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A NOTE ON THE CONVOLUTION OF UNIFORM DISTRIBUTIONS!

By Epwin G. Orps
Carnegie Institute of Technology

1. Introduction. Some time ago, when Dr. Acton and the present author were
preparing a paper [1] on the combination of tolerances, the question arose as to
the distribution of the sum of rectangular random variables having unequal
bases. (For equal bases, the distribution has been known since Laplace.) As
Acton pointed out, the distribution can be obtained by operational calculus.
However, it seems useful to outline a derivation requiring only the well known
formula for the probability density function for the sum of two random variables.
In addition, this note gives several other results which may be needed in statis-
tical quality control.

2. The distribution of the sum. Let z; be independent random variables with
probability density functions

fi(xi) = [e(xi) - e(xi - ai)]/ai (ai > 0;7' =12 .- ) ﬂ)’

where e(x — c¢) is unity for £ = ¢ and zero elsewhere. Let s = > z; and let
f+(s) and F,(s) represent the probability density function and cumulative dis-
tribution function of s respectively. Then it will be proved that

a o= [s"”s(s) - ;ﬂ (s — a)" " e(s — ai)
+ 2 (—a—a)le(s—ai—a)— -

&
+ (=16 = Ta)es — Tad| /[ - 01T,
and
Fo(s) = [8"8(8) - Z:: (s — a)"e(s — a))
+ 2 (s—ai—a)e(s—ai—a) — -

1<7
+ (=1 — Tadels — Zao] / [n! Ha..].

The proof is by induction. Using the convolution formula, ([2] p. 191), we
have, in our notation,

(2)

1 Presented at the Annual Meeting of the Institute of Mathematical Statistics at Chicago,
December 29, 1950.
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The first integral within the braces is zero for £ < 0 and for ¢ > s > 0 and is
unity between zero and s = 0 so the effective limits are zero and s. Likewise the
effective limits for the second integral are zero and s — a, . After replacing ¢ — a»
by ¢ in the last two integrals and making obvious changes of limits, we get

0 fuls) = Ell—az { fo " eels — 1) dt — [o T (s — ¢ — ay) dt
_ /0 T eels — t — a) dt — fo T e(s — £ — a4y — ag) dt}.
Finally,

(6) fals) = [se(s) — (s — a)e(s — @) — (s — az)e(s — a2) +
(s — a1 — a)els — a1 — @)]/(a:a0),

To complete the induction we need only assume that (1) holds for n = %k and
show that it then is true for n = k 4 1. Using the same method for combining
the density functions of s = D_% z; and 41 as was used above for z; and z» ,
this presents no difficulty. Also it is easy to show that (2) is a direct consequence

of (1).

3. Asymntotic normality. For use in the remaining sections it is noted that the
constants of the distribution of s are:

(6) mean, u, = 12 a;; variance, of = D a’/12; skewness, v; = 0;
excess, v» = —&2_ ai/(Q ad)>
The matter of convergence of the classically normed sum to the Gaussian
distribution with zero mean and unit variance can be settled easily by using
the well known Lindeberg conditjon, the sufficiency of which, as Logve [3] notes,
was established by Lindeberg and by P. Lévy, and the necessity by Feller. (For

discussion and references see Loéve’s paper.)
As the second part of the solution of the classical central limit problem Logve

([3], p. 326) states the theorem:

NC holds and max UE:")) — 0 if, and only if, for every e > 0
k<n O0\Sn

=1

k=1 0'2(8,.) |z]>ea(2y)

:v2 dFk(x + Exk) — 0.
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For our case

ax 3 2
(7) o(xk) = W’ o(sn) = Oy = ; a', Exk = %a’k-
12
In order to specialize the above theorem to our use, we first establish the
following:
LemMMA. The Lindeberg condition holds if, for k < n,

max ax 0
Ay P i
8 n )
®) 1/Ea’.-
1

To prove this lemma it is sufficient to note, first, that each term of the Lindeberg
sum is identically zero whenever es(s,) is greater than }a: , and second, that the
condition imposed in the lemma implies the existence of an N for any ¢ > 0
such that for alln > N

a €
d <

9 _17—2—:” V3

1

The following theorem’ can now be established.
TuEOREM. A necessary and suffictent condition for the asymptotic normality of a
sum of independent rectangular random variables is

max ax

lim —F— = 0.
10 n—>0 L
( ) (k< n) /‘/ Zaz.
1

To prove the sufficiency of this condition we note that by virtue of the above
lemma, the Lindeberg condition is satisfied and then note, from the quoted
theorem, that the Lindeberg condition implies normal convergence. For necessity,
we note that if the condition fails then the Lindeberg condition must fail for,
otherwise, the quoted theorem would lead to a contradiction.

Of course the condition on max a; implies that (ax/s,) — 0 and that o, — .
Thus any sum for which a; = ra;y; will converge to normality only if r = 1,
since, for r > 1, (a,/a:) + 0, and for r < 1, g, is bounded.

4. Percentage outside three-sigma limits. For statistical quality control there
is considerable interest in knowing the percentage of a distribution outside of
the limits u =+ 30. For any particular sum of rectangulars this percentage can
be calculated from equation [2] above. Often the total range of nonzero probabil-
ity for the sum will not exceed 64 so that the required probability will be zero.

2 The author is grateful to the referee for suggesting a slightly different form of this
theorem as an improvement of the author’s original treatment, which used Lyapunov’s
Theorem.
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It is easy to verify that this condition will hold whenever a;;; = ra; and either
0=r=050rr =2

When the range for the sum is greater than 6s, an approximation to the re-
quired percentage can be obtained from an Edgeworth series. (For discussion,
see [2], pp. 221-231.) Let x be the standardized variable (s — u)/g,, ®(x) the
normal distribution function, ¢(x) the normal density function, and ¢‘”(z) its
7th derivative; then, following Cramér, we have approximately

2
D f@) = 6@) = BV @) + 12 g @) V6 ().
Then, integrating and substituting the pertinent values from (6) above, we have
_ RE) [ 2.4 ]
(12) F(z) = &(x) 50— (Eaz.')z .
Since the lower three-sigma limit for s corresponds to £ = —3 we have, finally,
for the approximate percentage below this limit
(13) F(—3) = 000135 — 0.004 [Xa%/(Xa%?),

where the bracketed quantity takes its minimum value, ', when all of the
a’s are equal.

The multiplier of the bracket has been rounded off for easy use. A better value
for it is 0.0039885. Using this instead of 0.004 in (13), and making a comparison
of (2) and (13) whena; =1 (¢ = 1,2, ---, 8) and a9 = 2, the result from the
former formula is 0.000694 and from the latter 0.000685. Using 0.004, (13) gives
the approximate value 0.00068.

5. An application. The natural tolerance limits for a controlled process often
are taken as u = 30. Let us suppose that the individual components are sym-
metrically distributed originally and then are symmetrically truncated by in-
spection with bases, a;. Birnbaum [4] has proved that the distribution of the
sum of the truncated variables is ‘““more peaked” about the mean than the dis-
tribution of the sum of rectangular variables with the same bases, where ‘“more
peaked’ means less probability for values more than any arbitrary distance from
the mean. Thus, as Birnbaum points out for the case of equal truncations, the
distribution of the sum of rectangulars can be used to get an upper bound for
useful probabilities required for the sum of the truncated variables. For sym-
metric but unequal truncations, an upper bound to the percentage outside natural
tolerance limits can be calculated by using formula (2) above.
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