ON A PRELIMINARY TEST FOR POOLING MEAN SQUARES
IN THE ANALYSIS OF VARIANCE!

By A. E. PavLL

Grain Research Laboratory, Winnipeg

Summary. The paper describes the consequences of performing a preliminary
F-test in the analysis of variance. The use of the 59, or 259 significance level
for the preliminary test results in disturbances that are frequently large enough
to lead to incorrect inferences in the final test. A more stable procedure is recom-
mended for performing the preliminary test in which the two mean squares
are pooled only if their ratio is less than twice the 509, point.

I. INTRODUCTION

The problem discussed in this paper is one of a large class involving preliminary
tests of significance. Studies of this type have recently been made by Bancroft
[1] and Mosteller [2]. Bancroft dealt with a preliminary test for homogeneity
of two variances, and a test of a regression coefficient. Mosteller dealt with the
problem of pooling means from two normal populations having the same known
variance. The present problem is an extension of Bancroft’s work from investiga-
tions of the bias and variance of an estimate of variance, to investigations of the
consequences of using that estimate in performing a further test of significance.

The problem arises frequently in the analysis of variance. As a simple example,
consider an experiment carried out to test the hypothesis that different labora-
tories in a district all determine the protein content of wheat without systematic
differences between laboratories. Three laboratories are selected at random
and each is requested to analyze ten samples of the same wheat, five on each of
two days. The analysis of variance would be set up in one of two ways:

MODEL I MODEL II
Source of variation df MS Source of variation af MS
Between laboratories 2 Between laboratories 2 vy
Between days within labs. 3 v L . 3vy + 240,
Within days 21 o, Within laboratories 27 ————57———

The soundest procedure is to follow Model I in which the F-ratio, vs/v,;,
provides a valid though not very powerful test of the null hypothesis. But the
investigator often doubts that this is the most effective form of analysis. His past
experience may have shown that measurements of this kind seldom exhibit
day-to-day variations appreciably greater than their within-day variations.
If he is willing to accept this credible assumption, he adopts Model II because

1 Based on a doctoral dissertation submitted to the Faculty of North Carolina State
College of the University of North Carolina at Raleigh, N. C., in June, 1948. Published as
Paper No. 107 of the Grain Research Laboratory, Board of Grain Commissioners, Winnipeg.
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this increases the degrees of freedom from 2 and 3 to 2 and 27. These two models
may conveniently be called the “never pool” and the “always pool’”’ procedures.

The investigator often prefers what may be called a “sometimes pool” pro-
cedure. He starts with Model I and examines the null hypothesis that the
variation between days is no greater than the variation within days by testing
the F-ratio v»/v; . For this test, he selects a probability level P, that may be the
5% or some higher level. If the hypothesis of this preliminary test is not rejected,
his judgement has been substantiated and he adopts Model II and pcols the
two mean squares. If the hypothesis is rejected, he retains Model I since he
concludes that v, alone is the only valid estimate of error.

The following notation is introduced:

Degrees of freedom Mean square Expected value of mean square
ns vs o}
n2 Vg og
n v o’f

where o} < o3 < o3 .

The mean squares v, v, and v; are assumed to be distributed as central
chi-squares. This assumption is justified if the treatments (laboratories in the
example) are selected at random from a population of treatments. But if, as is
more frequently the case, the experimenter is interested only in specified treat-
ments, the non-central chi-square model is the appropriate one. However, if
the two cases are sufficiently parallel, as seems probable, conclusions drawn
from the central model may be expected to apply to the non-central model.

Let 6y = o3/0; and 6y = o3/05 , and let F (v1, vz, P) denote the value exceeded
by F for » and », degrees of freedom with probability P. The rule of procedure
for the “sometimes pool” test may be restated as follows:

Reject the main hypothesis that o3 = o3(6; = 1) if

1)2/1)1 Z F](nQ , N1, Pl) and 03//1)2 _>_ F2(7l3 , N2y PZ)
or if
va/v1 < Fi(na, my; P1) and  (ne + ni)vs/(ngve + mavy) > Fa(ng , ny + ny ; Ps).

The “never pool” procedure in which P, is used, and the “always pool”’ procedure
in which Pj is used, may be considered as special cases of the “sometimes pool”
procedure in which P; takes on its extreme values, 1 and 0 respectively. In
practice, the probability levels P, and P; are usually the same; in the present
study they are allowed to be different in case this greater flexibility should prove
desirable. The objects of the investigation are: (a) to examine the Type I error
under the above rule of procedure, i.e., to determine the frequency of rejecting
the null hypothesis when it is true; and (b) to examine the behaviour of the power
with particular reference to comparisons with the power of the ‘“never pool”
procedure.

