OPTIMUM ALLOCATION IN LINEAR REGRESSION THEORY

By G. EvFvinG
Unaversity of Helsingfors and Cornell University

Summary. If for the estimation of 8;, 8, different observations (“sources’) of
form (1.1) are potentially available, each of them being repeatable as many times
as we please, the question arises which of them the experimenter should utilize,
and in what proportions. With appropriate optimality conventions the answer is
the following. For the estimation of a single quantity of form 6 = a8, + a8
the optimum allocation comprises two sources only; for the estimation of both
parameters, the corresponding number is two or three; the best proportions are
indicated in Sections 2 and 4 below. Generalizations to more than two parameters
and to observations at different costs are briefly discussed.

The problem is related to Hotelling’s weighing problem [2] and to the topics
treated by David and Neyman in [1].

1. Introduction. Consider an experimenter who wants to determine two un-
known quantities 8,, B, . We assume that for this purpose a certain number r
of different potential observations are at his disposal, the outcomes of which
are of form

(1.1) Yi = Tab + Tobe + m (F=1,--,r1);

here z,; , .2 denote known coefficients and #; a random variable (the error term)
with mean zero and standard deviation o. (If the standard deviations of the
different observations are proportional to known numbers &, , -« - , k., we have
only to divide the equations (1.1) by these numbers in order to restore the situa-
tion of the text.) We assume, furthermore, that the experimenter may perform
each of the observations as many times as he pleases, or not at all, all actual
observations being uncorrelated. If he has decided upon a certain total » of actual
observations, he is faced with the problem which of the potential ones should be
performed, and in what number. As an application, the reader may think of a
surveyor who wants to find the coordinates of a point by observing the direction
to it from given surrounding points of known position; in this case the regression
is, of course, only differentially linear.

In order to distinguish between the potential and the actual observations,
we will in the following refer to the former as sources (of information), to the
latter as observations. Since a source is essentially described by the coefficient
vector x; = (xa, T2), we will also briefly speak of the source x; or simply the
source 7. In the solution of any particular optimum allocation problem, those
sources which are actually utilized will be called relevant, the others irrelevant.

The following normalization and idealization of our problem is mathematically
convenient. Let the required number of observations on the ith source be
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256 G. ELFVING

n; = np; ; the p,’s are obviously multiples of 1/n fulfilling the conditions

(1-2) D 2 0, Zp; = 1.

The mean of the observations on the 7th source then has a regression equation
which may be written

(1.3) Ji = za b1+ z B2 + \/L’; G=1,---,7),

where #; has variance ¢’/n. If a certain p; is zero, the corresponding equation
has to be left out of the system. For large n, the p.’s may be varied practically
continuously over the range (1.2). Idealizing this feature we get a large-sample
problem, which is essentially independent of ¢ and n. For simplicity we may
finally assume ¢*/n = 1;in order to restore full generality we have only to re-
introduce this factor in all variance and covariance formulas below. We are then
faced with the following question:

Consider a planned set of observations of form (1.3) with E(5:;) = 0, D*(%:) = 1,
and with the weights p; at our disposal, subject only to the conditions (1.2). What
are the optimal p/s?

The solution of this problem obviously presupposes a specification of the
word “optimal,” that is, a specification of the estimation problem at hand.

When applying the solution to practical problems, one has to remember that
our large-sample p,;’s must be approximated by multiples of 1/n; here, a fine-
structure study might be necessary.

2. Estimation of a single quantity. In this section we shall deal with the case
where the interest of the experimenter is centered upon a particular linear com-
bination of the parameters, say

2.1) 0= afy + asf; .

Particularly we may have 8 = B, 0r § = ;.
Consider all linear forms ¢ = ) _c; yielding unbiased estimates of the quantity
(2.1). For this purpose the ¢;’s have to make the equality

E(t) = Xcizaby + vabs) = af + 0
identical in B;, B2, that is, they must satisfy the vector equation

(2~2) ZC.'I.- = da.

For r > 2 there are infinitely many sets {¢;} fulfilling this condition. Among the
corresponding estimates ¢ there is, for every fized set of p,’s, one with least vari-
ance; this statistic is, according to a theorem by Gauss, obtained by substituting
in (2.1) the least-squares estimates B , B2 of the parameters, that is, the values
B1, B2 that minimize the weighted square sum

(2.3) 2 0iF: — zaby — Tab)’.

