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This section 18 devoted to brief research and expository articles and other short items.
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TESTS OF INDEPENDENCE IN CONTINGENCY TABLES
AS UNCONDITIONAL TESTS

By A. M. Moop
Towa State College*

Summary and introduction. Since the ordinary tests for independence in.

contingency tables use test criteria whose distributions depend on unknown
parameters, the justification for the tests is usually made either by an appeal to
asymptotic theory or by interpreting the tests as conditional tests. The latter
approach employs the conditional distribution of the cell frequencies given the
marginal totals, and was first described by Fisher [1]. The purpose of the
present note is to show how these tests may be regarded as unconditional tests
even though the parameters are unknown by augmenting the test criterion to
include estimates of the unknown parameters. We present no new tests,
merely a new setting for the old tests which seems to put them in a little better

light.

1. Certain conditional tests. A variate or set of variates z has a probability
density function f(z; 8) under a null hypothesis involving a parameter or set of
parameters §. When the parameters have a set of sufficient estimators 8, the
joint density function of a random sample of size n may be put in the form

(1) I fGoe5 0 = gGau, 22, -+, 0 | DHG; 0.

It is assumed that n exceeds the number of parameters. We shall be concerned
with the class of test criteria which are not functions of the estimators alone.
Let N(z1, 2z, - -+ , Z,) be a test criterion which may not be put in the form A(8).
The joint density function for A and 8, obtained by summing (1) for fixed A and
6, will be of the form

@ k(| B)h(6; 6).

The marginal distribution of A will be denoted by m(A; ), the result of sulnming
(2) over 6 for fixed A.

In order to test the hypothesis in question one would like to divide the A
space into two regions, an acceptance region S, and a critical region S; in such a
way that S. would have a prescribed size o under the null hypothesis. One
would of course set up other specifications to be fulfilled by S., but we are

1 The author is now with The RAND Corporation, Santa Monica, California.
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interested here only in the fact that the size of S. cannot be determined because
of the presence of the unknown parameters 6 in m(\; 6).

One can set up a conditional test by using the conditional distribution k(A | 8).
That is, for fixed 4, the measure of any region R(8) (which is measurable relative
to k(A | 8), say, in the Lebesgue-Stieltjes sense) of the A space is known because
the @ are known in any given instance. Thus a conditional test can be made
with a critical region R.(6) of prescribed size.

The conditional test may be interpreted as an unconditional test in the present
instance in the following manner: the unconditional test is made by using the
double criterion (A, ). The (A, 8) space is divided into two regions, 7, for
acceptance and T, for rejection. The critical region T, consists of all points
(A, 8) such that X is contained in R.(f). If the size of R.(6) is « for all 8, then
the size of T is also «, for

[ [roiomeoaam=["[[ woioa]weoas

e (8
3) = f: an’”  db

= a.

In this way one can make an unconditional test of the hypothesis with a critical
region of prescribed size; of course one does not have complete freedom to
specify the shape of T, but he can control it to the extent that R.(d) may be
chosen arbitrarily for every §. T. is of course a similar region in the sense of
Neyman and Pearson [2, 3, 4] for the augmented criterion, and the construction
of T is essentially the same as that used by Neyman and Pearson to test param-
eters with sufficient estimators.

2. Application to contingency tables. As an illustration we shall follow
Wilks’ [5] treatment of a two-way table with r rows and ¢ columns; the cell
frequencies are n;; and the cell probabilities are p;; with

Znj=m Xpi=1 i=12-,1 j=12 ¢ (4)
The sample is thus regarded as having come from a multinomial population.
We let
G  pi= ; Dii; D= 2 Pii;  Mi = Z’ Nijy M= Z Nije
The null hypothesis H, (of independence) corresponds to the subspace for which
(6) Pi =Ppiqi; Zpi=1l=2g¢g;
in the parameter space of the p;; . The likelihood ratio criterion for testing H, is

_ (@n, ™) (@n.,™)
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and its distribution depends on the unknown parameters p; and ¢;. However
the parameters have sufficient estimators

(8) b =nu/n,  §i=nj/n
for the marginal distribution of the n;. and n.; is

(nl)? ni- i
9 (T ) (1D (Ip, ™) (1g,™ )

and when this is divided into the distribution of the n;; (under the null hypothe-
sis) one finds the conditional distribution of the n;; to be

In;.! On. ;!
(10) g(nu,nlz, v :nfclnl‘ NP ’nw) = ( nlI)I(n.-i! ")

which is independent of the parameters. The distribution (10) is just the
combinatorial distribution used ordinarily in deriving the distribution of A
for small samples. The test for independence is therefore a conditional test
which however may be interpreted as an unconditional test if the criterion X is
augmented by the estimators of the parameters under the null hypothesis.
Instead of the likelihood ratio criterion Karl Pearson’s Chi-square criterion
could just as well have been used since its conditional distribution is also deter-
mined by (10).

The usual difficulty due to discreteness arises in this application to contingency
tables. It is not possible to make the significance level exactly . In terms
of the notation of the first section, R.(f) cannot be chosen so that it will have
size exactly equal to « for all . One would ordinarily replace the equalities by
inequalities. The R,(6) would be chosen to have size less than but as close to a
as possible. The size of 7' is then unspecified and one can only state that his
significance level is less than «. This difficulty is not particularly serious in
practice unless the test criterion has only one degree of freedom.
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