Yoa(s) dS.

is the probability that the rth sample will be reached, then the probability that
on the rth sample, the hypothesis will be either accepted or rejected becomes

b b
(42) f Yr-—l(Sr—l) dSr-—l - f Yr(Sr) dSr;

that is, the first term in this expression gives the probability that no terminating
decision is made on the (r — 1)st sample and the second term gives the proba-
bility that a like decision is made on the rth sample. The difference of the
two then gives the probability that a terminating decision (acceptance or rejec-
tion) will be made on the rth sample. The expected number of units sampled
will therefore be

E=1- f " P(e) do + g r [ f Y (So) dSsn — f Y08, ds,]

0

1+)°°jfb Y,(S,) dS, = 1 +fb}: Y.(z) da

r=1 r=1

(4.3)

-1+ fab Y(z) dz.

Thus, the amount of sampling expected before a terminating decision is reached
also depends upon the solution of the integral equation. We proceed to discuss
the problem when P(z) is given by a rectangular distribution.

5. Reduction to differential equations when P(x) is rectangular. Consider
the integral equation

b
G.1) Y*() = P*() + A f P*z — OY*() d,
where
1
P*(z) = —, —c<z—aZXl ¢
(5.2) 2c )
= 0, z2—a>c or z2—a< —c

and in the integral equation
a+a—c<z<b+a-—c

The parameter « is restricted to the values — ¢ < a < ¢ for the following reasons.
The rejection criterion a cannot be greater than ¢ + « for, if so, rejection will be
automatic on the first sample. Similarly the acceptance criterion b must be
greater than —c¢ + « for otherwise, acceptance would be automatic on the first
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trial. If @ > c then, rejection can never take place if it does not take place on
the first trial for in this case all z > 0. Similarly, if @ < —c then, acceptance
can never take place if it does not take place on the first trial for in this case all
z < 0. Furthermore, in obtaining solutions of the integral equation, we will
take o to be > 0. This inequality is no real restriction since solutions for nega-
tive a can be obtained by symmetry from the solutions for positive a.

If weletz = z — a then

(5.3) Y*@ 4+ a) = PX(x + @) + A fb P¥*(x 4+ a — )Y*(¢) dt,

or
b
(5.4) mo=m@+xjpa—owm@
where
1

P(x) = -, —c<Lz <X ¢

(5.5) 2 ’
=0, < —¢c or = > 4.

Now let s = ¢ — «, then
b—a

Y(x) = P(x) + A ~ Plx — a— )Y*(s + a) ds

(5.6) -

= P(x) + A Plx — a — s)Y(s) ds.
We have thus transformed our equation to one in which P(zx) becomes sym-
metrical with respect to the line z = 0. Furthermore, the probability of accept-
ance becomes

00

(5.7) P, = Y(z) dz,
b—a
and the expected amount of sampling becomes
b—a
(5.8) E=1+[ Y@

Also, x now has the following range: a — ¢ < z < b + ¢. If we now make the
transformation ¢+ — & — s = y, then

(59 YG) = P@) + [ PO)YGE — a — 4) d,

and the following cases present themselves.

Ifzx —a < —corx —b > +x, then Y(z) = P(z), since P(y) = 0,
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Ifz—b< —c<z-—a< +¢, then

(5.10) Y@ =P@ +5 [ Ye—a—vd
where

a—c<zr<a+c when b — a > 2¢,
(5.11)

a—c<z<b-—c when b — a < 2c¢.

Ifzr —b < —¢ < +¢ <z — a, then

A +e
(5.12) Y(z) = P(z) + — [ Yz — a — y) dy,
2c c
where
(5.13) a+c<z<b—candd —c > 2.
If —c<z—-b<z—a< +c, then
(5.14) Y(x) = P(z) + A f Y — a —y) dy,
20 z—b
where
(5.15) b—c<z<La+canddb —a < 2.
If —c<z—0b< +e¢c <z — a, then
A [T
(5.16) Y@) = P@) +2 [ Y- a-y)dy
26 z—b
where

b—c<z<b+ cwhenbdb —a > 2,
(56.17)
a+c<z<b+cwhendb — a < 2.

Transforming back to the variable s, we have for the case b — a 2> 2,

z—a+c
Y(x)=P(:c)+2Acf Y(s)ds for a—c<z<a-+eg

—a

s—arte
(5.18) = P(x) +-2)‘—cf Y(s)ds for a+c<z<b-—cg,

A b—a
=P(x)+7f Y(s)ds for b—c<z<b+eg
c

z—a—e¢

and for the case b — a < 2,

z—a+c
Y(x)=P(x)+2Acf Y(s)ds for a—c<z<b—cg,
A b—a
(5.19) = P(z) +§,}f Y(s)ds for b—c<z2<a-+c¢g

b—a
=P(x)+2lcf Y(s)ds for a+c<2<b+ec

251
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In all of the above equations, the integral is a continuous function of z, «, a, b, c
while P(x) has a discontinuity at « = +c and x = —¢, the jump at these points
being of amount 1/2¢c. The function Y (x) will therefore be such that

Y(=c+0) — Y(—¢c —0) = 1/2,
(5.20)
Y(c — 0) — Y(c+ 0) = 1/2.

