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1. Summary. Let us consider a large number n of observations which are statis-
tically independent and drawn from continuous symmetrical populations. This
paper presents some nonparametric tests of whether the r largest observations
of the set are too large to be consistent with the hypothesis that these populations
have a common median value. Tests of whether the r largest observations are
too small to be consistent with this hypothesis are also considered. Here 7 is a
given integer which is independent of n.

Subject to some weak restrictions, it is shown that the significance level of a
test of the type presented tends to a value a as n increases. For no admissible
value of n, however, does the significance level of this test exceed 2a. If whether
the largest observations are too large is considered, tests with values of « suitable
for significance levels can be obtained for » > 4. Values of a suitable for sig-
nificance levels can be obtained for any value of r if whether the largest observa-
tions are too small is investigated (n large).

Properties of the power functions of these tests are considered for the special
case in which the r largest observations are from populations with common
median 6, the remaining observations are from populations with common
median ¢, and each population has the property that the distribution of the
quantity

(sample value) — (population median)

is independent of the value of the population median. For tests of § > ¢, the
power function tends to zero as § — ¢ — — o« and to unity as § — ¢ — . For
tests of ¢ > 6, the power function tends to unity as § — ¢ — — « and to zero
as f — ¢ — o,

Analogous tests of whether the smallest observations of a set are too small or
too large can be obtained from the tests of the largest observations by symmetry
considerations.

If there is strong reason to believe that the set of observations is a random
sample from a continuous population, the tests presented in this paper can be
used to decide whether the population is symmetrical. Tests of this nature are
sensitive to symmetry in the tails of the population but not to symmetry in the
central part.

2. Introduction and statement of tests. The tests derived in this paper are
applicable to situations of the following two types:
(a). It is known that the observations are independent and from continuous
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symmetrical populations (i.e., each population has a continuous cdf F ()
such that F(x — ¢) = 1 — F(¢ — z), where ¢ is the population median).
It is desired to test whether the largest few observations are too large
(or too small) to be consistent with the assumption that the populations
have a common median value (if the 509, point of a continuous sym-
metrical population is not unique, the median of this population is de-
fined to be the midpoint of the interval of 509, points).

(b). It is known that the observations are independent and from continuous
populations with a common median value (e.g., the observations may
be a sample from a continuous population). It is desired to test whether
these populations are symmetrical (with emphasis on the tails of the
population).

With respect to (a), perhaps the most common practical application is that
where the observations are assumed to be a sample from a continuous sym-
metrical population of some special type (e.g., normal) but the values of the
largest few observations make this assumption questionable. The nonparametric
tests presented for (a) are easily applied and a significant result for a non-
parametric test automatically implies that the observations are not a sample
from the specified type of population. Furthermore, if a parametric test of this
situation (i.e., a test based on the assumption of a sample from this special type
of population) is significant, the nonparametric tests are useful in determining
whether it is possible that the observations might be a sample from a continuous
symmetrical population of some other type.

With respect to (b), perhaps the most common application is that where the
set of observations can be considered to be a sample from a continuous population
and it is desired to test whether this population is symmetrical in the tails.

Now let us consider the forms of the tests. Let z(1), - -+, z(n) represent the
values of the n observations arranged in increasing order of magnitude. Then
z(n + 1 — 7)), z(n + 2 — 1), .-+, z(n) are the r largest observations of the
set. For situations of type (a), the tests of whether the r largest observations
are too large are of the form

Test 1. Accept that the r largest observations are too large to be consistent with
the hypothesis that the populations have a common median if

min [x(n + 1 — %) + 2(); 1 S k& < s < 1] > 22(Wa),
where the ©’s, J’s and n are integers such that
b=y G <dury g <jur, Ge<Wa<m+1l-—r
a 1s defined by
a = Primin [z(n + 1 — 4;) + z(Jx)] > 2¢ | ¢ = common median},
and W, = W4(n) is the smallest integer satisfying the relation

(1) Priz(W,.) < ¢ |¢ = common median] < a.
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In testing the hypothesis of Test 1, the principle followed is to choose
z(n + 1 — r) and some subset of z(n + 2 — r), ---, z(n) for use in the test.
The integer s represents the total number of order statistics selected from
zn +1—7), -, z(n).