The variance of this ¢ is, of course, a function of p;, -+, pr. We want to find
those weights p; which yield the smallest minimum variance.
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The solution of this problem can be found by a simple geometric argument.
For this purpose we first notice that the smallest minimum variance, by defini-
tion, equals min, min, D*{) ¢4}, the ¢.’s and pi’s being subject to the condi-
tions (2.2) and (1.2). Inverting the order of minimization and calculating, to
begin with, the minimum with respect to the p;’s for fixed ¢.’s, we easily find

2
(2.4) min D* {J ¢;7;} = min D %‘- = k2,
P P 1
where k. = D _|¢; [. The minimizing p; values are p.; = |c¢;| /k..

It remains to minimize (2.4) with respect to the ¢;’s, remembering the condi-
tion (2.2) which we rewrite in the form

2.5) a = k. _p.sgnc;-x; = k.a, (say).

Fia. 1

The factor k. being a positive scalar, the sum on the right-hand side represents
a vector a, with the same direction as a. The weights p.; being nonnegative with
sum one, it is clear that the endpoint of this vector lies on or within the convex
polygon II spanned by the vectors =x;,---, +x, (Fig, 1). Since by (2.5),
k. is the length ratio of the vectors @ and a. , it is obvious that (2.4) reaches its
minimum when the endpoint of @, coincides with the intersection 4 * of the vector
a (or its extension) with the polygon II. If this point lies, for example, between
the corners X; and X of II (see Fig. 1), it is seen that the coefficients p.; in (2.5)
—and hence the optimum weights—must be in the ratio A*X,: A*X, for ¢ = 1, 2,
and zero for< = 3, - - -, r. The smallest minimum variance is given by (04,/04*).
In terms of our original problem we may state this result as follows:

For the estimation of a single quantity (2.1), two and only two of the sources
(1.1) are relevant; they have to be used in the proportion shown by the geometric
argument above. (There are obvious modifications of this statement in the cases
where a passes through a corner of II, or where three or more of the x;’s have
their endpoints on the same line.)
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If the vector of a certain source falls entirely inside the polygon spanned by
the remaining vectors, this source is of no use for the estimation of any single
quantity (2.1).

The fact that, with optimum allocation, only two of the potential observa-
tions are actually performed, has a somewhat surprising consequence. The
square sum (2.3) reducing to two terms only, its absolute minimum, zero, is
reached when 3, and 3, are chosen so as to make both terms vanish. The estimates
B, B are thus obtained simply by dropping the error terms in (1.3) and solving
for the parameters.

Ezxample. Consider the case where the potential observations are of form

y.-=a+X‘;8+n,-, X1<X2<"‘<Xr,

that is, the case of linear regression in the elementary sense. Here the polygon II
is a parallellogram spahned by the vectors (1, X), (1, X,), and their opposite
vectors. If the interest of the experimenter is centered upon 8 alone, it is seen
that he has to use only the extreme sources 1 and r; the observations on them
have to be equal in number. If « alone is to be estimated and if all X;’s have the
same sign, the extreme ones should again be used, this time in proportion X,: X .
If the X,’s include both positive and negative numbers, then the values of the
pi’s are arbitrary with the sole condition that the weighted average ZpiX = 0.
Since in practice the p,’s have to be multiples of 1/n, n being the number of ob-
servations, it is usually impossible to arrange the p,’s so that the condition men-
tioned is exactly fulfilled. In such circumstances, one can still make a useful
choice between different approximations').

Generalization. The generalization to three parameters is obvious. The polygon
11 is replaced by a convex polyhedron with triangular side-planes. In any estima-
tion problem concerned with a single linear combination of the parameters
there will in general be three relevant sources. For more than three parameters,
the geometric rule must be replaced by an algebraic procedure.