If we now differentiate the above sets of integral equations with respect to x we
obtain the following sets of differential-difference equations for the case A = 1.
Ifb.— a > 2,

Y’(x)=2lcY(x—a+c) for a—c<z<a-++eg
(5.21) =-21—C{Y(x—a+c)—Y(x—a—c)} for a+c<z<b—eg
=—216Y(x—a—c) for b—c<z<b+eg

and, if b — a < 2,

Y’(x)=2icY(:c—a+c) for a —c<2z<b—c¢
(5.22) =90 for b—c<Lz<a+eg

=_2lcY(x—a—c) for a+c<z<Db+b

the derivatives holding for all points except at *+ = —c and z = +c.

Although a technique has been devised to solve the above equations for finite
a and b, mathematical difficulties of a computational character are encountered
when (b — a) is made large. Note that there are only three essential parameters
in the above problem since ¢ can be taken as the unit of measurement. In the
technique illustrated by the following examples, « has been fixed as has (b — a),
i.e. the solutions shown in the examples below are general only insofar as one
parameter is concerned. The essential feature of the technique is that the range
of Y (x) has been further subdivided so as to make its points of discontinuity end
points of subdivisions of its range, and thus Y (x) becomes continuous from the
right or left in every subinterval of its range.

6. ExampleI:b — a = 2¢,¢c = 1, « = 0. In this case z ranges from (@ — 1)
or (—c), whichever is smaller, to (b + 1) or (4c), whichever is larger. If
—c¢ < a—1,then Y(z) = P@)for —c Lz <a—1,andif b + 1 < +e¢,
then Y(z) = P(x) forb+ 1 <z < —c. For z betweena — 1 and b + 1 the
domain of the differential-difference equations is divided as follows, where a
is now restricted to the interval —1 < a < 0.
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(6.1) Yi(x) = 3Y:ia(x + 1) where for ¢ = 1, a—1<zr< —1,

1= 2 —1Lz<aq,

1 =3, a<z<0,

1 =4, 0<z<a+1;
Yilx) = — 1Y, 4(x — 1) wherefor ¢t =5, a+4+1<2z< +1,

1= y +1va<a+2,

1=17, a+2<zr< +2

1 =8, +2<z<a+ 3

The above are the equations corresponding to (5.21) for the given example.
Differentiating the equations for ¢ = 3, 4, 5, 6 and making certain obvious
substitutions we obtain the following second order differential equations,

(6'2) Y't,(x) = —%Y.(x), 1= 3) 4, 5, 6,

where the domains for z are asin (6.1). If we solve the equations (6.2) and sub-
stitute in the remaining equations in (6.1) we obtain the following set of equa-
tions,
Yi(x) = Aijesin 3(x + 1) — Biyecos (x + 2) + K, 1=1,2,
6.3) Yi(x) = A;cos 3z + B; sin iz, 1=3,4,5,6,
Yilx) = —A;sasind(x — 1) + Biscosi(x — 1) + K;, 1=17,8,
where again the domains are as in (6.1)

From continuity considerations we have the boundary conditions
Yifa—1)=Ysa+3) =0, Yi(—1)—4%=7Yy=1), Yia) = Yia),
Y;0) = Y4(0), Yil@+ 1) =VYsa+ 1), Yi(1) = Ye(1)+ %
Yela + 2) = Yi(a + 2), Y:(2) = Y,(2).

These boundary conditions yield certain relationships between the constants.
The equations so determined, however, do not form a consistent set of linear
equations in the 4;, B;, K;---. If we integrate out the equations (5.18),
sectionally, the following relationships between the constants are obtained.

A; = Aipesin - — Bjyacos 3, B; = B;;2c08 3 + Biiesin 3, 1= 3,4,
Ks = —(Ad — Ap) sin 3(a + 1) — (Bs — By) cos 3(a + 1)
=3+ Bi — By + K,
K7=A3—A4+K3, K3=A6sinw}(a+2)—Bocos%(a+2),
(6.4)
Bs=%+B4+K1—A4+A3+ (Aq — Ajg) sin 3(a + 1)
+ (Bs — By) cos 3(a + 1),
Asr = As + Ky + (A4 — 4s) sin §(a + 1) + (Bs — By) cos 3(a + 1),

K, = —A; sin% + B; COS%.
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From these equations it is easily seen that A, = 4d;and K; = K, = K; = K.
Furthermore, the following set of consistent linear equations is obtained, after
several simple manipulations and substitutions.

{sin ia+2) + sing - sin %} A
- {cos -g} B; + {cos a+2) + sing cos %} B; = 0,
)

(6.5) {—' sin #(a + 2) 4+ cos i(a + 2) — cosg . sin —%} As + {sin g} B;

+{sin%(a +2) + cos i(a + 2) — cosg - cos %}Bo =0,

{cos 3} A¢ — Bs + {sin }} Bs-= 0.