The remainder of this paper is divided into four sections: Part II contains a
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general discussion of the results, conclusions and recommendations; and Part I1I
illustrates the general conclusions with numerical examples. The derivation of
distributions, proofs by elementary arguments of general qualitative results, and
derivations of closed form expressions for n; = 2, are given in Part IV.

II. GENERAL DiscussioN oF ResurTs, CONCLUSIONS AND RECOMMENDATIONS

2.1. Criterion employed. In this part the principal results and recommenda-
tions are discussed for the reader who is not interested in the mathematical
details. To give results in a simple form is not easy, because of the many variables
—the P’s, the 6’s, and the n’s—that enter into the problem. It may be helpful
to consider what is wrong with the “always pool” test, and then to state the
properties which the preliminary test must have if it is to be regarded as useful
and successful.

If the “always pool” procedure is employed when in fact o3 is greater than
o3, i.e. 6;.> 1, the denominator in the final F test tends to be too small. Thus
the final F test gives too many significant results when its null hypothesis is
true and if 6y is great enough, there is no bound to this hidden distortion of the
significance level. A test which the research worker thinks is being made at the
59, level might actually be at, say, the 479, level.

The preliminary test represents an attempt to avoid this alarming disturbance,
since if 6y is very large the test is expected to warn against pooling. Such a
procedure, however, can not be expected to remove this disturbance completely,
and it does not do so, but to be successful it should keep the true or effective
significance level of the final F test close to the nominal level at which the
research worker thinks he is working.

A second requirement is that the preliminary test should increase the power in
the final F test relative to the power of the “never pool” test. When the powers of
the “sometimes pool” and “never pool” tests are compared, it is important to
make the comparison at the same significance level. Suppose the preliminary test
shifts the significance level of the final F test from the 59, to the 69 level—a
disturbance that for some uses would not be regarded as serious. In this event the
“sometimes pool” test (at the 69 level) would tend to be more powerful than
the “never pool” test at the 59 level, because an increase in significance level
generally results in an increase in power. But unless the ‘‘sometimes pool” test
has more power than a ‘“never pool” test made also at the 69, level, it has no
real advantage over the ‘“never pool”’ procedure.

2.2. Effect of preliminary tests made at the 59, level. Probably the most
common procedure in practice is to perform the preliminary test at the 59, level
(i.e. P, = .05) and, whether pooling is prescribed or not, to conduct the final F
test also at the 59 level, (i.e. P, = P; = .05). Such a procedure, except when
62 is near one and the null hypothesis is true, results in the null hypothesis being
rejected more frequently than if pooling is never resorted to.

When the ratio 62 is equal to one, so that routine pooling would be valid, the
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preliminary test is effective. The true significance level of the final F test is
decreased slightly, but is always confined between the 59, and the 4.759, levels.
Further, the power is always greater than that of the ‘“never pool” test made
at the same significance level.

As 0 increases from 1, the true significance level of the final F test increases
to a maximum and then slowly decreases to 5%. Unfortunately the maximum
need not be near to 59%,: in the example presented later it is about 15%, and for a
broad range of values of 8y the true significance level is higher than 109,. Com-
parison with the power of the “never pool” test is also unfavorable to the ‘“some-
times pool” test. For values of 6 near 1, the “sometimes pool” test has the
higher power, but as 6 becomes larger the advantage passes to the ‘“never
pool” test.

When 6 is very large there is, as would be expected, little disturbance. The
preliminary test seldom prescribes pooling, so that the properties of the ‘“some-
times pool” test are very similar to those of the ‘“never pool” test, although the
“never pool” procedure yields the slightly higher power.

The main objection to the use of the ‘“sometimes pool” test is associated with
the intermediate values of 6y . If over a series of experiments 6y has a moderate
value greater than one, the “sometimes pool” test at the 5%, levels yields more
apparently significant results than are anticipated, and is also less powerful
than a corresponding “never pool” test. The magnitude of these undesirable
properties can be reduced somewhat by increasing the significance level of the
preliminary test.

