ON THE DISTRIBUTION OF TWO RANDOM MATRICES USED IN CLASSIFICATION PROCEDURES¹

By Rosedith Sitgreaves

Columbia University

Summary. Two classification statistics discussed in the literature can be written as functions of the elements of a $2 \cdot 2$ symmetric random matrix M. An analytic derivation is given of the distribution of M, and of a related matrix M^* , extending earlier work on distribution theory by Wald [1] and Anderson [2].

1. Introduction. A problem of classification discussed by Wald [1] and Anderson [2] may be described as follows. We have N_1+N_2+1 independent p-dimensional chance vectors. We know that the first N_1 vectors are observations from a population π_1 , the following N_2 are observations from a population π_2 , and the last vector is an observation from a population π , where π is either π_1 or π_2 . It is assumed that the probability distribution in both π_1 and π_2 is multivariate normal with the same covariance matrix Σ ; the vector of expected values is $\mu^{(1)}$ in π_1 and $\mu^{(2)}$ in π_2 . The values of $\mu^{(1)}$, $\mu^{(2)}$, and Σ are not known. Let X denote the $p \cdot (N_1 + N_2 + 1)$ matrix of observations. On the basis of X we want to classify the last observation, $X_{N_1+N_2+1}$ as coming from π_1 or π_2 ; that is, we want to make one of the two decisions, $\pi = \pi_1$ or $\pi = \pi_2$.

When the parameter values are known, the class of Bayes solutions is easily found, resulting in pairs of classification regions of the form

$$(1) T^* \le k \quad \text{and} \quad T^* > k,$$

where

(2)
$$T^* = X'_{N_1+N_2+1} \Sigma^{-1}(\mu^{(1)} - \mu^{(2)}) - \frac{1}{2}(\mu^{(1)} + \mu^{(2)})' \Sigma^{-1}(\mu^{(1)} - \mu^{(2)}).$$

Both Wald and Anderson propose, therefore, the use of classification statistics derived from (2) by substituting estimates for the unknown parameter values. Wald considers principally the statistic

(3)
$$U = X'_{N_1 + N_2 + 1} S^{-1} (\bar{X}^{(1)} - \bar{X}^{(2)}),$$

where

$$\bar{X}^{(1)} = (1/N_1) \sum_{t=1}^{N_1} X_t, \qquad \bar{X}^{(2)} = (1/N_2) \sum_{t=N_1+1}^{N_1+N_2} x_t,$$

and

$$S = (1/(N_1 + N_2 - 2))$$

$$\cdot \left[\sum_{t=1}^{N_1} (X_t - \bar{X}^{(1)}) (X_t - \bar{X}^{(1)})' + \sum_{t=N_1+1}^{N_1+N_2} (X_t - \bar{X}^{(2)}) (X_t - \bar{X}^{(2)})' \right].$$

¹ Sponsored by the Office of Naval Research.

Anderson proposes rather the statistic

$$(4) W = X'_{N_1+N_2+1}S^{-1}(\bar{X}^{(1)} - \bar{X}^{(2)}) - \frac{1}{2}(\bar{X}^{(1)} + \bar{X}^{(2)})'S^{-1}(\bar{X}^{(1)} - \bar{X}^{(2)}).$$

If we let $A=(N_1+N_2-2)S$ and $[(N_1N_2)^{\frac{1}{2}}/(N_1+N_2)^{\frac{1}{2}}](\bar{X}^{(1)}-\bar{X}^{(2)})=Z$, we can write $U=[(N_1+N_2)^{\frac{1}{2}}(N_1+N_2-2)/(N_1N_2)^{\frac{1}{2}}]X'_{N_1+N_2+1}A^{-1}Z$. Under either alternative the vector variable Z has an expected value $[(N_1N_2)^{\frac{1}{2}}/(N_1+N_2)^{\frac{1}{2}}](\mu^{(1)}-\mu^{(2)})$, and covariance matrix Σ . If $\pi=\pi_1$, the expected value of $X_{N_1+N_2+1}$ is $\mu^{(1)}$; if $\pi=\pi_2$, the expected value of $X_{N_1+N_2+1}$ is $\mu^{(2)}$. Thus, in either instance, the sampling distribution of U is contained as a special case of the sampling distribution of

