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ALMOST SUBMINIMAX AND BIASED MINIMAX PROCEDURES!

By P. Frank AND J. KIEFER

Columbia University

Robbins [1] emphasized the notion of an “almost subminimax’’ procedure® and
gave an example of such a procedure. The examples in this paper have been con-
structed with a view to simplicity and to the indication of *he underlying mecha-
nism which makes subminimax solutions exist in certain decision problems. At the
same ime we point out another potentially undesirable property of a minimax
procedure—biasedness.

All our examples fall within the following framework. A sample of one is
taken from a population whose distribution is one of n given distributions:
Fi(z), Fo(x), « + - , Fu(x). There are n decisions: d; , - - - , d, . The weight function
isW(F;,d;) = 0if £ = jand = 1 otherwise. Instead of a finite number of F’s, we
may have a sequence of F’s with a corresponding sequence of decisions. In all
our examples each of the F’s will be a uniform distribution over a finite interval
of the z-axis, and our decision procedures will be randomized. These restrictions
are made only for arithmetical simplicity.

With this setup, the risk when F'; is the true distribution is equal to the proba-
bility of not making decision d; , which we will denote r(F;). We will not give an
exact definition of an almost subminimax procedure, but just say that a procedure
is almost subminimax if its maximum risk is ‘“a little greater” than that of the
minimax procedure (which risk is the same for all minimax procedures in our
examples) and on the other hand its risk is ““a lot less” than that of the minimax
for “most of 7’ the F’s. Our examples will conform with this “definition” for almost
any reasonable interpretation of the phrases in the quotes.

The first example will give an indication of the mechanism which makes a
subminimax example possible. Let Fi(x) be the uniform distribution on the
interval 1 — a to 1, where @ > 0 and small. Let F»(z) be the uniform distribution
on the interval 0 to 1. An admissible minimax procedure to decide between dy

1 Research done under a contract with the Office of Naval Research.

2 The examples of this paper fall into the framework of the definition in [1] of an ‘“‘asymp-
totically subminimax solution” if each example is replaced by a sequence of examples whose
«’s approach zero. The present nomenclature was suggested as more suitable here.
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and d, is to accept do for 0 < £ <1 — g andfor 1 — a < z < 1 to accept dx
1

1+ a’

with probability p; and accept d» with probability 1 — p,, where p; =

With this procedure r(F,) = r(F,) = 1 _(:_ e

Let us compare this procedure with the procedure which tells us to accept
dsfor0 < 2 <1 — aand to accept dy for 1 — a < x < 1. For this procedure we
have r(Fy) = 0, and r(F;) = a. Thus we see that we can reduce the risk under
F; to its absolute minimum 0, while increasing the risk under F, only slightly.

a
1+4+a

a
1+a
was given mainly to help in understanding the underlying mechanism in the
almost subminimax example which follows. In the latter the maximum risk will
be > 1 for all a.

Let F;(x) be a uniform distribution from —a to 1 — a. In deciding between
Fo(x) and F(x), an admissible minimax procedure is to accept dz for 1 — a <
z < 1, to accept ds for —a < x < 0, and to accept d» and ds with probability
1 each for 0 < 2 < 1 — a. The minimax risk is 4 (1 — a). For a small, this is
near 1 and the two distributions are so intermeshed that there is little hope to
disentangle them. When we now consider the problem of deciding between
F:, Fy, and Fs, we expect that the addition of F; can not do much to aggravate
the difficulty already present in trying to decide between F, and Fj .

The following is an admissible minimax procedure for deciding between Fi ,
F 2 and F' 3. '

(In fact, the ratio of the two risks under F,, namely, a and , approaches 1 as

a — 0.) Thisexample, which may seem meaningless because —0asa—0,

for —a < z < 0, we accept d; ;
for0 < z < 1 — a, we accept d; with probability p. and ds

with probability 1 — p:;
for 1 — a < z < 1, we accept d; with probability p; and d.

with probability 1 — p; ;

1+a 1 .

where p; = 2+a and p, = 2t ad—a . For this procedure, r(F,) =r(F;) =
1

T(F3) = 9 + a.

