ON THE DISTRIBUTION OF TWO RANDOM MATRICES USED
IN CLASSIFICATION PROCEDURES'
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Summary. Two classification statistics discussed in the literature can be
written as functions of the elements of a 2-2 symmetric random matrix M. An
analytic derivation is given of the distribution of M, and of a related matrix M*,
extending earlier work on distribution theory by Wald [1] and Anderson [2].

1. Introduction. A problem of classification discussed by Wald [1] and Ander-
son [2] may be described as follows. We have N; + N; + 1 independent p-di-
mensional chance vectors. We know that the first N; vectors are observations
from a population m , the following N, are observations from a population =, ,
and the last vector is an observation from a population 7, where = is either m
or mp . It is assumed that the probability distribution in both m, and . is multi-
variate normal with the same covariance matrix Z; the vector of expected values
is u® in m and 1® in . . The values of u® u® and = are not known. Let X
denote the p- (N1 + N, + 1) matrix of observations. On the basis of X we want
to classify the last observation, Xu,n,+1 as coming from m or m; ; that is, we
want to make one of the two decisions, r = morr = m.

When the parameter values are known, the class of Bayes solutions is easily
found, resulting in pairs of classification regions of the form

(1) T*<k and T*>k,
where
(2) T* = X;Vx +N2+12"’(u“) _ “m) _ %(#u) + #a)),z—l(“(n _ M(z))_

Both. Wald and Anderson propose, therefore, the use of classification statistics
derived from (2) by substituting estimates for the unknown parameter values.
Wald considers principally the statistic

(3) U= X;,1+N2+1S-1(X(l) _ X(z))’
where
_ N1 Ni+Ng
X0 = (/N XX, XP=WN) X oz,
- t=N1+1
and

S = (1/(N; + N, —2))
. [Z (X, — XX, - X9 4+ va L (X, - XOVX, - X‘”)’] .
t==1 1

t=N+
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Anderson proposes rather the statistic
4 W= Xz'v,+~,+18_l(X’“’ _ X@)) _ %(X’“’ + X(”)’S“(X“’ _ X"”).

If welet A = (Ny + N, — 2)S and [(N.N2)Y/(V: + Np))(X® — X®) = 2,
we can write U = [(N; + No)*(Ny + N2 — 2)/(NiN)NXw,ong1d7*Z. Under
either alternative the vector variable Z has an expected value [(NV lNg)*/
Ny + N)Nw® — 4®), and covariance matrix =. If = = m , the expected
value of Xy, 1n,+1i8 p@;if # = m,, the expected value of Xy, 4n,41 is u®. Thus,
in either instance, the sampling distribution of U is contained as a special case
of the sampling distribution of

(5) V = kY, 4A7Y,,

where k is a known scalar, Y; and Y, are p-dimensional normal variables with
expected values ¢ and £, say, respectively, and A is a p-p symmetric matrix
with a Wishart distribution involving n degrees of freedom; the 3 sets of vari-
ables are independently distributed with the same covariance matrix Z. Further,
the statistic W can be written

W = Xwpswgrs — /(N1 4+ N))WXP + NXP)yS7HEP — X9)
+ (1/(V: + NV XD + N.XP) — 3( X = X))y s7(XP - X9)
= Xwpsmn — (/N1 + N))(NX?P + NXO)YSTHXD — X9)
+ (N1 = Np)/(2N: + 2N,))(XP — XP)y87™H(X® — X9).
Or, if we let
[(N1 4+ No)Y/(Ny + N + 1))
“(Xwimnr — (I/(Ny + N))(N, XD + N.XP)) = 2%,
we can write
W = [N + Na + D)!(Vy + Ny — 2)/(NiN2)'|Z2¥'47'Z
+ [(Ny — No)(Ny + N. — 2)/(2N\N2)1Z'A7'Z,

The vector variable Z* is normally distributed, independently of Z, with co-
variance matrix =. Under the hypothesis # = m , the expected value of Z* is
N2/ (N + NNy + Nao + DHG® — 1®); under the hypothesis = = , , the
expected value of Z* is [—~Ni/(N1 + No)(Vi + No + DHG® — 4®). The
sampling distribution of W under either alternative is thus a special case of the
sampling distribution of

(6) W* = aVi47'Y, 4+ bY3A7'Y,,

where a and b are known scalars, and Y, Y,, and A are defined as before. In
the case of W, the vectors ¢ and £ are proportional to (¥ — p®).

Wald [1] investigated the general sampling distribution of V, and showed that
the statistic can be expressed as a function of 3 variables. These variables, which
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he called m, , m, , and m; , and which become my;, my, and my. in our notation,
are the elements of the symmetric matrix

@ M = Y'B'Y,

where Y = (Y, Y;) and B = A + YY’. The classification statistic ¥ can be
written

=k M2

- (1 = mu)(1 — map) — mgz'

(8) 14

Wald showed geometrically that the distribution of M is a constant multiple of
the product of 3 factors, the first a product of gamma- and beta-functions, the
second an exponential term, and the third the expected value of a matrix of
noncentral Wishart variables which was not evaluated. Anderson [2] has eval-
uated this product in the case when { and £ are proportional.

