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Substituting (34) in (32), and equating coefficients of like powers of (z, y),
we obtain the recursion formulae
(85) > BijBulil2k—j+1]= 2 Bi;Buli + 1[j — kl; 4:0,1,---.

Jtk=n Jtk=n—1

From (10), it is readily verified that By = 0 for ¢ 5 0, so that equations (35)
give solutions for the B;; in terms-of the By, . These solutions are of interest
since they show a one-to-one correspondence between the functions G(0, y)
and G(x, ), for (z,y) ¢ [R N S].
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NUMERICAL INTEGRATION FOR LINEAR SUMS OF EXPONENTIAL
FUNCTIONS

By RoBerT E. GREENWOOD
The University of Texas and the Institute for Numerical Analysist

1. Introduction. The methods of numerical integration going by the names
trapezoidal rule, Simpson’s rule, Weddle’s rule, and the Newton-Cotes formulae
are of the type

1 n
(1) [ 5@ de o 2 Naf(ai)

=

where the abscissae {z:,} are uniformly distributed on a finite interval, chosen
as (—1, 1) for convenience,

(2) x,-,.=—1+%z, i=0,1,2+,n

and where the set of constants {\;,} depend on the name of the rule and the value
of » but not on the function f(x). Throughout this note all abscissae will be
assumed to be uniformly distributed on (—1, I) unless the contrary is explicitly
stated.

Since correspondence relation (1) involves (n + 1) constants {X;}, it might
be possible to choose (n + 1) arbitrary functions g;(x),j = 0,1, 2, ---, n,
and require that the set {A:.} be the solution, if such exists, of the (n + 1)
simultaneous linear equations

1 n
3) [1 gix) de = Zo Ningi(Zin), i=012--,n
Indeed, the selection
(4) gi(x) = xj: j=012---,n,

will give a set of (n + 1) simultaneous equations of form (3) and the solution {A;,}
is the set of Newton-Cotes weights for that value of n. The numerical evaluation

1 This work was performed with the financial support of the Office of Naval Research of
the Navy Department. :
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of {>\2,-,,} is best accomplished by other and more sophisticated methods, how-
ever.

Because of linearity in both the integral and the finite summation, once the
constants {\:,} have been determined for a specific set of functions {g;(z)},
correspondence relation (1) is exact for any linéar combination of that funda-
mental set. Thus, for example, for the fundamental set (4), correspondence
relation (1) with the appropriate values {\..} is exact for all polynomials of
degree less than or equal to n.

Although tradition favors the set of functions (4), there is nothing compelling
about such a selection. Indeed, two other possible choices might be

(5) gJ(x) = ejz, .7 = 07 1) 2) RPN (M
and
(6) gJ(x) = ejz7

j=-m -m+4+1 ---,0,1 -, m—1,m;n = 2m.

These choices would seem to be appropriate whenever numerical methods are
being applied to exponential growth curves or exponential decay curves.

2. Use of the basic set g;(x) = e’*. If integration relation (1) be made exact
for the set {€¢”*},j = 0, 1, --- , n with evenly spaced z abscissae, the set (3) of
(n 4 1) simultaneous linear equations in the unknowns {Ain},7 = 0,1, --- ,n
is obtained. Call the solution of this system {a:.}, solution values for n = 1,2,
3, 4, 5, 6 are tabulated below.

For the symmetric case where integration relation (1) is made exact for
{e},j = —m, —m + 1, --- ,m — 1, m; n = 2m, a similar but different set of
linear equations (3) results for the unknowns {A;,}. Call the solution of this
system {b.,}. As implied above, only even values of n are used in order to preserve
the symmetry, and values of {b..} are tabulated below for n = 2, 4, 6.

n=1, an 1.31303 5285

n=2 ae = 0.21805 032* bee = 0.32260 623~
dyy = 1.49780 742 blz = 1.35478 755
ax = 028414 226 by = 0.32260 623~
n =3, as = 051324 284
a3 = 0.22445 055
ai = 1.08155 527
a = 0.18075 134
n = 4, a = —0.13716 639" be = 0.15048 171
ae = 140098 548 b = 0.73243 318