The value of @ = a(?1, -+, % ; 1, **+ , Js) is independent of n and is given
by equation (4) in Section 3. Table 1 contains some values of the 7’s, 7’s and s
which yield values of « suitable for significance levels. For Test 1, values of
suitable for significance levels can be obtained for r > 4.

TABLE 1
Some values of o for s < 5

a s i1 i2 i i is I 72 7 Ja Js
.0625 1 4 1
.0312 1 5 1
.0156 1 6 1
.0078 1 7 1
.0039 1 8 1
.0352 1 7 2
.0195 1 8 2
.0107 1 9 2
.0469 2 4 5 1 2
.0234 2 5 6 1 2
.0117 2 6 7 1 2
.0059 2 7 8 1 2
.0391 3 4 5 6 1 2 3
.0195 3 5 6 7 1 2 3
.0098 3 6 7 8 1 2 3
.0459 4 4 5 6 7 1 2 3 4
.0229 4 5 6 7 8 1 2 3 4
.0115 4 6 7 8 9 1 2 3 4
.0308 5 4 5 6 7 8 1 2 3 4 5
.0154 5 5 6 7 8 9 1 2 3 4 5
.0077 5 6 7 8 9 10 1 2 3 4 5

If the n independent observations satisfy the additional conditions
(i). Asymptotically (n—w), z(W,) ‘is statistically independent of min
[x(n + 1 — 4) + 2Ge); 1 < k& < s].
(ii). The standard deviations of z(W,) and min [x(n + 1 — %) + z(x);
(A) 1 <k < slexist foralln > 4, + j, — 1 and the limiting ratio (n — «)
of these standard deviations is either zero or infinite.
(iii). Let the notation ¢(2) denote the standard deviation of z. Then, if the
populations have a common median ¢, asymptotically the cdf’s of



586 JOHN E. WALSH

[x(Wa) — ¢]/olx(Wo)] and {min [z(n + 1 — %) + z()] — 29}/
of{min [z(n + 1 — 4;) + 2(jx)]} are continuous at the point zero.
then the significance level of Test 1 approaches the value « as n tends to infinity.

Although conditions (A) may appear to be complicated, they are not very
restrictive. These conditions are satisfied if the n observations are a sample
from a continuous population of the type usually encountered in practical
situations (i.e., approximated in practical situations). Perhaps the most well
known type of continuous symmetrical population for which a sample does not
satisfy conditions (A) is that with a triangular probability density function.
Part (i) of conditions (A) is not satisfied for a sample from a population of
this type.

For large n, relation (1) with the equality sign is approximately satisfied if
Wo = in + 1K/n, (ie., the largest integer contained in in + 1K.\/n).
Here K, is the standardized normal deviate exceeded with probability «. This
value for W, was obtained from the normal approximation to the binomial
theorem and furnishes a reasonably accurate solution of (1) with the equality
sign for n > 10, (see [1]).

As an example of a test of type 1,let r = 5,8 = 2,51 = 1, jo = 2,7 = 4,
2y = 5. Then a = .0547 and the test is (approximately)

TEST 2. Accept the specified alternative of Test 1 if

min [z(n — 3) + z(1), z(n — 4) + z2)] > 2c(in + K./ 7).

That this is a test of whether the 5 largest observations are too large is intuitively
evident from the fact that a significant result will be obtained only if both

z(n — 3) > 2z(3n + iK.sav/n) — (1),
x(n — 4) > 2z(3n + K.V n) — 2(2).

If the smallest two of the five largest observations are too large, it seems reason-
able to suppose that all of the five are too large. A similar interpretation exists
for all tests of the type of Test 1.

The type (a) tests of whether the largest observations are too small are of
the form

TesT 3. Accept that the r largest observations are too small to be consistent with
the hypothesis that the populations have a common median value if -

max [x(n + 1 — 7)) +2(@); 1 K k< s<7r] <2z(n+1— W),

where js = 1, Jo < Jot1s tu < tup1, % < n'+1—We<n+1—r, and both a
and W . are defined in Test 1.