2.3. Effect of preliminary tests made at the 2569, level. Use of the 259, in-
stead of the 59 significance level for the preliminary test reduces, in general, the
probability of rejecting the hypothesis. This reduction, at intermediate values
of 6, results in a reduction of the extreme disturbances. When the ratio 6y is
equal to one, however, the effects are not as favourable. If the hypothesis is
true, still fewer apparently significant results occur. A final test being carried
out at the 59, level can now have an effective significance level close to 3.75%,.
If the hypothesis is false, the test is still more powerful than a corresponding
“never pool” test but the gain is not as great as when a preliminary test at the
59, level is employed. Since most experimenters desire a reasonable amount of
protection against an error in judgement of the true value of 6y , the reduction
in disturbances for intermediate values of 6y , resulting from the use of the 259,
rather than the 59 level, would be judged to outweigh the disadvantages of the
compensating factors.

2.4. Effect of further increases in significance level. Increasing P;, the sig-
nificance level of the preliminary test, decreases the probability of rejecting
the hypothesis only to the point where a critical value P, is reached. Increasing
P; beyond this value results in an increase in the probability of rejection. The
properties of a “‘sometimes pool”’ test in which P; is less than P, differ, in general,
from those of a test in which P is greater than P; .
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Tests of the former type, which are referred to here as Class A tests, are the
tests commonly encountered in practice. Considering, for example, a test in
which P, = P; = .05and n; = 20, n; = 4, ng = 2, we find the critical value P;
to be .77, a figure much larger than the values .05 or .25 customarily chosen
for P;. The major portion of the present discussion deals with Class A tests.
Tests in which P, is greater than P; are referred to as Class B tests and discussion
of their properties is relegated to a later section. An expression for evaluating
P, is given in Subsection 4. 3.

2.6. Effect of P, P;. The probability levels (Ps, P;) used for the final test
determine the properties of the “sometimes pool” test for extreme values of 6y .
When 8 is equal to one, the effective significance level is less than the nominal
value P;, but is not less than (1 — P;)P;. The power of such a test is greater
than the power of a corresponding “never pool” test, but less than the power of a
test in which one always pools and uses the P; level. For very large values of 6y
the behavior of the ‘‘sometimes pool” test approaches, in all respects, the
behaviour of a ‘“never pool” test at the P, level.

2.6. Effect of ny, n; . The degrees of freedom n, and n;, associated with the
mean squares that are sometimes pooled, clearly affect the magnitude of the
disturbance. Because analytic investigation becomes complex, the following
remarks are based on conjectures arising out of examination of a number of
numerical examples.

A large value of n, is desirable in two respects. As n, becomes larger the
preliminary test becomes more powerful and pooling is prescribed less often. In
addition, when pooling is prescribed the pooled mean square is further weighted
in favour of the valid error o3 . Both factors are contributing towards a decrease
in bias of the error mean square with a consequent reduction in the disturbance
introduced into the final test.

The effect of n; is not as simple. As n; becomes larger the preliminary test
again becomes more powerful and pooling is prescribed less often. But when
pooling is prescribed, the pooled mean square in this case is further weighted in
favour of o1, which is smaller than the valid error o3 . The effect on the final
test, which is due to a combination of these two factors, clearly depends on the
value of 6y . For intermediate values of 6y the latter factor is the predominant
one, and the disturbance of the effective significance level is increased as n; is
increased.

2.7. Class B Test. A Class B test is one in which the probability level (P;)
of the preliminary test is greater than a critical value P; . Pooling is prescribed
only when the mean square ¢; is relatively large, with the result that the error
mean square tends to be too large. Accordingly, a Class B ‘“‘sometimes pool”
test rejects the hypothesis less frequently than a “never pool” test at the P, level.

The effective significance level of a Class B test is less than P, for all values
of 05 . It has its lowest value when 6y is equal to one, and approaches P, as 6y
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becomes very large. Because pooling is prescribed infrequently, little power is
gained by the use of a Class B test rather than a ‘“never pool” test.

2.8. Recommendations. The principal conclusions discussed in the preceding
subsections may be summarized as follows: A preliminary test carried out at a
significance level as low as 5%, affords little protection against errors in judge-
ment. If ¢} is equal to ¢3(6 = 1) the reduction in errors of inference is appre-
ciable; but if, in fact, of is less than o3(6y > 1), a greater number of incorrect
inferences are made than if a preliminary test is not employed at all. The use
of the 259, significance level for the preliminary test introduces the same dis-
turbances but to a lesser extent. Extreme increases in the effective significance
level at possible values of 6, are reduced and losses in power at these values are
not as serious. The 259, level provides a reasonable amount of protection against
an error in judgement regarding the true value of 6y . However, when n, is
large relative to n,, a smaller significance level could be employed without
introducing any serious disturbances at the intermediate values of 6y, and
with a resulting.gain in power at values of 62 near one.

