LIMITING DISTRIBUTION OF A ROOT OF A DETERMINANTAL
EQUATION
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1. Summary. The exact distribution of a root of a determinantal equation
when the roots are arranged in a monotonic order was obtained by S. N. Roy
[3]in 1943. A different method for deriving the distribution of any one of these
roots has been described by the author in [2]. In the present paper the limit-
ing forms of these distributions are obtained. This paper gives a method by
which the limiting distributions can be obtained without undergoing an inordi-
nate amount of mathematical labor.

2. Introduction. If z = || z; || and 2* = || zi; || are two p-variate sample
matrices with n; and n degrees of freedom and S = || zz’ ||/n1 and 8* = ||z*z* ||
/s are the covariance matrices which under the null hypothesis are independent
estimates of the same population covariance matrix, then the joint distribution
of the roots of the determinantal equation | A — 6(A4 + B) | = 0, where 4 =
mS and B = nyS*, was obtained by Hsu [1] in 1939 and is

rz/zﬁr<l+u+v+i—2>
1) R(u») = i1 2

I (=55=) r (57 6)
g @:) ‘I:.[]L (1 — 6, LI:' 6: — 6)),

0<6<L0p.< - <6<,

where I = min (p, n1), p = |p — m | + 1 and v = ng — p + 1. The distribu-
tion density may be expressed as

l
(2) R(l’ m, n) = C(l, m, n) I_Il [0?(1 - oz)n] zI<Ii (01 - 0]')7
where m = u/2 — landn = »/2 — 1.

3. Method. Let ; = ¢;i/n in (2). The joint distribution reduces to

c(l, m, n)

l
®3) —rr=on 11 k70 = co/n) T1 G — &) diy -+ dia,
n i=1 $<7

0Ot <60 2n).
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As n tends to infinity the limit of (3) is
@ KGm) 16 IT G~ £ .
0L L6 < »)
The value of K(I, m) is

. _c(l,m,n)
lim P TFImFGD e

n—s 0

ﬂ_l/zﬁr<l+2m+2n+i+2)

= lim i=1 2

nreo 1 2m + 1+ 1 2n + 7 + 1) . I+Im+1(1—1) [2
,~I=Il r( 5 )r( 3 I'(/2)-n

l .
v Ilr(l+2m+22n+z+2>

= - lim
l . 1 .
2m + 7+ 1 . n—co 2n+4+17+1 Lt im+1(1—1) /2
amTrtT - ) “an Tt ),
gr< 2 )r(’/) I=Ilr< 2 ) "

By using Stirling’s approximation for gamma functions and after simplifica-
tion we get

! l+2m+2n+z'+2>
HP( D) _

lim 7 T i1 =1
(i d n T L Im LD /2
g T < 5 ) n
Hence
-7
K(l, m) = 77 N . y
IIr (2—.___’" tit 1) T(i/2)

and therefore
K2, m) = 22""/T(@2m + 2),
K@3,m) = 22"*/[T(m + 1)T'(2m + 3)],

®) K4, m) = 2"™%/[r(©2m 4+ 2)T(2m + 4)],
K(5, m) = 2""/[8T'(m + 1)T'(2m + 3)T'(2m + 5)].
Let ‘
© G =KGm [ Tt LG - e)e Tl age.

It can easily be observed that

Gin@) = Pr (1 < 2) = lim Pr (n6; < z) = lim Pr<01 < ;:) .

n—0 n—0
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Thus the limiting form of the distribution of the largest root can be obtained by
integrating the density given in (4) according to the method described by the
author in [2]. It is, however, observed that the mathematical labor is reduced
considerably by adopting the following method.

Referring to the results of the exact distribution of the largest root given in
[2], let Frmna(@) = (0,1,1 — 1, --- , 1, z;m,n); thus Fom.(x) = (0,2, 1, z; m, n)
and Fyma(r) = (0,3, 2,1, z; m,n). Then c(l, m, n)F; n.(x) is the probability
that none of the roots 6; exceeds x, and is thus the cumulative distribution func-
tion of the greatest root. We shall show that lim c¢(l, m, n)Fimna(z/n) =

n—» 0

Gim(z). The reader is, however, asked to refer to [2] for the detailed explana-
tion of the notations and certain mathematical operations used in this paper.

4. Limiting distribution of the largest root. We will derive the distribution
of the largest root for [ = 2 and 3 by the two methods. A straightforward
method will be named A. A second method, which proves to be very simple
and easy will be called Method B.