$$(5) V = kY_1 A^{-1} Y_2,$$

where k is a known scalar, Y_1 and Y_2 are p-dimensional normal variables with expected values ζ and ξ , say, respectively, and A is a $p \cdot p$ symmetric matrix with a Wishart distribution involving n degrees of freedom; the 3 sets of variables are independently distributed with the same covariance matrix Σ . Further, the statistic W can be written

$$W = (X_{N_1+N_2+1} - (1/(N_1 + N_2))(N_1\bar{X}^{(1)} + N_2\bar{X}^{(2)}))'S^{-1}(\bar{X}^{(1)} - \bar{X}^{(2)})$$

$$+ ((1/(N_1 + N_2))(N_1\bar{X}^{(1)} + N_2\bar{X}^{(2)}) - \frac{1}{2}(\bar{X}^{(1)} - \bar{X}^{(2)}))'S^{-1}(\bar{X}^{(1)} - \bar{X}^{(2)})$$

$$= (X_{N_1+N_2+1} - (1/(N_1 + N_2))(N_1\bar{X}^{(1)} + N_2\bar{X}^{(2)}))'S^{-1}(\bar{X}^{(1)} - \bar{X}^{(2)})$$

$$+ [(N_1 - N_2)/(2N_1 + 2N_2)](\bar{X}^{(1)} - \bar{X}^{(2)})'S^{-1}(\bar{X}^{(1)} - \bar{X}^{(2)}).$$

Or, if we let

$$[(N_1 + N_2)^{\frac{1}{2}}/(N_1 + N_2 + 1)^{\frac{1}{2}}] \cdot (X_{N_1 + N_2 + 1} - (1/(N_1 + N_2))(N_1 \bar{X}^{(1)} + N_2 \bar{X}^{(2)})) = Z^*,$$

we can write

$$W = [(N_1 + N_2 + 1)^{\frac{1}{2}}(N_1 + N_2 - 2)/(N_1N_2)^{\frac{1}{2}}]Z^{*'}A^{-1}Z$$
$$+ [(N_1 - N_2)(N_1 + N_2 - 2)/(2N_1N_2)]Z'A^{-1}Z$$

The vector variable Z^* is normally distributed, independently of Z, with covariance matrix Σ . Under the hypothesis $\pi = \pi_1$, the expected value of Z^* is $[N_2/(N_1 + N_2)^{\frac{1}{2}}(N_1 + N_2 + 1)^{\frac{1}{2}}](\mu^{(1)} - \mu^{(2)})$; under the hypothesis $\pi = \pi_2$, the expected value of Z^* is $[-N_1/(N_1 + N_2)^{\frac{1}{2}}(N_1 + N_2 + 1)^{\frac{1}{2}}](\mu^{(1)} - \mu^{(2)})$. The sampling distribution of W under either alternative is thus a special case of the sampling distribution of

(6)
$$W^* = aY_1'A^{-1}Y_2 + bY_2'A^{-1}Y_2,$$

where a and b are known scalars, and Y_1 , Y_2 , and A are defined as before. In the case of W, the vectors ζ and ξ are proportional to $(\mu^{(1)} - \mu^{(2)})$.

Wald [1] investigated the general sampling distribution of V, and showed that the statistic can be expressed as a function of 3 variables. These variables, which

he called m_1 , m_2 , and m_3 , and which become m_{11} , m_{22} , and m_{12} in our notation, are the elements of the symmetric matrix

$$(7) M = Y'B^{-1}Y,$$

where $Y = (Y_1, Y_2)$ and B = A + YY'. The classification statistic V can be written

$$V = k \frac{m_{12}}{(1 - m_{11})(1 - m_{22}) - m_{12}^2}.$$

Wald showed geometrically that the distribution of M is a constant multiple of the product of 3 factors, the first a product of gamma- and beta-functions, the second an exponential term, and the third the expected value of a matrix of noncentral Wishart variables which was not evaluated. Anderson [2] has evaluated this product in the case when ζ and ξ are proportional.

