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For small n these equations can be solved by iteration, which was done in
constructing Table 1. Initial conditions an Ux(0) = 1, U;(0) = 0 for ¢ = k.
It might be noted that the U.(j + 1) gre subtotals of the U;(j) so that the itera-
tion proceeds very rapidly on an adding machine. The probability that d < k/n is
[Us(n) + Ui(n) + Uz(n) --- 4+ Ur(n)nin!/(2n)!.
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A NOTE ON THE SURPRISE INDEX

By R. M. REDHEFFER
Harvard University

Let pm(m = 0, 1,2, --- ) be a set of probabilities of events £, , and suppose
that the event E;, with probability p:, actually occurred. Is the fact that E;
occurred to be regarded as surprising? In a recent article [1] this question is
answered by introducing the surprise index S;,

(1) 8; = (Zpm)/pi,
which gives a comparison between the probability expected and that actually
observed.! The event is to be regarded as surprising when S; is large.

The author remarks on the difficulty of computing (1) for the Poisson and
binomial distribution. The problem consists in evaluating the numerator, which
we shall express here in terms of tabulated functions. The Poisson case leads
to Bessel functions, the binomial case to Legendre or hypergeometric functions,

and the asymptotic behavior involves square roots only.
1. The Poisson case. For the Poisson case we have pn = \"¢™/m! so that the

generating function is

2) ee” = Zpmz™.

Let z = ¢”, then ¢ *; multiply; integrate from 0 to 2r; and simplify slightly to
obtain

(3) zpi = (6—2)\/‘”) ./;' 62)\c050 d0

1 Cf. also [61.
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The integral on the right is recognized’ as the zero-order Bessel function [2]
so that we have

(4) Zpl = e P Jo(—2i\) = € P I(—2))

as the final answer. The relevant tables are listed on pages 271, 272, and 275 of

[5].
2. The binomial case. When p,, = Cnp™¢" " with ¢ = 1 — p, the value of
=pk for p ='q = % is given in the literature [3]; it is the product of the first n

odd integers, divided by the product of the first n even integers. For general p,
(5) (g + p2)" = Zpmz™

is the equation corresponding to (2). Following through the derivation of (3),
we get

n—m

27 .
(6) ph = 2—11;[0 (p* + 2pg cos 8 + ¢)" do
which is recognized as the n** order Legendre function [4],
2 2
™ 2 = Ip - o2 |22L]) 0 = ).

P—q
\
For tables see [5], pages 232-235, 242.

The result (6) is also expressible as a hypergeometric function, and this with-
out intervention of (7). The change of variable u = p® + 2pq cos 8 + ¢’ leads to

8) Ep;“:. = (1/x) fl u"(u — a)—1/2(1 - u)—llz du

with @ = (p — ¢), and letting u = a + (1 — a)z gives an integral which turns
out to be [4]

2ph = (p — 9)"Fl—n, }; 1; —4pg/ (@ — 9]

It was brought to the author’s attention, by Weaver himself via Mosteller,
that (7) is given in Pélya-Szegd, Vol. II, p. 92. There, however, the point of view
is to evaluate the integral rather than the sum, and hence the above derivation
is the more natural here.

3. Approximation. For large values of A, (4) gives [2]

‘ 1
2
©) . ZPm VN

To obtain the asymptotic behavior in the binomial case, note that if the limits
of integration in (8) were 0 — 1, and if the factor (v — a)™* were absent, we
should have the Beta function B(n + 1, ). Because u" emphasizes the region

2 This connection between (3) and the Bessel function was pointed out to the author by
by M. V. Cerrillo of M. I. T.
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near » = 1, this resemblance may be exploited to give (after elementary but
tedious calculations)

(10) Zps =Bn+ 1,3) + e
with
0<e<2 ™+ BB/ — a)”

whenever n > a/(1 — a). Here & is any number < pg. Picking s = n™%, 6 < 1,
shows that the error goes to zero almost as fast as n~>'>. A similar result may be
obtained by the methods of Uspensky.

From (10) we have easily

1) ot~ YD) (n — ),

which is correct even for p = g¢.
It was pointed out by the referee that (9) and (11) are special cases of the
relation

Zpm ~ (3) V/variance

which generally holds whenever the shape of the distribution curve approaches
a limit.
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APPROXIMATION TO THE POINT BINOMIAL

By Burton H. Cawmp
Wesleyan University

The following approximation to the sum of the first (¢ + 1) terms of the
point binomial appears to be useful. Let this sum be denoted by S¢41, and let
the point binomial be the expansion of (p + ¢)"; i.e., let

M Sen =p" + Np" g+ - + (7) p"7d

ka