(@l=2
(i) MeTHOD A. We have,

Pr (nf: < 7) = Gom(z) = K(2,m) 18" = f2)e T dpy dpe
0

< <H1kz

By using the method described in [2], we have

Gom(z) = K(2,m) { ]; - creTin T e dpy di‘z} s

<f2<1<% 01 <$2<2

= K@ m){T5*(y, L z;m + 1) = T6"(0, 1, y;m + D},

where
. b
T2 g(y) = fa 9(y)-y"e? dy,

and

b
M@ Lbim+1) = [ 96 &g = (@76 = 56 + (m + Da, 1,b;m).
Hence,
Gon(@) = K2, m)TP™ 6 — &™%™ + (m + 1), 1, z; m) + g

- (m 4+ 1)(0, 1, y; m)],
= K(2’ m)q’rg‘ﬂ[zym'i'le"ﬂ — xm-l'le—z]’

as Tt “[(y, 1, z; m) — (0, 1, y; m)] = 0.
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Therefore
lim Pr (n6, < ) = Gem(z) = K(2, m)

. {2 f Y ey — g f yre? dy} .
o o

When z = «, Gym(z) = 1; hence K(2, m) = 2°"*/T'(2m + 2), the valuegiven
in (5).

Now we shall derive the result by Method B.

(ii) MeTHOD B.

®)

1
m-+n-+ 2

. {2£ P — gyt dy — 2™ — x)”’“l y(1 — ) dy},

a result given in [2].
Replacing = by z/n, we get

1
m—+n 4+ 2

z/n z/n
. {2 fo ¥ = )™M dy — @/n)" (1 — z/n)" fo y"(1 —y)" dy};

FZ,m.n(x) = (O, 21 1) x;m, n) =

0,2, 1,2/n;m,n) =

also, letting ¥ = u/n, we have
* 1
(0; 2) 1) x/n; m, n) = (m +n+ 2)n2m+2

. {2 fz WA = u/m)™ du — 2™ — z/n)™H fz w1 — u/n)" du} .
0 . 0

9

Thus
lim Pr (n6, < z) = Pr (6, < z/n) = lim ¢(2, m, n)(0, 2, 1, z/n; m, n),

n—0

22m+1 z . z
{2 f wT du — 2™ f u"e™ duy ,
o o

7 —> 00

T Tem T+ 2
which is the same as (8), obtained by Method A.
(b) I = 3.
(i) MeTHOD A. We have
Pr(nf, < z) = Gam(@) = K(3,m) TG — )6 I dgs
0 <{3<i2<t1<z
= K@,m) [ (Exaba)"e (1, 2, 8) by dts dis,
0 <{f3<$2<i<z

where {1, 2, 3} = {182{1, 2} + {3618, 1} + £a63{2, 3}, as given in [2].
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Or
Ga.m(z) = K(3, m) {[o

<{fs<ie<fi<z ~/(;<§'1<§'s<f2<=

f e ()™ L, 2} didi drs} ,
0 <$2<f1<f3<z

= K(39 m){m'z(y’ 2,1, z;m + 1)
+ T’:'I(O7 2,y,1,z;m + 1) + TK"z(O’ 2,1,y; m + 1)}’
where

(a,2,1,b;m) = f tctia (mz) (F1=t2)e™ D gty di.
a 2 1<
We have already obtained
0,2, 1,2;m) = Gom(2)/K(2,m) = {2 [ et ay — amve [vee dy}

as given in (8).
We also need the following results which are obtained by the method de-
scribed for I =

b b
(10) (a,2,1,b; m) = {2 f W dy — (@™ + e ) f we " du} ,
and

e L3
(11) (e, 2,b,1,¢;m) = {b”‘“e"b f we™ du — o™ f u'e ™ du
a b

b
L]
— "™ f u"e™ duy .
a
Using these results we have

Ga.m(x) — K(3, m)TKu.x {2f u2m+3e—2u du — (ym+2e—y + xm+2 -—z) f m+1 —u du
v B

Y
z v v
— Y f W dy + 2P f M du + 2 _/(; 2
0 0
v
— y" % f ute™ du} .
0
Simplifying we get
(12) lim Pr(ng; < z) = Gsn(x) = K(3, m){ f e du 'é u"e * du

n—s0

_9 f mtl—u g f ttd —tu g omid

z
[2 f u2m+le—2u du — xm+l e—z f ume—u du]} ,
0 0

where K (3, m) = 2"**/[1'(2m + 1)T'(2m + 3)].
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(ii) MetaOD B.
Fsmn(x) = (0,3,2,1,z; m, n)

1
= T3 (200, 1, z; 2m + 3, 2n + 1)(0, 1, z; m, n)

—2(0,1,z; m 4+ 1,n)(0, 1, z; 2m + 2,2n + 1)
— (0, z;m + 2,n + 1)(0, 2, 1, z; m, n)],
a result given in [2]. ‘
Replacing = by x/n and putting w/n for the variate y of integration, we have,
1
m+n -+ 3
2 fz 81 — w/n) " du f’ w1 — u/n)" du - 2
s Jy ¥ A oy
xm+2(l _ x/n)n+l
3+ (m + n + 2)