In this paper, we give an analytic derivation of the distribution of M in the case when ξ and ξ are proportional, obtaining the constant of the distribution (which Wald and Anderson did not obtain). From the distribution of M, we obtain the distribution of the related matrix

$$M^* = Y'A^{-1}Y.$$

It can be easily shown that

$$(10) M = M^*(I + M^*)^{-1}.$$

These distributions are useful because of interest in the exact sampling distributions of U and W. Further, as will be shown in a subsequent paper, an approach to the classification problem based on the principle of invariance results in a complete class of classification regions depending only on the elements of the matrix M^* , or equivalently of the matrix M, and on a single function of the parameters.

2. Distribution of M. We can write $\rho = k_1 \delta$ and $\xi = k_2 \delta$, where k_1 and k_2 are known scalars. The joint density function of Y and A is given by

$$p(Y,A) = \frac{|\Sigma|^{-\frac{1}{2}(n+2)} |A|^{\frac{1}{2}(n-p-1)}}{2^{\frac{1}{2}p(n+2)} \pi^{p+p(p-1)/4} \prod_{i=1}^{p} \Gamma(\frac{1}{2}(n+1-i))} \cdot \exp\{-\frac{1}{2}\lambda^{2}(k_{1}^{2}+k_{2}^{2}) - \frac{1}{2} \operatorname{tr} \Sigma^{-1}(A+YY') + \delta'\Sigma^{-1}(k_{1}Y_{1}+k_{2}Y_{2})\},$$

where $\lambda^2 = \delta' \Sigma^{-1} \delta$. We make the transformation B = A + YY'. This is a one-to-one transformation with Jacobian 1. We have

(12)
$$p(Y,B) = \frac{|\Sigma|^{-\frac{1}{2}(n+2)} |B - YY'|^{\frac{1}{2}(n-p-1)}}{2^{\frac{1}{2}p(n+2)} \pi^{p+p(p-1)/4} \prod_{i=1}^{p} \Gamma(\frac{1}{2}(n+1-i))} \cdot \exp\{-\frac{1}{2}\lambda^{2}(k_{1}^{2} + k_{2}^{2}) - \frac{1}{2} \operatorname{tr} \Sigma^{-1}B + \delta'\Sigma^{-1}(k_{1}Y_{1} + k_{2}Y_{2})\}.$$

There is a nonsingular matrix Ψ such that $\Psi \Sigma \Psi' = I$ and $\delta' \Psi' = (\lambda, 0, \dots, 0)$ with $\lambda \geq 0$. We make the transformation $Y^* = \Psi Y$ and $B^* = \Psi B \Psi'$. The Jacobian of the transformation is $|\Sigma|^{\frac{1}{2}(p+3)}$. Under the transformation

$$|B - YY'| = |\Psi^{-1}B^*\Psi'^{-1} - \Psi^{-1}Y^*Y^{*'}\Psi'^{-1}|$$

$$= |\Psi^{-1}(B^* - Y^*Y^{*'})\Psi'^{-1}| = |\Psi'\Psi|^{-1}|B^* - Y^*Y^{*'}|$$

$$= |\Sigma| \cdot |B^* - Y^*Y^{*'}|,$$

and

$$\delta' \Sigma^{-1}(k_1 Y_1 + k_2 Y_2) = \lambda(k_1 y_{11}^* + k_2 y_{12}^*).$$

Further,

$$M = Y'B^{-1}Y = Y^{*'}\Psi'^{-1}(\Psi^{-1}B^{*}\Psi'^{-1})^{-1}\Psi^{-1}Y^{*}$$
$$= Y^{*'}\Psi'^{-1}\Psi'B^{*-1}\Psi\Psi^{-1}Y^{*} = Y^{*'}B^{*-1}Y^{*}.$$

The matrix B is positive definite with probability 1, and the matrix Ψ is non-singular, so that the matrix B^* is positive definite with probability 1. We can write $B^* = TT'$, where T is a nonsingular triangular matrix whose elements are functions of the b_{ij}^* , chosen so that

$$t_{11} = b_{11}^{*i}, t_{ij} = 0$$
 for $j > i$.