Consider the alternative procedure which is exactly the same as the minimax
procedure except that for 1 — a < 2z < 1 we always accept d, . For this pro-
cedure,

1
24+a’

1 a

T(Fl) = 0; T(F2) = m + m; . T(F3) =
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Thus the alternative procedure reduces the risk from to 0 under F,,

1
2 +a
increases it under F, by ;(:-_(l (a“*—_(:_ 5™ Oasa— 0) , and leaves it unaltered
under F;. The alternative looks more attractive.

This last example can be altered slightly so as to appear more striking. We
can replace the distribution Fi(z) by a sequence of distributions F'(z), F*(z), - - - ,
F"(z), - - -, where F"(z) is the uniform distribution on the interval

e _ a
A=+ T <esl-9+ .
Call this interval I,, (n = 1,2, --- ). Corresponding to the distributions Fy(z),
Fy(x), F'(z), -+, F"(z), - - - , there are decisions d, yds, dy -, dt

An admissible minimax procedure is described as follows:

for —a < z < 0, accept d; ;
for 0 < « < 1 — a, accept d, with probability p. and ds

with probability 1 — p; ;
forz e I, , accept d" with probability p; and d. with probability 1 — p; ;

herep = L Ty 1 ‘or this proc
where p, = 5T g and p; = CFad—a For this procedure,
1 j .

T(FZ) =7r (Fa) = m = T(FJ) fOl']= 1,2, LICICN

Consider the following alternative procedure:

for —a < z < 0, accept ds ;
for 0 < z < 1 — a, accept d, with probability p: and d

with probability 1 — p. ;
for ze I, , accept d";

1 o .
where p. = eraod=a" For this procedure,
— 1 a . . — 1 . Y —3 ) 3 . o
T(F2)~§ﬂ+2+a, 7(F3)'——2+a, r(F) 0, J=12,

If @ is sufficiently small, the alternative procedure is certainly almost sub-
minimax in the sense of our third paragraph: the maximum of the risk of the

alternative procedure is only greater than that of the minimax procedure,

a
24+ a
and the alternative procedure has reduced the risk to zevo for all except two of
the distributions.

A decision procedure for deciding which of a class of distribution functions
is the true distribution of X is said to be unbiased for F; if Prob(d;| F,) >
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Prob(d; | F;) for all j. If a procedure is not unbiased for F; , it will be said to be
biased for F;. In the next example every minimax procedure is biased for F; .

Let Fy(x) be the uniform distribution on the interval 0 to 1 — a, with a < .
The problem is to decide between F;, Fy, F3, and Fy. An admissible minimax
procedure is described as follows:

for —a < z < 0, accept ds ;
for0 < x < 1 — a, accept d» with probability p,,

accept d; with probability p; ,

accept dy with probability 1 — p. — ps ;
for1 — a <z < 1, accept d; with probability p: ,

accept dy with probability 1 — p;;

where _l+ta _l-a+d _l—2a
n 3 = 3a =g =30 ="
Thus, we have Prob(d,|F1) = 2 ; e 1 _:’; ¢ - Prob(di|Fy).

This shows that the procedure is biased for F; . By altering the procedure so
that p, = ps = 3 and p; = 1, we obtain a procedure which is unbiased for all
F., and whose maximum risk is increased by only %Za over the minimax risk of
2—a

3

The above example may be altered in the same way as the example of an
almost subminimax solution so that there are infinitely many distributions for all
but three of which the minimax solution is biased. In fact, it is possible to con-
struct an example of a biased minimax solution for deciding among any number
of distributions greater than two. It is impossible for a minimax procedure to be
biased when there are only two distributions.

Along similar lines an example can be constructed for any ¢ > 0 for a con-
tinuum of distributions, where any minimax procedure has constant risk of
2 — ¢ and is biased for all but three distributions, and where there exists an
alternative almost subminimax procedure which is unbiased for all distributions
and which reduces the risk to zero for all but three distributions where it is in-
creased by less than 3e.
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