The following method of performing a preliminary test is recommended as one
which tends to stabilize the disturbances at intermediate values of 6, while still
taking advantage of a considerable portion of the possible gain in power at
values of 6y near one. The procedure consists of pooling the two mean squares
v, and v; only if their ratio is less than 2 Fy , where Fy is the 50 per cent point
of the F-distribution for n; and n, degrees of freedom. The use of the multiple 2
is arbitrary and a smaller value may be used if the experimenter desires additional
control over extreme disturbances.

This procedure has the advantage of admitting less disturbance over a larger
range of values of 7, and #n; . The customary method prescribes pooling if the null
hypothesis (fz = 1) of the preliminary test is not rejected at some preassigned
probability level P;. If enough observations are available to provide reliable
values for v, and v; , pooling is prescribed only if o3 and ¢} are essentially the same.
However, if small numbers of degrees of freedom are involved, the preliminary
test is too weak to reject the hypothesis even if ¢ is appreciably less than o3 ,
and pooling will be prescribed too frequently. On the other hand, the use of the
recommended procedure has the effect of prescribing pooling only when it can
be said, with confidence exceeding 509, that the true value of 6y is less than
some chosen value such as 2.

This can be demonstrated simply by considering a series of experiments
in which preliminary tests are performed. When v./v; < 2Fy , we make the
statement

(1) b < 2,
and when v,/v; > 2Fy , we make the statement

2 09 > 2.
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We have

Pr{”i2 - 5{ > Fm} = 50,

U1 21

or

If statement (1) is true,

Pr {22 < 2F50} > .50;

U1 )

and if statement (2) is true,

Pr {Zg Z 2F50} Z .50.
1 /

Thus, no matter what the true value of 6y, the statements are true more
than 509 of the time.

Fifty per cent points of the F-distribution have been tabulated by Merrington
and Thompson [3].

A simpler rule, and one which is nearly equivalent when the degrees of freedom
involved are each greater than 6, is to pool if the ratio of the mean squares is less
than 2, without any reference to the F-table. For smaller numbers of degrees of
freedom, however, this simpler rule does not embody the advantages of the
2F% rule, unless of course, n; and n, are equal.

ITI. NUMERICAL ILLUSTRATIONS

3.1. Effect of P, illustrated. An example of the influence of P; on the effective
significance level or Type I error of a ‘“‘sometimes pool” test is illustrated in
Figure 1. When P; = 0, the Type I error has its maximum value equivalent to
the Type I error of an ‘“always pool”’ test at the P; level. As P; increases from
zero, the Type I error decreases until at P; = P;(.77 in this case) it reaches its
minimum value at a level less than P,. As P; increases from P;, the Type I
error increases until, at P; = 1, the Type I error is equal to P, .

The influence of P; on the power of a ‘“‘sometimes pool” test is illustrated in
Figure 2. The gain in power, as a function of 6 is presented for three Class A
tests. Since comparisons of power are made over tests having different Type I
errors, the gain is expressed as the proportion actually attained of the total
gain in power that is possible if the true value of 6y is actually known. When
P, = Py = .77, the curve is observed to decrease monotonically to zero. However,
for lower values of P;, the preliminary test prescribes pooling more often, and
more power is gained when 6, is near one but less power is gained or power is
actually lost when 6, is large.
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The power gained or lost at various values of 6y is illustrated in Table I.
The probability of rejecting the hypothesis for the ‘“sometimes pool” test is

221

TYPE | ERROR

o= B 10 5 20
05
oaf P, =99
x P, =.95
g o3 p‘-rm5
w [ 1
- 02}
w
a
= ot
° 1 5 I.O |.5 2‘0
©2

Fi1a. 1. Effect of Varying P,. n; = 20, n = 4, ng = 2 and P, = P; = .05. (a) Upper
diagram: Class A Tests. (b) Lower diagram: Class B Tests.