We use the matrix T to make the transformation $Y^* = TU$, where $U = (U_1, U_2)$ has the same dimensions as Y^* . The Jacobian of the transformation is $|T|^2 = |B^*|$. We have

$$|B^* - Y^*Y^{*'}| = |TT' - TUU'T'| = |T(I - UU')T'|$$

= $|T|^2 \cdot |I - UU'| = |B^*| \cdot |I - U'U|$,

since
$$|I - UU'| = |I - U'U|$$
. Also

$$M = Y^{*'}B^{*-1}Y^{*} = U'T'(TT')^{-1}TU = U'T'T'^{-1}T^{-1}TU = U'U.$$

The joint density function of U and B^* is given by

(13)
$$p(U, B^*) = \frac{ |B^*|^{\frac{1}{2}(n-p+1)} |I - U'U|^{\frac{1}{2}(n-p-1)}}{2^{\frac{1}{2}p(n+2)} \pi^{p+(p-1)/4} \prod_{i=1}^{p} \Gamma(\frac{1}{2}(n+1-i))} \cdot \exp\{-\frac{1}{2}\lambda^2(k_1^2 + k_2^2) - \frac{1}{2} \operatorname{tr} B^* + \lambda b_{11}^{*i}(k_1 u_{11} + k_2 u_{12})\}$$

The variables b_{ij}^* range over all values such that B^* is positive definite. The space of U is the set of points independent of the $b_{ij}^{*\prime}$'s for which

$$(1 - U_1'U_1) \ge 0$$
 $(1 - U_2'U_2) \ge 0$ $|U'U| \ge 0$

and

$$|I - U'U| \ge 0.$$

It can be shown (e.g., see [3]) that

$$\int \cdots \int |B^*|^{\frac{1}{2}(n-p+1)} e^{-\frac{1}{2}\operatorname{tr} B^*} db_{12}^* \cdots db_{pp}^*$$

$$(14) \quad \int_{-\infty \leq b_{1i}^*/b_{11}^{*j} \leq \infty}^{*} db_{11}^* e^{-\frac{1}{2}b_{11}^*} \prod_{i=1}^{p-1} \Gamma(\frac{1}{2}(n+2-i)), \quad i, j = 2, \cdots, p,$$

where $B_{(1)}^* = (b_{ij}^* - b_{1i}^* b_{1j}^* / b_{11}^*)$. Hence

(15)
$$p(U,b_{11}^{*}) = \frac{\Gamma(\frac{1}{2}(n+1)) \mid I - U'U \mid^{\frac{1}{2}(n-p-1)} b_{11}^{\frac{1}{2}n}}{\Gamma(\frac{1}{2}(n-p+2))\Gamma(\frac{1}{2}(n-p+1))2^{\frac{1}{2}(n+2)}\pi^{p}} \cdot \exp \left\{ -\frac{1}{2}b_{11}^{*} - \frac{1}{2}\lambda^{2}(k_{1}^{2} + k_{2}^{2}) + \lambda b_{11}^{*\dagger}(k_{1}u_{11} + k_{2}u_{12}) \right\}.$$

Expanding exp $(\lambda b_{11}^{*i}(k_1u_{11} + k_2u_{12}))$ in a power series and integrating with respect to b_{11}^* we obtain

(16)
$$p(U) = \frac{\Gamma(\frac{1}{2}(n+1)) \mid I - U'U \mid^{\frac{1}{2}(n-p-1)} e^{-\frac{1}{2}\lambda^{2}(k_{1}^{2}+k_{2}^{2})}}{\Gamma(\frac{1}{2}(n-p+2))\Gamma(\frac{1}{2}(n-p+1))\pi^{p}} \cdot \sum_{j=0}^{\infty} \frac{\Gamma(\frac{1}{2}(n+2+j))2^{\frac{1}{2}j}\lambda^{j}(k_{1}u_{11}+k_{2}u_{12})^{j}}{j!}.$$