In this paper, we give an analytic derivation of the distribution of M in the
case when { and ¢ are proportional, obtaining the constant of the distribution
(which Wald and Anderson did not obtain). From the distribution of M, we ob-
tain the distribution of the related matrix

9) M* = Y'A7'Y.
It can be easily shown that
(10) M = M*I + M*™.

These distributions are useful because of interest in the exact sampling dis-
tributions of U and W. Further, as will be shown in a subsequent paper, an
approach to the classification problem based on the principle of invariance re-
sults in a complete class of classification regions depending only on the elements
of the matrix M*, or equivalently of the matrix M, and on a single function of
the parameters.

2. Distribution of M. We can write p = k;6 and ¢ = k.8, where k; and k, are
known scalars. The joint density function of ¥ and A is given by

|,2 I—;(n+2) | A [ $(n—p—1)

p(Y,4) = 2
2§p(n+2) 1rp+p(p—1)/4 H I‘(%(n +1 - z))
(1) =
sexp (= NI+ kD) —§ tr (A + YY) + 627 (hYy + ko)),

where A\? = §’Z7'. We make the transformation B = A + YY’. This is a one-
to-one transformation with Jacobian 1. We have

(Y, B) | Z |70+ | B — Y'Y [{n—p—D
nr, = P
(12) 2§p(n+2) 1r;r+r(p—1)/4H I‘(%(n +1 - z))

fom]

- exp { —3\(k 4+ k2) —% tr 2B 4+ 6’27 Y1 + R Y2)).
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There is a nonsingular matrix ¥ such that ¥2¥' = [ and 8%’ = (,0, -+, 0)
with A = 0. We make the transformation Y* = ¥Y and B* = ¥B¥'. The Jaco-
bian of the transformation is | 2 [***®. Under the transformation

|B = YY'| = |¥'BY/™ — ¥lyry¥w |
= | V(B* — Y*Y¥)¥' | = |W¥ || B* — Y*Y¥ |
= IEI-IB*— Y*Y*'I,
and
¥27 (Y1 + KeYs) = MEwh + kayl).
Further,
M = Y'B7'Y = Y¥¥ T (W BR T TV *
=YY WBYN Y * = Y¥BYIYE,

The matrix B is positive definite with probability 1, and the matrix ¥ is non-
singular, so that the matrix B* is positive definite with probability 1. We can
write B* = TT’, where T is a nonsingular triangular matrix whose elements are
functions of the b¥;, chosen so that

th=0bY, ;=0 for j > i.
We use the matrix T to make the transformation Y* = TU, where

U = (U,, U,) has the same dimensions as Y*. The Jacobian of the transforma-
tionis | T |’ = | B*|. We have

| B* — Y*Y* | = |TT" — TUU'T'| = | TU — UU)T'|
=|T"I-UU|=|B*-|I-UU]|,
gince | I — UU'| =|I — U'U]|. Also
M = Y¥B¥'Y* = U'T/(TT)"'TU = U'T'T"'T'TU = U'U.
The joint density function of U and B* is given by
p( U’B*) _ ‘ B* l)(n—-p-H) | Ip_ U/U l)(n—p—l)
(13) QIp(n D) pt(p-D/4 gr(%(n +1—1)

cexp | —IN(ED + kD) —3 tr B* + MoN(kiun + kruw)}
The variables b}; range over all values such that B* is positive definite. The

space of U is the set of points independent of the b}/’s for which

1-UWU)z0 (1 —-UU)=0 |UU|20

and
| I —UU|=z0.
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It can be shown (e.g., see [3]) that

f ,,,,, f‘ B* Ii(n—p+1)e~hmo dbfz db’;p

B* (1) pos.def.
(14) -msitise

p—1
— + — in _ipe R . .
= 2O I T TG+ 2 — ), 45 =2 e, p,
t=1

where By, = (b¥; — b¥b},/bY). Hence
Wty = — TG0+ D) [T = U'Y osvpe
(15) 77 T IGO0 = p + )G — p + D)2
- exp {—1bfy —IN'(k} + k3) + kbi“f(kluu + kaus)}.
Expanding exp (\b¥ (kyun + kyu12)) in a power series and integrating with re-
spect to bf; we obtain
(U) = PG+ 1) [ I — U'U oD apsd
U =
P I3 = + 2)0G0 — p + D)w
. i rGGn 4+ 2 + .7'))2”>\j(k1 un + kaup)’
=0 J! ’

(16)