P

=05

P =25

S

osf P =77

GAIN IN POWER

Oay

Fic. 2. Proportion of Possible Gain in Power Actually Attained. n, = 20, n2 = 4,ns = 2,
P2 = P3 = .05.

tabulated opposite “s.p.”, and for the “never pool” test having the same Type I
error opposite ‘“n.p.”.
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The last line of the table approaches the probabilities for a “never pool” test
having a Type I error of 5%,. Except for values very near (6s , 65) = 1, 1), the
probability of rejecting the null hypothesis, using a “sometimes pool” test, is
greater than if a “never pool” test, at the 5% level is used. In this sense, the

TABLE I
Comparison of Power of a “Sometimes Pool” (s.p.) Test and Corresponding “Never Pool”
(n.p.) Tests
nm =20,n, =4,n; =2; P, =P, = Py = .05
. Vaf;:le of Test ']_Eggrl Value of 632
b2 = 1 1.8 2.8 4.3 7.1 12.5 25 50 250

1.0 s.p. .048 .164 .299 .443 .599 .739 .855 .922 .984
n.p. .048 112 192 .297 .41 .604 .765 .870 972

1.2 s.p. .067 .200 .338 .476 .621 .751 .860 .925 .984
n.p. .067 .149 .245 .361 .508 .662 .805 .895 978

1.6 s.p. .102 .248 .379 .503 .632 .750 .855 921 .983
n.p. .102 .210 .323 .447 .592 .730 .849 .920 .983

2.0 s.p. 127 .271 .390 .500 .619 .736 845 .915 .981
n.p. 127 .250 .370 .497 .636 .764 .870 .932 .986

2.5 s.p. .146 .278 .382 .482 .596 715 .831 .907 .975
n.p. .146 .278 .402 .528 .664 784 .882 .938 .987

4.5 s.p. .148 .233 .309 .399 .520 .657 .796 .887 .976
n.p. .148  .280 .405 .531 .666 .786 .883 .939 .987

7.0 s.p. 117 182 .255 .350 .482 .632 781 .880 974
n.p. 117 .234 .352 478 .620 751 .862 1927 .985

10 8.p. .091 .152 227 .327 .465 .621 776 877 974
n.p. .091 .191 .300 422 .569 712 .838 913 .982

16 8.p. .067 .130 .209 313 .456 .615 773 .875 973
n.p. .067 .149 .245 .361 .509 .662 .805 .895 .978

100 8.p. .051 117 .200 .307 .452 .613 771 .875 973
n.p. .051 .118 .201 .308 .454 .615 773 .875 .973

Below the heavy line the s.p. test is less powerful then the n.p. test.

“power” of the ‘‘sometimes pool” test is greater everywhere except near
(021, 632) = (1, 1).

3.2. Effect of P,, P; illustrated. The influence of the probability levels em-
ployed in the final phase of a “‘sometimes pool” test is illustrated in Figure 3.
The main effect is observed to be the manner in which the behaviour is con-
strained at the extreme values of 6 .
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(b)
P, =05
Py=01
ppero |

P, =.05
Pp=.10
P3= OI

] 5 i0 5 20
o———

Fia. 4. (a) Upper Diagram: Effect of Varying n.. P, = P, = P; = .05 and n, = 20,
ns = 2. (b) Lower Diagram: Effect of Varyingn,. P, = P, = P; = .05and n: = 4, n; = 2.

3.3. Effect of n., m, illustrated. The response of the Type I error to increases
in the degrees of freedom of the preliminary test is illustrated in Figure 4. The
maximum disturbance is observed to increase as n; increases or as n, decreases.
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3.4. Class B test illustrated. The behaviour of the Type I error of some Class
B tests is illustrated in Figure 1(b). The hypothesis is always rejected less
frequently than if a ‘““never pool” test at the P; level is used.

14
12
10 Np=4, P=18
« n, =12, P =09
% 08 ny =20, P 2,06
w
o 08
a
>
" o4
o2}
] B ) i5 26
KL
12
n,=20, P=18
10 n, =12, Pj=.20
S n, :4,p:26
14 I ) F1E
& 08
w 06
3
F el T
oz}
] B 0 5 20
e2|

Fic. 5. (a) Upper Diagram: Effect of Varying n: when F, = 2F5, P2 = P3 = .05 and
n1 = 20, n; = 2. (b) Lower Diagram: Effect of Varying n, when F; = 2F;9, P; = P3 = .05
and Ne = 4, ng = 2.

Frdd

s

o
o

n, =20, P,=I8
n, =12, P=20
n, =4, P=26

TYPE | ERROR
2 g

Q
)

F1a. 6. Effect of Varying n, when P; > P;. P; = .10, P; = .05 and n: = 4, n3 = 2.