[2]: £ - u/n)z"jrl du — "' — z/n)"" .[ w1l — u/n)" du]}

F3,m.n(x) = (0) 37 27 1; x/n; m, n) =

j; w1 = u/n)" du f, (1 — ufn) dy —
o

Hence
lim Pr (ng; < z) = lim Pr (01 < %) = lim ¢(3, m, n)Fsm,a(x)

x 2 x x
= K(3,m) {2 f w3 du f ute “du — 2 f w2 du f u™ et du
o o o o

z z
2 — —
— xm+ e—z [2f u2m+le 2u du — xm+le—zf ume % du]} ,
0 0

K(@3,m) = 2""7/[T(m + 1)T'(2m + 3)].
This result is the same as (12) obtained by Method A.

We have thus shown that Method B is applicable for obtaining the limiting
forms of the distribution of the largest root and that it is much simpler as com-
pared to the straightforward method called Method A here.

The limiting distributions for the largest root for I = 4 and 5 are listed below.
() I = 4.

lim Pr (nf;, < z) = lim Pr (01 < 2) = Gyn(2)

N —» 0 n—» 0

where

_ ? omts —2u Gz,m(x) — f ? omtd —2u
—K(4,m){2£ u e duK(2,m) 2 A u" e "t du

‘ 2m+2 —2u _ m+2 —z “ m —u G2,m(x):|
[2]0.u e du — x" e foue du+(m+2)K(2’m)
?  am+3 —u Ga,m11(2) __  mt3 = Gs,m ()
+2f0 ue duK(2,m+1) x e K@, m)f’
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where
K4, m) = 2'"*/[r(2m + 2)T'(2m + 4)].
@1 =
lim Pr (n§, < z) = lim Pr (01 < ;Ez) = Gsm(x)
= 2m+7 —2u Ga m(x) 2m-+6 —2«
K, m){ fo dugom 2f du
-[2 _£ w™ e dy f e “du — 2 f wWm e gy
. “ m+l —u m+3 —z G2 m(x) Gs.m(x):l
‘/o.u e “du — 2" e K@ )—I-( +3)K(3,m)
2m+-5 —2u 2m+5 —2u “ m —u
+2f du{fo dufouedu
_ 2 2m+3 —2« m+2 —y _ m+3 —z
f du ](; du — 2" "e
2 2 2" u Ge, m(x) ]}
[2[ du — fue olu+(m--|—2)K(2 m)
_ o _G3mn(@) T . g G4,,,.(x)}
2K——(3,m+1) ou e du — 2" e K@ m)f’
where

K(5,m) = 2"™°/[3T(m + 1)T'(2m + 3)T'(2m + 5)].

6. Limiting distribution of the smallest root. It was shown in [2] that the
exact distribution of the smallest root can be obtained by using the relation

Pr(6,<z)=1—-Pr(6.<1—2z]|»p.

This relation, however, does not help in obtaining the limiting distribution of
the smallest root from that of the largest root. The limiting distribution of the
smallest root can be obtained by the method illustrated below.

(@)l =

The exact distribution of the smallest root 6. can be expressed as
Pr (6: < z) = ¢(2, m, n){(0, 2, 1, z; m, n) + (0, 2, z, 1, 2; m, n)},
where z = 1. Replacing = by z/n, we get
Pr (6; < z/n) = ¢(2,m,n){(0, 2, 1, z/n;m,n) + (0,2, z/n, 1,2;m,n)},
where

1 o am .
©0,2,1,z/n;m,n) = m [2'£ ?/2 +l(1 - 2’/)2 ik dy

z/n
— © z/n;m+ 1,n + l)fo (1 — g)" dy],



LIMITING DISTRIBUTION 347

and
1
0,2,2/n,1,2; m, n) = o [(0, z/nym+ 1,n+ 1)

z z/n
fo YA —y)"dy — 0,2;m+ 1, n+ l)f0 ¥y (1 - y)”dy],
as obtained from (6) of [2].
The limiting distribution of 6, is
(13) Pr(6: < z/n) = lim ¢(2, m, n){(0, 2,1,z/n;m, n) + (0,2, z/n, 1,2; m, n)}.