2 Whittaker and Robinson, The Calculus of Observations, 4th Edition, (1946), London,
pp. 152-156.
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axn = —0.30895 914 by = 0.23417 022
au = 091710 903 by = 0.73243 318
aw = 0.12803 103~ bu = 0.15048 171
n =25, as = 0.68919 3
as = —1.07644 3
an = 212534 6
ax = —0.63595 6
as = 0.79933 8
as = 0.09852 18
n = 6, ags = —0.83607 bes = 0.09443 5
as = 3.54128 b = 0.53464 7
ax = —3.88102 b = 0.01139 3
Qze = 3.32254 bas = 0.71905 O
as = —0.94685 b = 0.01139 3
ass = 0.72075 bss = 0.53464 7
as = 0.07937 5% bes = 0.09443 5

The computing service of the Institute for Numerical Analysis has supplied the author
with most of the coefficients tabulated above.

3. Estimates of the error term. The choices of the coefficients {a:»} and
{bix} are such that integration relation (1) is exact whenever

(7) f@) = Ay + A1 + --- + A,e™ and N = Gin,
and whenever
(8) (=) = B_me ™+ B_pue " "+ .- + B+ -+ + Bne™ and hin = bin .

When f(z) is not of these prescribed forms, the error in using correspohdence (1)
may be of some importance. By making the transformation.

9 u=¢, f(z)=f(logu) = g(u)
integration relation (1) becomes

e du n
(10) [ 008 > 3 hnglus)

where the {u;,} are not evenly distributed. By approximating g(u) by its Taylor’s
series with a remainder term, the following expressions for the error in using
correspondence (1) can be obtained:

Using the coefficients {a..},

G :
(11)  Error < N\ 2 /] [2 + g | @in l] [ ma.xl (e“" %)n f(x)]

(n 4+ 1)! —1<z<
and, using the coefficients {bin},
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& — 1\
( 2e ) [em"e—m Zlb-%n]

MI am
i=0 €

. [_ﬂ?; ) (e—’ %)2'”“ e™ f(x)] .

Neither of these error expressions can be said to be very practical in actual
computation, and neither appears suitable for establishing convergence proper-
ties of the type

(13) lim Z Ninf(Tin) = flf(x) dx.

n—+00 ==

(12) Error < “@em + 1)1

However, both (11) and (12) reduce to zero when f(z) is of the form prescribed
by (7) or (8) respectively.

4. Numerical examples. As illustrative numerical examples, the case n = 4
was selected and several typical functions were integrated approximately by the

positive power exponential rule, the symmetrical exponential rule and the
Newton-Cotes formula,

[ $(z) dz = las(=1) + 32f(=1) + 127(0) + 321} + 7L

Values of {au} and {bi} are ngen in the tables in part 2. The typical functions

used were 2%, ¢, 1/(z + 3), ¢ *, ze, :c and ¢**. The following results were
obtained:
.. . 8 Decimal
Function I;;)sztwe Po.wer Symmetrzc‘al Newton-Cotes | Approxzimation to
zpontential Ezponential Ezact Value
z .5703 8827 .6671° 8001 .6666 6666 .6666 6667
e 3.6268 6044 | 3.6268 6041 | 3.6317 3108 | 3.6268 6041

1/(x + 3) .6828 6353 6931 5792 6931 7460 6931 4718
e 1.4930 1396 | 1.4857 2754 | 1.4887 4582 | 1.4936 4827

ze” 27292 4338 | .7353 6007 | .7361 7480 | .7357 5888
z° 0270 8487 | .3238 5196 | .3333 3332 | .2857 1429
& 4.0527 7287 | 4.0530 7585 | 4.0607 7415 | 4.0519 1379

From this tabulation, it would appear that the symmetrical exponential
method compares favorably with the Newton-Cotes method for such typical
functions as 1/(x + 3), 22, ze*, 28, and €>**. Note that the choice of z? or ¢*
is not really a fair choice when comparing these two methods, since Newton-
Cotes is derived so as to give exactness for z*> and the symmetrical exponen-
tial so as to give exactness for e,