3.6. Recommended procedure illustrated. Figure 5 illustrates the behaviour
of the Type I error when the recommended procedure is applied to the special
cases presented in Figure 4. When n; = 12, n, = 4, the 209, probability level is
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prescribed and the Type I error never exceeds .09. When n; = 20, n, = 20, the
more liberal value of 69, is prescribed and the resulting Type I error never
exceeds .07. The more liberal choice of P; results in a greater gain of power,
near 6y = 1, than would have resulted if the 2097 level had been used throughout.
A small loss in power occurs when 6y is large. Should the experimenter wish to
guard against this loss in power for a larger range of values of 6, near one, he
may do so, at the expense of a somewhat larger disturbance in the Type I error,
by choosing P, larger than P;. In the present example, if P, is taken as .10
instead of .05, Figure 6 shows that the Type I error is changed only slightly for
values of 6y near one, but the maximum disturbance is increased. Such a test, is
uniformly more powerful than the “never pool” test for all values of 6y for which
the Type I error is less than .10; a much larger range of values than in the
previous case.

IV. DERIVATIONS AND PROOFS

4.1. Derivation of joint frequency function. The joint frequency function of
the v’s is given by
il imel dme nyv Ny v Ng v,
o™ o ol exp {— %[—12—1 + =5+ —‘32—3}},
o1 09 g3
where ¢; is independent of the »’s. Transform to new variables:

X% N3 V3 w = ny 01

u1=— = — = —

) 2 ’
ny 1 T Vg n3

By integrating and evaluating the constant, the joint frequency function of
u; and u, is obtained:

3) P

Bglﬂlogz(ﬂz-i-ﬂx) ui(n3+n2)—1 uéna—l

 B(ne, 3)BGns, 20u + 1)) On s + 0w + upu)

2 2 2 2
where 021 = 0‘2/0’1 ;032 = (73/(72 .

4.2. Definition of critical region. The rule of procedure for the “sometimes
pool” test may now be expressed in terms of the w’s. Reject the hypothesis
032 = 1 lf

0
0 uy < Ui
Uy > U, ’
or
0 Ui Ue 0
Up = Us, 11 T > us,
‘ U1
where
0 N2
Uy = — ‘F](’I’Lz , N1 P]),
ni
0 ns
Uy = — Fo(ng, ng 5 Py),
Ng
ng
0
Uz = ’Fa(na,nz‘i"ﬂl;Pa)-

ny + M1
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The reader will note that the «’s are ratios of sums of squares. The symbol u,
is associated with the preliminary test. The final test when pooling is not pre-
scribed is associated with the symbol u,, and when pooling is prescribed the
relevant statistic is wyuz/(1 + u;).

The critical region defined in this way is illustrated in the two dimensional
sample space {u;, us} of Figure 7(a). The critical regions of the ‘“never pool”’
and the “always pool” test are readily identified in this figure. The region of a
“never pool” test at the P, level is designated by A + B; + C, the area above
the line u; = wuj ; and the region of an “always pool” test at the P; level is
designated-by By, + B; + C + D, the area above the curve wus = u3(1 + uy).
The critical region of the “sometimes pool” test, B; + B; + C, may be considered
in two parts: the portion due to pooling, B, + B, and the portion due to not
pooling, C.

&
A B, c A Cs C,
04 5 u
2 N,
D ~. 0
e e U ) STV {T1VY)]
Py IS RV ISV e, TR o B T
u3 U3 -
U, U,
Gy u uou

U, U
Fia. 7. Critical Region of ‘‘Sometimes Pool’’ Test. (a) Left: Class A Test: uf > 1, (b)
Right: Class B Test: u} < 4 .

The probability of rejecting the null hypothesis is given by
ug 0 -] 0
4) Q(621, 032) = ‘[ f p duy dus + fo fo P duy dus,
w ‘ul u2

where p is the frequency function (3), and w = u3(1 + uy)/u; .

Simple explicit expressions for these integrals cannot be obtained in general,
but when n; = 2 they can be reduced to forms containing incomplete beta
functions. This special case is dealt with in Subsection 4.7.

4.3. Critical value of P;. The symbol 4; in Figure 1 is used to denote the
u; coordinate of the point of intersection of the line u, = us and the curve
0 . ‘
uuy = uz(l 4+ u;). Accordingly,
() Uy =

0
Uz

0 0
Uy — U3
a value readily determined for any given test. This relationship may be expressed
in terms of the F’s as
= 1
F =
®) .
N1 F. 3 F 3
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where F, is defined by mii; = n.F,. The probability level corresponding to
F, is denoted by P; .