From the results for Test 1 and symmetry considerations, the significance
level of test 3 tends to @ as n — o if conditions (A) are satisfied; it does not
exceed 2a for any admissible value of n. For Test 3, values of « suitable for
significance levels can be obtained for all values of r (n sufficiently large).

As indicated by (2), the tests of whether the largest observations are too large

@)
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can also be interpreted as tests of whether the smallest observations are too
large. Similarly the tests of whether the largest observations are too small can
also be interpreted as tests of whether the smallest observations are too small.

The above discussion presents intuitive reasons for believing that Tests 1 and 3
are suitable for the situations to which they are applied. To obtain a semi-
quantitative measure of the suitability of these tests, this paper investigates
the special case in which the r largest observations are from continuous sym-
metrical populations with common median 6, the remaining observations are
from continuous symmetrical populations with common median ¢, and each
population has the property that the distribution of + — ¢ is independent of ¢,
where z is an observation from the population and ¢ is the median of the popula-
tion. The power function of a test of type 1 or 3 is defined to be the probability
that the test is significant given the value of 8 — ¢. It is found that the power
functions of these tests have several desirable properties: For Test 1, the power
function tends to zero as § — ¢ — — w0, is a monotonically increasing function
of 8 — ¢ for 6 — ¢ < 0, and tends to unity as § — ¢ — . For Test 3, the
power function tends to zero as § — ¢ — o, is monotonically decreasing for
6 — ¢ < 0, and tends to unity as 6 — ¢ — — .

For testing whether the populations are symmetrical in the tails given that
they are continuous and have a common median, i.e., situation (b), a combination
of 1 and 3 is used. The resulting test is

TesT 4. Accept that the populations are not symmetrical in the tails if either

min [z(n + 1 — %) + z(r); 1 < k < 5] > 22(W,)
or
max [z(n + 1 — ji) +2(@%); 1 <k <s] <2zx(n+ 1 — W),

where o < %, 00 < tup1, 0o < Jot1rJo S tw,Je < Wa<n+1—14,, andbotha
and W . are defined in Test 1.

Since both inequalities in Test 4 can not be satisfied simultaneously, the
significance level of Test 4 tends to 2« as n — « if conditions (A) are satisfied;
it never exceeds 4« for any admissible value of .

The asymptotic distribution (n — «) of (W) is usually not very sensitive
to symmetry of the populations. For example, if the n observations are a sample
from a population with a probability density function f(z) such that (f{¢) < 0,
(¢ = population 509, point), and f’(x) exists and is continuous in a neighborhood
of x = ¢, it can be shown that the only property of f(x) which influences the
asymptotic distribution of (W) is the value of f(¢). Thus, since a type 1 test
investigates both whether the largest observations are too large and whether
the smallest observations are too large (to be consistent with the assumption of
symmetry), while a type 3 test investigates both whether the largest observations
are too small and whether the smallest observations are too small, Test 4 should
be suitable for testing whether a population has symmetrical tails.
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3. Theorems and derivations. The fundamental fact used in this paper is
that, if the observations are from continuous symmetrical populations with
common median ¢, the value of

a=Primin[z(n + 1 — ) + z(e); 1 < k < 8] > 26}
= Primax [z(n + 1 — jx) + z(&); 1 < k < s] < 2¢}

is independent of n for the values of » permitted in the tests. This result is a
special case of the following theorem

TuEOREM 1. Consider a set of n independent observations from continuous
symmetrical populations with commonmedian ¢. Let 1, < -+ < tsandj, < -+ < Js
be fized sets of integers whose values are independent of n. Then the value of