3. Estimation of both parameters. For a set of actual observations, that is, for
fixed py, - -, pr, the least-squares technique yields minimum variance estimates
of both parameters as well as of all linear combinations of them; nothing is
gained in the accuracy of one estimate by giving up accuracy in another. In the
present setup where the weights p; are variable, some information is needed
concerning the desired relative accuracy of different estimates. A reasonable
approach seems to be to choose an appropriate positive definite quadratic form
in the estimation errors 8; — 81, B: — B and minimize its expectation by proper
choice of the weights. By a linear transformation of the parameters (and a corre-
sponding transformation of the coefficient vectors) the problem can always be
reduced to the minimization of the particular form

(3.1) g=E{B — 8)" + (B — )"} = D'(B) + D'(8)
with respect to p1, -+, r.

1 Cf. [1], p. 116. I am indebted to the referee for this and several other valuable remarks.
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It is well known that the covariance matrix A of 3y, 3 is the inverse of the
information matrix

Z Di -’03'1 E Di Ti1 Tz
M = .

Z DiTi1Ti2 Z DiZ%i2
Our object is to minimize the trace
q=)\11+)\22=uu+#22

of this inverse with respect to the p,’s. A peculiar feature of this problem is that
the minimum point usually will lie on the boundary of the region (1.2), some
of the p.’s being actually equal to zero.

Consider a point P = (p1, - -+, pr) in (1.2) in which ¢ reaches its minimum.
If 7 and j are two relevant sources, that is, if p; > 0, p; > 0, any differential
variation

(3.2) ] = > pixix;.

dp;= =%, dp;=3, dp=0 (h # 1, j)

of the coordinates leads to another point in (1.2). Accordingly, in order for P
to be a minimum point, we must have (3¢/dp; — dq/dp:) & = 0 for all §, that is,
we must have dq/dp; = d¢/dp, for any two relevant sources ¢, 5. If, on the other
hand, 7 is a relevant and j an irrelevant source (i.e., p; > 0, p; = 0), then p, can
be varied only in the positive direction, and we must, by the same argument as
above, have (dq/dp; — 3q/dp;)8 = O for any positive §; hence dq/3p; = dq/dp: .
In conclusion: to any solution of our minimization problem there exists a constant
—«* such that d¢/dp; = —«* for all relevant sources, whereas d¢/dp; = —«°
for irrelevant sources.

As far as the relevant sources are concerned, «” is the ordinary Lagrange multi-
plier. Since ¢ is a homogeneous function of order —1 of p;, -+, »,, and since,
by the above result,

Zl:pi(%h‘ = —Kz;pi = _"2’
we conclude from Euler’s identity that «* equals the minimum value of ¢q. This
also establishes the sign of «* as positive, as already anticipated in the notation.

We shall now compute the derivatives dq/dp; . This is easily done by differ-
entiating the matrix identity MA = I with respect to p;(¢ = 1, ---, 7). Since
by (3.2) oM/op; = x:x;, a short calculation gives

9A _ —AXix: A = —(AX)(AX)).
ap.-
Hence
9 _9spA _ _ NALY ! = — a
(3:3) Fres pi sp {(Ax:)(Axy)} [l Axs |l

where || Ax’ || denotes the length of the vector Ax;. We note that || Ax'||*is a
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positive definite quadratic form in the components of x; hence, the equation
|| Ax' ||* = Const. represents an ellipse centered at the origin.

Combining the results of the three preceding paragraphs we have the follow-
ing theorem.

THEOREM. To any set {p;} that minimizes the function (3.1) there corresponds an
ellipse E, centered at the origin, such that all points x; representing relevant sources
lie on E and none of the points representing irrelevant sources lie outside of E.

Since three points determine a conic centered at the origin, we conclude that,
in general, there are at most three relevant sources. Even in the case where four or
more source-points happen to lie on the same ellipse, and the rest inside it, it
may be shown by a continuity argument that three relevant sources are enough
for the minimization of g.

Generalization. The preceding arguments apply to an arbitrary number s of
parameters, the ellipse being replaced by an (s — 1)-dimensional ellipsoid or hy-
perellipsoid in R, . Hence, there will be at most 3s(s + 1) relevant sources. How-
ever, already for s = 3 the computation of the optimum allocation becomes
rather complicated.

4. Finding the weights. Simple examples show that the cases with two and
with three relevant sources both actually occur. Assuming for the time being
that we know how to pick these sources, we now want to find the weight dis-
tribution between them as well as the minimum value of g.