The critical value P; is the value of P; which divides the possible “sometimes
pool” tests into two types having different properties. If Py is less than P, (F;, > F,
or ui > 1), the test is referred to as a Class A test. If P; is greater than Py(F; <F,
or u] < 1), the test is referred to as a Class B test.

4.4. Lemma 1.
Lemma 1. If 021 > 6 and 03 > 05, and if the equality applies in one of these,

then the ratio of the frequency functions (3)

(7 p(ul, Uz l 0;1 , 0;2)
p(ul y Uz l 021 ’ 032)

increases monotonically as 1) uy increases with up fixed, or as (il) us tncreases
. cee . . 0

with w, fized, or as (iii) w increases on fixed pooling curve wyus = uz(1 + w).
Proor. The ratio (7) is a monotonic function of

021050 1 Bs2t1 + wr Uy
021052 + B2 s + wr s’
It is easily shown that an expression of the form (a + bx)/(c + dz) increases
monotonically with respect to « if a/c < b/d, and this condition holds for cases
(1), (i), and (iii).
4.5. Lemma 2.

LemMmaA 2. If area L lies above a given pooling curve, and to the right of a given
preliminary line, if area K lies below the same pooling curve, and to the left of the
same preliminary line, and if

PT{L l 021 y 032} 2 PT{K l 021 ’ 032},

then
Pr{L | 651, 63} > Pr{K |63, 03},

where 03, > 6y and 03 > 05 and the equality applies in one of these.
Proor. For any point (u;, 4y) in K and any point (uy, us) in L, Lemma 1
(iii) yields

(U, us | 9;1, 032) < P(ui ,uz | 021 ) 032)
p(ur, uz | 621, 032) p(u;, uy | 621, 632) ’

where 4y = ¢(1 + u1)/u1, and ¢ is a constant defined by w, = ¢(1 + u)/us.
Since K is below a given pooling curve, s < us and

plu, us | 031, 05) _ p(ut, uz | 651, 63)

])(U;, U;, i 021, 032) P(U;, U; 1 o1, 032)
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Consider
_p(ul, uﬂ@éﬂ,@ <b< p(u, us ] 9;1, 032)
p(uy, Us | 621, 032) p(ui , us | 621, 032) ’

where b is a constant such that the inequalities hold for all (u;, u,) in K and
all (u1, us) in L.
Integrating over the regions yields

PT{K | 0;1 y 0;2} < b.PT{K | 021 N 032}

and

b.Pr{L| 6y, 0} < Pr{L|6s, 05}
But

Pr{K | 60x,6} < Pr{L|6y,0:)};
thus

Pr{K |6y, 0%) < Pr{L|65, 60},
which completes the proof.

4.6. General Properties.

REesurnr 1. When 6y = 1, the Type I error of a Class A test is less than P; .

Proor. In the notation of Fig. 7(a), the probability of falling in B; + B, +
C + Dis P; when 6 = 1 and 63, = 1. The region of rejection of the ‘‘sometimes
pool” test is smaller by D.

Resurt 2. When 6y = 1, the Type I error of a Class A test is greater than
(1 — P)P;.

Proor. The statistics u; and wyus/(1 + u;) are independent when 65 = 1 and
03, = 1. Under these conditions, the probability of falling in B, + B,, in the
notation of Fig. 7(a), is equal to the product of two incomplete beta functions
having the values (1 — P;) and P;. Consequently, the Type I error is greater
than (]. - Pl)Pg .

Resuvr 3. The Type I error approaches P, as 6z approaches infinity.

Proor. The distribution becomes singular when 6y = . The frequency
function approaches zero uniformly for any finite value of u; and approaches

1 u2§n3—1
BGim, 3 (14 w)

at u; = «. When 6, = «, the entire mass is concentrated on the line u; = o
and is distributed as a beta variable along that line. In the notation of Fig.
7(a), Pr(B1 + B;) — 0 and Pr(C) — P,.

Resuvr 4. If the Type I error of a Class A test is Qo for 0s1 , then for 631 > 6 ,
the Type I error is greater than r, where r is equal to the lesser of Qo and P, .
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Three useful corollaries are associated with the above result:

REsvrt 4.1. If at 65 = 1, the value of the Type I error is less than Py, this is
its minimum value for any 6y .

Resvrr 4.2. If at 05 = 1, the Type I error is less than P, , then as 65 tncreases
from 1 the Type I error increases monotonically until P, is reached.