Pr{gth largest of [x(n + 1 — 7x) + z(%); 1 < k < 5] < 29}
18 the same for all values of n which are >1, + j, — 1. In particular

m(2) m(3) m(2)—hg
a = 2‘“’{1 + m(1) +h§: (1) — h + 22 ;.Z [m(Q) — hy — he] + -+
(3) 1=1 ho=1 hy=1

m(u) m(u—1l)—hy_, m(2)—hg—: < —hy_1
+ > X [m<1>—h1—---—hu,11},
hy_1=1 hy_9=1 h1=1
where

w==%6t+5—1 u=75—1 m@G+v:i—1) =2+ — % — Je —ve + 1,
t=20,1,.--,8—1, 1< v < Jeyr — Je,y W=7 —1=0.
Proor. It is sufficient to prove the theorem for the expression
Primax [z(n + 1 — ji) + 2(); 1 < k < 5] < 24},

since any probability expression of the form Pr{gth largest of [ ] < 2¢}

can be expressed as a specified constant plus a sum of probabilities of the form

Pr{max [ ] < 2¢} multiplied by specified constants, where in each case the

terms in the [ ] are a subset of the s terms: x(n + 1 — ji) + z(@), 1 < k < s).
Let the integer n have the value no . Then it can be verified that

Pri{max [x(no + 1 — ji) + 2(ix); 1 < k < 5] < 24}
(4) = Prlmax {2z(mo — 7s), 2o + 1 — W] + z[ne + 1 — W — m(W)];
1< W< 5 <24,
where
mGe+ve— 1) =n+ 2 — 7, — j. — v, m(fs) = no — & — Jo = 1,
t=0,1,:---,8 —1, 1< v L Joy1 — Je, h=4o— 1=0,

by the use of Theorem 4 of [2]. By the proof of Theorem 5 of [2], the value
of the second term in (4) equals
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Prlmax {2z(no — j.), z[no + 2 — W] + 2[ne + 1 — W — m(W)];
1< W< g+ 1) < 29)

if m(js + 1) = 1 and the expression is based on 7, + 1 rather than n, observations
(the values of the m’s are the same as in (4)). The value of this expression,
however, can be shown to equal the value of

Prlmax {2z(no + 1 — o), z[no + 2 — W] + 2[ne + 2 — W — m(W)];
1< W <.} <24,
which by (4) equals the value of
Primax [x(no + 2 — 7x) + x(i); 1 < k < 5] < 2¢}
if n = my 4+ 1 for this expression. Thus, by induction, the value of
Primax [z(n + 1 — i) + z(@); 1 < k < 5] < 26}

is the same for all sample sizes n > %, + j; . An analysis similar to that used
in the proof of Theorem 5 of [2] shows that this also holds for n = ¢, + j, — 1.
Equation (3) was obtained by taking n = w = ¢, + j, — 1, the m’s as given by
(4) with this value of n, and substituting into Theorem 4 of [2].

Another basic result is that, if the observations are from continuous symmetri-
cal populations with common median ¢, the value of

Primin [z(n + 1 — %) + z2(r); 1 < k < s] > 22(W,)}
= Primax[z(n +1 — fi) + 2(); 1 < k< s <2x(n +1— W,)}

is always less than or equal to 2a. This is a particular application of the theorem
THEOREM 2. Consider n independent observations from continuous symmetrical
populations with common median ¢. Then, for any integer W,

Primax [z(n + 1 — ji) + z(@); 1 < k < 5] < 2z(W)}
< Primax [z(n + 1 — ji) + z(3)] < 2¢} + Priz(W) > ¢}
— Primax [z(n + 1 — ji) + 2(@k)] < 2¢, 2(W) > ¢}.
Proor.
Primax [ ] < 2z(W)} = Primax [ ] < 2¢, (W) > ¢}
+ Primax [ ] < 2¢, z(W) < ¢, max [ ] < 2z(W)}
+ Pr{max [ ] > 2¢, (W) > o, max [ ] < 2x(W)}
< Primax [ ] < 2¢, x(W) > ¢} + Primax [ ] < 2¢, z2(W) < ¢}
+ Primax [ ] > 2¢, 2(W) > ¢}
= Pr{max [ ] < 2¢} 4+ Pr{z(W) > ¢} — Primax [ ] < 2¢, (W) > ¢}.
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If the n independent observations satisfy conditions (A) in addition to being
from continuous symmetrical populations with a common median value, the
significance level of Tests 1 and 3 tends to @ as n — . This follows from sym-
metry considerations and

TaEOREM 3. Consider n independent observations. which satisfy conditions (A)
and are from continuous symmetrical populations with a common median value.
Then

lim Primin [x(n + 1 — &) + 2(); 1 £ kb < 5] > 22(Wa)} = a.