All the other constants can be obtained from the solutions for As, B;, Bs in
(6.5). Letting A equal the determinant of coefficients in (6.5) and using the
relationships (6.4) we obtain the following solutions:

A=2— 2sin % — cos 3,

AAy = ${cos 3 — cos a/2 - sin 3(a + 1)} = Ad,,

ABy = }{sin 3 — sin a/2 - sin (a + 1) + cos 3 —1},

AAdg = 3{sin 1 — cos 3 + cos a/2 - cos i(a + 2)},
(6.6) ABg = %{sin }(a + 2) cos a/2 — sin ¥ — cos 1},

AB; = 3{1 — sin a/2 - sin 3(a + 1) — sin %},

Ads = }{cos } — sin’ }(a + 1)},

ABs = i{sin 3 + sin 3(a + 1) - cos 3(a + 1) —1},

AK, = %{cos ‘-2' sin 3(a + 2)} = AK; = AK; = AKs.

If we now integrate Y (z), equation (6.3) sectionally, i.e. from the left end point
to the right end point of each sub-interval of its range and then add up appro-
priate areas, we obtain the following formulae for the probabilities of acceptance
and rejection and for the expected amount of sampling:

P, = % {cos 2(a + 1) + sin a/2 — cos a/2 + AK,},

1l _ 1 - 9gnl 4 sinl
©6.7) PA——A—{2 cost — 2sini +sini(a + 1)

— cos 3(a + 1) — sin a/2 + AK,},

E = % {cos a/2 — 2 sin a/2 — sin }(a + 1)}.
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7. ExampleII: « = 1,¢ = 3,b — a = 4. In this case, as in the previous one,
Y(x) = P(z)for —3<z<a—3whena—c=a—3< —3andifb+c¢=
a+ 7 <3then Y(z) = P(z),a+ 7 <z <3. Fora—3 <z < a+7where
a takes on only integral values between —5 and 3, we have the following set of
differential-difference equations:

Y;+i(x) = Y arisa(x + 2), Jj=-3,-2,-10;
(7.1) E I=12
= - %'Y,H.,'_‘(:B - 4), j = 3, 4, 5, 6.
If we integrate the above equations for j = 1, 2, substitute in the equations for
j = —1,0, 5, 6, integrate, and then substitute in the remaining equations, we
obtain the solutions
Yari(®) = 75 Aarina(@ + 2)° + $ayjez + 4oy, j= =3, -2
= §Aatip2T + Aoy j=-10;
(7'2) = Aa+i j = 1) 2:
= — tgdoria@ — 4)° — BMopiuz + Aoy, J=34
= — $Aoyriu T + Aoy, J=5,86.
As in the previous example we now use (5.22). Integrating out (5.22) sec-
tionally, certain relationships between the Aqy;, j = —3, —2, - -+ 6, are ob-

tained. These yield
A¢+1 = g1§{12P¢_1 + 12Pa + 39Pa+1 + 9P¢+2},
Aa+2 = -513-{121)4_1 + 12P¢ + 11P¢+1 + 37Pa+2},

Agy = — 516 {(4P._y + 4P, + 13Pay1 + 3Pays)
(7.3) + 155{228P, ; + 60P, 4+ 55P,41 + 17P, 42},
Aq = 168 {12P,1 + 12P, + 11P.4; + 37P,}

+ 35{60P.y + 228P, + 55Poy1 + 17Pgs},

where P,y; is the value of P(z) fora + j <z <{a+j+ 1,5=-3,---6
All of the other constants can be found in terms of those given in equations
(7.3). If we now integrate (7.2) sectionally and perform several simple manipu-
lations, we arrive at the following formulas:

9a 1

PR = ’-z_:o Pa+1 216 a+1 + 216 Aa+2 + Au-l - ﬁAay
9
- — 131
(74) P, = Zx Poi+ 322—1-6—8? Asn + ~216 Atz + f5da1 + 4.,
ju=

13

E-‘=1+2 Aa+1+ Aa+2+Aa+l+Aa
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Although P,;,j = —6, —5, —4, 7, 8, 9, have not appeared in previous deriva-
tions in this example, they have been inserted in the above formulas to cover the
cases in whicha — ¢ > —cord + ¢ < c.

It should be mentioned that Kac [5] obtained the distribution of n (the ex-
pected amount of sampling) by a process similar to that given in this paper. It
is also interesting to note that the present paper could have been written entirely
in the language of problems in Random Walk.

The author has also worked on the case in which the distribution P(z) is tri-
angular and parabolic. In these, as in the case of the rectangular distribution
discussed in this paper for b — a large, the equivalent differential-difference
equations are of large orders making the computation of solutions extremely
tedious. As Kac [5] pointed out, the task of obtaining solutions in closed form
for the case when P(z) is the normal law is extremely difficult.
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