We can construct an orthogonal matrix G as follows. Let

$$g_{1j} = u_{j1} / \left(\sum_{l=1}^{p} u_{l1}^{2} \right)^{\frac{1}{2}} \qquad j = 1, 2, \cdots, p,$$

$$g_{21} = -\left(\sum_{l=2}^{p} u_{l1}^{2} \right)^{\frac{1}{2}} / \left(\sum_{l=1}^{p} u_{l1}^{2} \right)^{\frac{1}{2}} \qquad g_{2j} = u_{11} u_{j1} / \left(\sum_{l=1}^{p} u_{l1}^{2} \right)^{\frac{1}{2}} \left(\sum_{l=2}^{p} u_{l1}^{2} \right)^{\frac{1}{2}},$$

$$For \ k = 3, \cdots, p - 1$$

$$g_{kj} = 0, \quad j = 1, \cdots, k - 2; \qquad g_{k,k-1} = -\left(\sum_{l=k}^{p} u_{l1}^{2} \right)^{\frac{1}{2}} / \left(\sum_{l=k-1}^{p} u_{l1}^{2} \right)^{\frac{1}{2}}$$

$$g_{kj} = u_{k-11} u_{j1} / \left(\sum_{l=k-1}^{p} u_{l1}^{2} \right)^{\frac{1}{2}} \left(\sum_{l=k}^{p} u_{l1}^{2} \right)^{\frac{1}{2}}, \quad j = k, \cdots, p;$$

$$g_{pj} = 0, \quad j = 1, \cdots, p - 2; \qquad g_{p,p-1} = -u_{pl} / \left(u_{p-1,1}^{2} + u_{pl}^{2} \right)^{\frac{1}{2}};$$

We make the transformation $V = GU_2$. Under the transformation

$$\mid I - U'U \mid = \mid (1 - U'_1U_1)(1 - U'_2U_2) - U'_1U_2U'_2U_1 \mid = \mid (1 - U'_1U_1)(1 - V'V) - v_1^2U'_1U_1 \mid$$

 $g_{pp} = u_{p-1,1}/(u_{p-1,1}^2 + u_{p1}^2)^{\frac{1}{2}}$

and

$$u_{12} = v_1 u_{11} / \left(\sum_{l=1}^{p} u_{l1}^2 \right)^{\frac{1}{2}} - v_2 \left(\sum_{l=2}^{p} u_{l1}^2 \right)^{\frac{1}{2}} / \left(\sum_{l=1}^{p} u_{l1}^2 \right)^{\frac{1}{2}}.$$

Now we make the following transformation. Let

$$\begin{array}{lll} u_{11} & = m_{11}^{\frac{1}{1}}\cos\theta_{1}, \\ u_{21} & = m_{11}^{\frac{1}{1}}\sin\theta_{1}\cos\theta_{1}, \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ u_{p-1,1} & = m_{11}^{\frac{1}{1}}\sin\theta_{1}\sin\theta_{2}\cdots\sin\theta_{p-2}\cos\theta_{p-1}, \\ u_{p1} & = m_{11}^{\frac{1}{1}}\sin\theta_{1}\sin\theta_{2}\cdots\sin\theta_{p-2}\sin\theta_{p-1}. \end{array}$$

The Jacobian of the transformation is

$$\frac{1}{2}m_{11}^{\frac{1}{2}(p-2)}\sin\theta_1^{p-2}\sin\theta_2^{p-3}\cdots\sin\theta_{p-2}$$

with $0 \le \theta_i \le \pi$ for $i = 1, 2, \dots, p - 2$ and $0 \le \theta_{p-1} \le 2\pi$. Under the transformation, $U'_1U_1 = m_{11}$ and

$$p(m_{11}, V, \theta) = \frac{\Gamma(\frac{1}{2}(n+1))e^{-\frac{1}{2}\lambda^{2}(k_{1}^{2}+k_{2}^{2})}m_{11}^{\frac{1}{2}(p-2)}\left((1-m_{11})(1-\sum_{i=1}^{p}v_{i}^{2})-m_{11}v_{1}^{2}\right)^{\frac{1}{2}(n-p-1)}}{2\pi^{p}\Gamma(\frac{1}{2}(n-p+2))\Gamma(\frac{1}{2}(n-p+1))}$$

$$(17) \qquad \cdot \sin \theta_{1}^{p-2} \cdots \sin \theta_{p-2}$$

$$\cdot \sum_{j=0}^{\infty} \frac{\Gamma(\frac{1}{2}(n+2+j))2^{\frac{1}{2}j} \lambda^{j} (k_1 m_{11}^{\frac{1}{2}} \cos \theta_1 + k_2 v_1 \cos \theta_1 - k_2 v_2 \sin \theta_1)^{j}}{j!}.$$