Putting u/n for y, the variate of integration and allowing n to tend to infinity,
we have

lim ¢(2, m, n)(0, 2, 1, x/n; m, n)

= K(2, m) {2 f W e dy — 2" e f u"e " du} ,
o 0
and

lim ¢(2, m, n)(0, 2, z/n, 1, 2; m, n) = K(2, m)z™ e f we " du
0

= K(2, m)z™ e *T(m + 1).
Substituting these results in (13) we have
lim Pr (nfe < ) = lim Pr (6 < z/n)

n—>00 7 —» 00

z z
= K(2, m) {2 / wWHhe ™ du — g™ e f we " du
0 . 0

+ 2" e r(m + 1)},

where
K(2,m) = 2°"7/[T(gm + 2)].
(b)l=3.
The exact distribution of the smallest root can be expressed as
Pr (6s < z) = ¢(3, m, n)[(0,3,2,1,z;m,n) + (0,3,2,z, 1,2; m, n)
+ (0, 3, z, 2, 1, z; m, n)],

where z = 1.
Replacing = by z/n and allowing n to tend to infinity we have

Pr (n; < z) = lim ¢(3, m, n)[(0, 8, 2, 1, 2/n; m, n)
(14) n—»00
+ (0,3,2 z/n,1, 2;m,n) + (0,3, z/n, 2,1, z; m, n)l.
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The values of these components on the right hand side of the above equation
are given below.

lim ¢(3, m, n)(0, 3, 2, 1, 2/n; m, n) = Gs,n(z), givenby (12),

7 —00

lim ¢(3, m, n)(0, 3, 2, z/n, 1, z; m, n)
= K(3, m) { f ™ e du [2 f W du
o

(15) — 2" _[ wte™ du] — 2" [2 _£ W e du
— ™ _”fu e“du]—l—x"‘+2_’f duf e du
-2 f f W e du} )
and

lim ¢(3, m, n)(0, 3, x/n, 2, 1, 2; m, n) = K(3, m) {f e du [2[ Wt e du

n—00

0 00 (-]
— 2 — 2 —2 1 — —
x"”’ze”'/ u"te "du] — "t ’[2[ W e ™ qu — 2" e ’f ue “du]
z z z
x 0 x ©0
1 — 1 — 2: —2
+x’”+2e"”fu"'+ e"“duf e du — 2fu'”+ e “du[ um™te “du}.
0 z 0 z

Substituting in (14) we have,
lim Pr (n; < z) = {2"""/[T'(m + 1)r(2m + 3)]}

{2f w3 2“dufu e du—l—2f m+3 2“du/ w"e ™ du
-2 f umte f Wt dy — 2 f w™ e ™ du f W e du
0 z

o z
— 2xm+2 e——z f u2m+l 6—214 du — 2 xm+2 e—z f u2m+1 e——2u d’ll/
0 0

+ 7t _2’(fu e du-l—fu e du)}
Or,

lim Pr (nf; < z) = 2""/[T(m + DI'(2m + 3)]

{I_‘(_22[nm-:_4) A e du + 2 / wm e du f u"e " du

_— 2I‘(m + 2)‘[ 2m-+-2 -2u du 2f m+1 —u duf 2m-+2 —2u du

_T(@2m + 2) T g e f W2 gy - T(m 4 1™ 6
gemt A

x
4 gt f ute ™ du} .
0
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Thus we have seen that this method can be used for obtaining the limiting
distribution of the smallest root for any value of .

6. Limiting distribution of any intermediate root. The above method can
also be used for obtaining the limiting distribution of any intermediate root.
We shall give the distribution of 6, for I = 3. We have

(16) Pr (02 S .’l}) = c(3,m, n){(o) 3) 2? I)x;m; n) + (07 3, 2: z, ].,Z; m, n)},

where 2 = 1.

The lim, .. ¢(3, m, n)(0, 3, 2, 1, 2/n; m, n) and lim,_. ¢(3, m, n)(0, 3, 2, z/n,
1, z; m, n) are given by (12) and (15) respectively. Substituting these results
in (16) and simplifying we get

lim Pr (nf, < 2) = Lol 2 f °°u'" e " du

z L] z
— _ —2
. fuzm+3e 2 g — 2[ oMo udu[u2m+26 "
o o )

z z
— 45" / W du + 22T f u"e " du
o o

0 z 0 z
— — — — 1 :
+ 2" [/ u"e "duf we " du — f u"e “duf u" e du]},
£ 0 z 0

Or,
lim Pr(ng, < z) = 22m+3 or( 1) ‘/z mAs 2
Jim Pr(nde < ) = $on + Dr(em + 3) (2T T wie T du

z z
_ 21-‘ ( m + 2) f u2m+2 e—2u du — 4 xm+2 e—z f u2m+l 6—214 du + 2x2m+3 e—zx
0 0
z ) z
. f w'e ™ du 4 2" e ,: f u"e™ du f u"e " du
0 z 0

- L ) u'e " du fo ) wle du]} .

Thus the limiting distribution of any intermediate root can be obtained by the
above method.

7. Further problems. The limiting distribution of the largest root is found
to be very helpful in obtaining the distribution of the sum of roots when m = 0.
This condition implies that when the results are applied to canonical correlations
the numbers of variates in the two sets differ by unity. The distributions for
the sum of roots have been derived under the above condition for I = 2, 3jand 4
and the results are being presented in the next paper of this series.
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