REesurr 4.3. If for some value of 0y the Type I error is equal to or greater than
P, , then for any larger value of 01 , the Type I error is greater than Ps .

Proor. Let the regions of Fig. 8 be denoted by R; = A; + B; + C; with
similar designations for R, and R; . Let B4 = By + B+ B; + By + C1 + Cs.

If r = @, let the non-pooling line between R; and R, in Fig. 8 correspond to
Qo for all 6 . Then Pr{R,| 0, 1} = Pr{R;| 6x, 1}, whence Pr{B; + B; +
By + Co|6y,1} = Pr{A,| 6, 1}. By Lemma 2, we have for any 6; > 6,
Pr{B, + B; + By + Cy| 65, 1} > Pr{A;| 65, 1} and Pr{Rs| 65, 1} >
PT{R1|0;1,1} = Qo.

U
Fic. 8. Critical Regions for Result 4.

If r = P,, let the non-pooling line at the lower boundary of R; in Fig. 8
correspond to Qo for all 6 . Then in the same way Pr{B:| 0, 1} = Pr{4; +
Ag + A3 + 031021, 1} a.nd PT{B4|0;1, 1} > PT{Al + Az + A3|0;1, 1} by
Lemma 2. Thus Pr{Rs| 65, 1} > Pr{Ry + R, + A; + Bj| 6, 1} and
Pr{R,| 6,1} > Pr{R + Ry | 63,1} = P».

Resuvr 5. For a Class B test, the Type I error is less than P for all 6y .

Proor. Figure 7(b) illustrates the critical region of a Class B test. We have
Pr{A + B+ C,+ C, + C3} = P.. But the region of rejection of the “sometimes
pool” test is smaller, excluding 4. ‘

Resuwr 6. The Type I error of a Class B lest, for 6x = 1, 1s grealer than
(1 — P)P;. ~

Proor. Changing P; to P; removes C, from the region of rejection in Fig.
7(b), thus decreasing the Type I error. The modified test lies in both Class B
and Class A, so that Result 2 applies.

Resurr 7. For any 0y, the Type I error is a minimum for changes of P, when
P 1= P 1.
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Proor. For a Class A test, changing P; to P, removes region B, of Fig. 7(a),
thus decreasing the Type I error. For a Class B test, changing P; to P; removes
region C; of Fig. 7(b), similarly decreasing the Type I error.

Resurt 8. A Class A test, in which the Type I error is less than or equal to Py, is
more powerful than a “never pool’’ test having the same Type I error.

Proor. In Fig. 8, let region B; = A; + B; 4+ C; be equal in size to Ry =
Bl + B2 + B3 + B4 + Cl + Cg. Then PT{R4]021, 1} = PT{Rl |021, 1} and
Pr{By+ Bs; + By + Cy| 6s,1} = Pr{A;| 6y, 1}. Increasing 65 = 1 to 63 and
applying Lemma 2 yields Pr{R, | 6y, 632} > Pr{Ry| 621, 05}.

Resurt 9. For a fixed Type I error a Class A test, carried out at given levels of
P, and P;, is more powerful than a Class B test at the same levels.

Proor. Fig. 7 and Lemma 2 apply at once.

4.7. Closed form expressions for n; = 2. The probability of rejecting the
hypothesis in a “sometimes pool” test is given by Q(6y, 03) = Q: + Q. where
Q: corresponds to the region B, and @, to the region C of Fig. 7.

The integrals (4) representing the probability of rejecting the null hypothesis,
reduce, when n; = 2, to

) ,ug ing
+ 0?2 I.(§n2, $n1)
(8) Ql = ug 'U/g T(natny)?
1 — 1 —_—
+ 021 03, { + 032}

where the argument z of the incomplete beta function is defined by z = /(1 + x)
where

0
142
© 5= {0
U3
021032
Under the null hypothesis 63, = 1,
1+ ug)t™
(10) Q1 =Iz(%n27 %nl) 1+ y_g - Ps,
021
since
1
Similarly

I.:(3n1, $ny)

(11) Q: = 77— in’
{13}
Os2
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where the argument, 2’ of the incomplete beta function is defined by 2/ = 1/(1+2")
where

N PR TA R
(12) x =11+0——32}—9—2-1
Under the null hypothesis 63, = 1,
(13) Q2 = L/(37, 3nm2) - Py,
since
p 1

The incomplete beta function has been tabulated by Pearson [4].
The author wishes to thank Professor W. G. Cochran and Professor John W.
Tukey for helpful advice in the preparation of this paper.
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