Since

$$\int_{0}^{\frac{1}{2}\pi} \sin^{m} \theta \, \cos^{n} \theta \, d\theta \, = \frac{1}{2} \, \frac{\Gamma(\frac{1}{2}(m+1)) \, \Gamma(\frac{1}{2}(n+1))}{\Gamma(\frac{1}{2}(m+n)+1)} \,,$$

it follows that

$$\int_0^{\pi} \sin^{p-i-1} \theta_i \, d\theta_i = 2 \int_0^{\frac{1}{2}\pi} \sin^{p-i-1} \theta_i \, d\theta_i = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}(p-i))}{\Gamma(\frac{1}{2}(p-i+1))}, \quad i = 2, \dots, p-2,$$

and

$$\left(\Gamma(\tfrac{1}{2})\right)^{p-3} \prod_{i=2}^{p-2} \frac{\Gamma(\tfrac{1}{2}(p-i))}{\Gamma(\tfrac{1}{2}(p-i+1))} = \frac{\pi^{\frac{1}{2}(p-3)}}{\Gamma(\tfrac{1}{2}(p-1))}.$$

Further, $\int_0^{2\pi} d\theta_{p-1} = 2\pi$ so that we have

$$p(m_{11}, V, \theta_1)$$

$$(18) = \frac{\Gamma(\frac{1}{2}(n+1))e^{-\frac{1}{2}\lambda^{2}(k_{1}^{2}+k_{2}^{2})}m_{11}^{\frac{1}{2}(p-2)}\left((1-m_{11})(1-\sum_{i=1}^{p}v_{i}^{2})-m_{11}v_{1}^{2}\right)^{\frac{1}{2}(n-p-1)}}{\Gamma(\frac{1}{2}(n-p+2))\Gamma(\frac{1}{2}(n-p+1))\Gamma(\frac{1}{2}(p-1))\pi^{\frac{1}{2}(p+1)}}$$

$$\cdot \sum_{j=0}^{\infty}\sum_{l=0}^{\infty}\frac{\Gamma(\frac{1}{2}(n+2+j+l))}{j!\ l!}$$

$$\cdot (2^{\frac{1}{2}}\lambda)^{j+l}(k_{1}m_{11}^{\frac{1}{2}}+k_{2}v_{1})^{j}(-k_{2}v_{2})^{l}\sin\theta_{1}^{p-2+l}\cos\theta_{1}^{j}.$$

Since $\int_0^{\pi} \sin^m \theta \cos^n \theta \ d\theta = 0$ for n odd, we obtain on integrating with respect to θ_1

$$(19) = \frac{\Gamma(\frac{1}{2}(n+1))e^{-\frac{1}{2}\lambda^{2}(k_{1}^{2}+k_{2}^{2})}m_{11}^{\frac{1}{4}(p-2)}\left((1-m_{11})(1-\sum_{i=1}^{p}v_{1}^{2})-m_{11}v_{1}^{2}\right)^{\frac{1}{4}(n-p-1)}}{\Gamma(\frac{1}{2}(n-p+2))\Gamma(\frac{1}{2}(n-p+1))\Gamma(\frac{1}{2}(p-1))\pi^{\frac{1}{2}(p+1)}}$$

$$\cdot \sum_{j=0}^{\infty} \sum_{l=0}^{\infty} \left\{ \frac{\Gamma(\frac{1}{2}(n+2+l)+j)\Gamma(\frac{1}{2}(p-1+l))\Gamma(j+\frac{1}{2})2^{j+\frac{1}{2}l}\lambda^{2j+l}}{\Gamma(\frac{1}{2}(p+l)+j)(2j)! \ l!} \cdot (k_{1} m_{11}^{\frac{1}{4}} + k_{2}v_{1})^{2j}(-k_{2}v_{2})^{l} \right\}.$$