Proor. Let
Y =minz(n +1— %) +2z@);1 <k <3
and consider the case where

lim o¢[z(W)]/a(Y) = 0.

Since the populations are continuous, o(Y) > 0 and
PrlY > 2z(W,)] = PrlY — 2¢ > 2z(W,) — 2¢]

) = Pr{lY — 2¢)/0(Y) > 2[x(W.) — ¢]/a(Y)}.
et
Z = 2[a(W.) — ¢)/a(Y).

Then, from (i) of conditions (A),

PrlY > 22(W,)] = f: Pri{[Y — 2¢])/a(Y) > a} dF.(a) + B(n),

where F, is the cdf of Z and lim 8(n) = 0.

n—»00

Let b be any positive number. From lim ¢(Z) = 0, (ii) of conditions (A), and

n-—»00

the definition of xz(W,), the mean of Z exists for all values of » and tends to
zero as n — . Then, by Tchebycheff’s Inequality, it can be shown that

[ ari@) =1 = 2@,

where lim v(n) = 0.

n—+00

From (iii) of conditions (A)

lim Pr{[¥Y — 2¢])/a(Y) > —b} = lim Pr{[Y — 2¢]/a(¥) > b} + &(b),

where lim §(b) = 0.
b—0
Using the above relations, letting n — o first and then b — 0, it follows from
Theorem 1 that
lim Pr(Y > 2z¢(W.)] = Pr{[Y — 2¢]/a(Y) > 0} = a.

n—»0
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A similar type proof shows that this limiting relation also holds when

lim alz(Wa)l/a(Y) = «.

Finally consider properties of the power functions of Tests 1 and 3 for the
special situation outlined in sections 1 and 2. The properties stated in the pre-
ceding two sections follow from

TuEOREM 4. Letz(n + 1 —r), - - - ,x(n) be from continuous symmetrical popula-
tions with common median 0, the remaining order statistics from continuous symmet-
rical populations with common median ¢, and each population have the property
that the distribution of x —  is independent of Y, where x is an observation from
the population and Y is the median of the population. Also let

Py@®) = Primin [x(n + 1 — 4) + 2(u); 1 Sk < s< 7]
>22(Wa) | 0 — ¢ = @},
where the conditions for Test 1 are satisfied, and
Py(®) = Primax [x(n + 1 — ji) + 2(0); 1 < k < s < 7]
<2x(n+1—Wo)|0—¢ =2}
where the conditions for Test 3 are satisfied. Then

¢ 00

$—>—00

Qlim P;®) = 1, q}im P;(®) = 0,
P1(®) ©s a monotonically increasing function of ® for & < 0, and Ps(®) is a mono-
tonically decreasing function of ® for ® < 0.

Proor. It is sufficient to prove this theorem for the power function of Test 3.
The results for P;(®) can be obtained from symmetry considerations and obvious
modifications of the proof for P;(®).

First consider P;(®) for the case where ® < 0. Let a new set of observations
be formed from the given set by subtracting the median value of the corre-
sponding population from each observation. Let y(1), --- , y(n) be the values
of the set of modified observations arranged in increasing order of magnitude.
Since® < 0, § < ¢ and

z(t) — ¢, 1<t<n-—r,
y() = ‘
z(t) — 6, n—r+1<t<n.

Thus
Py@®) = Primax [y(n + 1 — jis) + y(i); 1 <k < s < 7]

—2yn + 1 — W,) < —9},
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whence it follows that P3(®) is a monotonically decreasing function of & for
® < 0 and that lim P3(®) = 1.

P ——c0
Now consider the case where & > 0. Again form the set of modified observa-
tions and let y(1), ---, y(n) be the values of these observations arranged in

increasing order of magnitude. Then it is easily seen that
Py@) < Prly(1) — y(n) < —3®]
so that lim P3(®) = 0.

® o0
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