We can construct an orthogonal matrix G as follows. Let

P 4
91;‘:%‘1/(2“‘:1) j=1)2""7p’

l=1

D . s P . $ » . 1/ p . Y
o G /) /() (B8

j=2;"'7p'
Fork=3,.---,p—1

P ] J) ]
g =0, gj=1+-,k—2 gk.k-1=—<l}:ku?l>/<z u%)

l=k—1

P Y P 4
Jkj = Ur—11 ujl/(l;l u§1> (;c u%l) ’ J=k .- » D5

9i =0, J=1-,0 =2 g1 = —un/(ubsy + u)h
Gpp = up-l,l/(ui—:l,l + u2pl)%'
We make the transformation V = GU, . Under the transformation

[T = UU|=|0- U001 = UsUs) — Ui\ULURU, |
= |1 - U1 = V'V) — iU, |

P . 3 LA H P ) E
U = v uu/(; uu) — vy <Z ufl) /(Z Uu) .
=1 1= =1

and
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Now we make the following transformation. Let

H
Un = mi, cos 6,
un = mi sin 6, cos 01,
Up_y1 = m}y sin 6, sin 6, - - - sin 6,_5 cos Op_1,
Uy = mi; sin 6, sin 8, - -+ sin 0,2 sin 6, ;.

The Jacobian of the transformation is
-2 . —2 —3 .
1m}, ™ sin 6077 sin 077" - - - sin 6,

with0 £ 6, S wrfori=1,2,---,p—2and0 = 0,; < 2r.
Under the transformation, UiU; = my and

p(mu, V, 6)
TG + 1))"_W(k§+k§)1nﬁp_2)<(l - my)(1 — Z"; ) —muvi)mﬁrn
= 20T (3(n — p + 2))TG(n — p + 1))
(n .sin 8772 - -+ sin 6,
. Z": T(3(n + 2 + 7))2Y (kyml, co;'ol + kavy cos 6 — kapy sin 01),-.
=0 H

Since
Yo g 1TG(m + 1)) TG(n + 1))
'{ sin™ 0 cos™ 6 d@ =5 TGm +n) + 1) ,

it follows that

4 ir o

. o i rArige —9) .
sin”” 10.-d0,~=2/ sin” "l 0, do; = 22T L =2 ...
/; 0 IEp—1+1)

and
Hp—3)
T

p—3 = I‘(%(p — 1) =
e s ) ~ Fae =)

2r
Further, / df,—1 = 2w so that we have
0

p(mll y V; 01)

P $(n—p-1)
T(3(n + 1)) M EHHFD LD <(1 — mu)(1 = D0 — my v?)

Tl

(1s) TG — p + 2)TG0 — p + DTGP — 1)) A
S &ATEn+247410)
P3P T

’(2%)\)j+l(k1 mil + kg'l)l)j('-kgvg)l sin 0f~2+l CcOs 0{.




DISTRIBUTION OF TWO MATRICES 269

Since f sin™ 6 cos” 6 df = O for n odd, we obtain on integrating with respect
0

to 01

P(mu, V)
P {(n—p-1)
T(3(n + 1))6"’”2("f+'°§)mﬁ”'”((1 —mu)(1 — 2 0}) — my vﬁ)
- =1
(19) F3(n — p + 2))TG(n — p + TE(P — 1))xd@D

. i i{r(%(n + 24+ 1)+ HrGp — 1 4+ DTG + 12+
TG + 1) + )i

. (kl m%x + k, Ul)gj( —k, vz)l} .

J=0 =0

We partition the vector V into two parts, the first part consisting of the
single element »; , and the second part of the (p — 1)-dimensional vector V*. In
a manner similar to that in which U, was transformed, we transform the vector
V* to a variable-mgp; = V¥ V* and to (p — 2) angles. After integrating with
respect to the angles, and s1mp11fy1ng the resulting expression, we obtain

P(3n + D) Ml Dmbir
plmas, maes, ) = FG=p + 214G = 7 + D)IGG = DITA)
(20) - ((1 = mn)(l - m22.1) - vi))“"—p_l)
TG+ 2) +9)
= I'(3p + J) j!
Finally, we make the transformation

(lkz)](klmu + 2klk2m11v1 + k2(vl + mas. 1))

un = m12/ mil Mo = Myy — mziz/mn
and we have
I‘(%(n + 1))6—5)\2(";‘#&:) | MI $(p—3) | I-M I $(n—p—1)

o P = 5am = p + DTG = » F DITAG = DITD)
Z_; F—(—%]—) ( Az)j(kimu + 2k ke mys + kﬁmn)’;
with0§m11§1,0§m22=1,]M|=,[I-—M[;O

3. Distribution of M*. Making the transformation defined by M =
M*(I 4+ M*)™, we obtain '
D(3(n 4 1))e 4D | px | 109
rGn —p+ 2)rGn — p + DTG — 1))r3)
TG +2) + 1) s
A
zaoi TGp + 50 )
. (kim’ﬂ + 2A1L2m12 + k2 m22 + (k + kz)(mumn - m12 ))@

I I + M* l $(n+-2)+7

p(M*) =

(22)
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