We partition the vector V into two parts, the first part consisting of the single element v_1 , and the second part of the (p-1)-dimensional vector V^* . In a manner similar to that in which U_1 was transformed, we transform the vector V^* to a variable $m_{22.1} = V^{*'}V^*$, and to (p-2) angles. After integrating with respect to the angles, and simplifying the resulting expression, we obtain

$$p(m_{11}, m_{22.1}, v_{1}) = \frac{\Gamma(\frac{1}{2}(n+1))e^{-\frac{1}{2}\lambda^{2}(k_{1}^{2}+k_{2}^{2})}m_{11}^{\frac{1}{2}(p-2)}m_{22.1}^{\frac{1}{2}(p-3)}}{\Gamma(\frac{1}{2}(n-p+2))\Gamma(\frac{1}{2}(n-p+1))\Gamma(\frac{1}{2}(p-1))\Gamma(\frac{1}{2})} \cdot ((1-m_{11})(1-m_{22.1})-v_{1}^{2}))^{\frac{1}{2}(n-p-1)} \cdot \sum_{j=0}^{\infty} \frac{\Gamma(\frac{1}{2}(n+2)+j)}{\Gamma(\frac{1}{2}p+j)j!} (\frac{1}{2}\lambda^{2})^{j}(k_{1}^{2}m_{11}+2k_{1}k_{2}m_{11}^{\frac{1}{2}}v_{1}+k_{2}^{2}(v_{1}^{2}+m_{22.1}))^{j}.$$

Finally, we make the transformation

$$v_1 = m_{12}/m_{11}^{\frac{1}{2}}$$
 $m_{22.1} = m_{22} - m_{12}^2/m_{11}$

and we have

$$p(M) = \frac{\Gamma(\frac{1}{2}(n+1))e^{-\frac{i}{2}\lambda^{2}(k_{1}^{2}+k_{2}^{2})} |M|^{\frac{i}{2}(p-3)} |I-M|^{\frac{i}{2}(n-p-1)}}{\Gamma(\frac{1}{2}(n-p+2))\Gamma(\frac{1}{2}(n-p+1))\Gamma(\frac{1}{2}(p-1))\Gamma(\frac{1}{2})} \cdot \sum_{j=0}^{\infty} \frac{\Gamma(\frac{1}{2}(n+2)+j)}{\Gamma(\frac{1}{2}p+j)j!} (\frac{1}{2}\lambda^{2})^{j} (k_{1}^{2}m_{11}+2k_{1}k_{2}m_{12}+k_{2}^{2}m_{22})^{j},$$

with $0 \le m_{11} \le 1$, $0 \le m_{22} \le 1$, $|M| \ge 0$, $|I - M| \ge 0$.

3. Distribution of M^*. Making the transformation defined by $M = M^*(I + M^*)^{-1}$, we obtain

$$p(M^*) = \frac{\Gamma(\frac{1}{2}(n+1))e^{-\frac{1}{2}\lambda^2(k_1^2+k_2^2)} |M^*|^{\frac{1}{2}(p-3)}}{\Gamma(\frac{1}{2}(n-p+2))\Gamma(\frac{1}{2}(n-p+1))\Gamma(\frac{1}{2}(p-1))\Gamma(\frac{1}{2})} \cdot \sum_{j=0}^{\infty} \left\{ \frac{\Gamma(\frac{1}{2}(n+2)+j)}{\Gamma(\frac{1}{2}p+j)j!} \left(\frac{1}{2}\lambda^2\right)^j \cdot \frac{(k_1^2m_{11}^* + 2k_1k_2m_{12}^* + k_2^2m_{22}^* + (k_1^2 + k_2^2)(m_{11}^*m_{22}^* - m_{12}^{*2}))^j}{|I + M^*|^{\frac{1}{2}(n+2)+j}} \right\}.$$

Acknowledgment. Grateful acknowledgment is made to Prof. T. W. Anderson, under whose direction this paper was prepared.

REFERENCES

- [1] A. Wald, "On a statistical problem arising in the classification of an individual into one
- of two groups," Annals of Math. Stat., Vol. 15 (1944), pp. 145-162.
 [2] T. W. Anderson, "Classification by multivariate analysis," Psychometrika, Vol. 16 (1951), pp. 31-50.
- [3] T. W. Anderson and M. A. Girshick, "Some extensions of the Wishart distribution," Annals of Math. Stat., Vol. 15 (1944), pp. 345-357.