If there are two relevant sources corresponding, say, to ¢ = 1, 2, we find the
estimates B, , B simply by solving the equations §; = zafy + B2, 7 = 1, 2.
Performing the solution, taking the variances, and introducing polar coordinates
r, 0 for the vectors x; , x; , we find
. A rapr 4 ripy
(4.1) ¢ = D’B) + D*(B.) = 5 &

27 sin® (6, — 6,)

The minimum of this expression is attained for

(4.2) p=r/(rn+ 1), p2=n/(n+r),
and the minimum value itself is
—1 -1 2
_J. "+
(43) futa = {sin (6. — 01)} |

The case with three relevant sources 7 = 1, 2, 3 is somewhat more complicated.
The derivatives (3.3) being less convenient for actual computation of the mini-
mizing p: values, we replace ¢ by the homogeneous rational function L/M,
where M is the determinant of the matrix (3.2) and L is the trace of M multiplied
by p1 + p2 + ps. On the set py + p. + ps = 1 we obviously have ¢ = L/M.
Instead of minimizing L/M on the set mentioned, we may find the required ratio

p1:paips by minimizing L under the restriction M = Const. Introducing a
Lagrange multiplier A and differentiating L — MM we find the equations

3
(44) > (L — Amy)p; = 0 (1=1,2,3),

=1
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where
(4.5) lj=ri+r%, my; = risin® (8; — 65).

If X is any eigenvalue of the system (4.4) and P a corresponding eigenvector, a
well known argument shows that X is the value of L/M in P. Hence, the minimum
value of q on (1.2) s equal to the smallest eigenvalue of (4.4) for which all components
of the eigenvector have same sign. The required optimum allocation is given by these
components normalized to sum one.

b. Selection of sources. There remains the question how to pick the relevant
sources from a given set of potential observations.

From the theorem in Section 3 it is immediately seen that a source is certainly
irrelevant if it is represented by a point inside the convex polygon spanned by
all x’s. A source ¢ is, furthermore, irrelevant if for any two subscripts j, k (5 2),
the ellipse passing through x., x;, x. and centered at the origin leaves some
fourth x, outside it. After discarding all such sources there might still be more
than three left. It is in principle always possible to examine these eligible
sources’ three by three, determine the corresponding minimum values of ¢ ac-
cording to Section 4, and pick the triplet with the smallest value. Most of the
triplets will actually reduce to pairs, one of the three sources being irrelevant in
combination with the others. The occurrence of this case is most easily detected
by means of the following criterion, which we mention without proof:

A source x; is irrelevant in combination with x, and x; if and only if x; lies inside
or on a certain ellipse, centered at the origin and passing through x, and x, , with
parametric equation

x = X1 sin (t - 01) + X2 sin (t - 02)
sin (02 —_ 01)

(5.1) 0=t=<2n).

In most practical situations, two sources picked by inspection will probably
do without much loss of accuracy.

Example. Take three sources with polar coordinates (r, 8), (r, —6), and (p, ¢)
respectively. We consider the two first as fixed, the third as variable. The equation
of the ellipse (5.1) becomes in rectangular coordinates £ tan® 6 + »* cot’ § = 7%
When x; is inside this ellipse, the source 3 is irrelevant in combination with
1 and 2. There are, on the other hand, regions in which x; “knocks out” one of
the other sources. Writing (5.1) explicitly and interchanging the subscripts 1
(2) and 3 one finds, after some calculations, that source 1 (2) becomes irrelevant
when x; moves outside the curve p|sin 2¢ | = r|sin 20| in the first or third
(second or fourth) quadrant. As a result we have a cross-shaped figure: in the
center only sources 1, 2 are relevant, in the angle-fields only 2, 3 or 1, 3; along the
axes all three sources are relevant.

6. Observations at different costs. The preceding theory can easily be
adapted to the case where the potential observations are at different costs, say
$v1, -+, o, per unit. Let n;, - -+, n, be the number of times that the different



262 G. ELFVING

observations are repeated. If the total costs have to equal a prescribed amount
C, we have the restriction )_nw; = C instead of J_n; = n. Dividing the regres-
sion equations for the averaged observations #; by v/v:(¢ = 1, - -+, r) we get a
new set of regression equations

*

6.1 -t =x? x? " = 1) ) )
(6.1) g 181 + 2B + Vo © r)
where

(6.2) : yi = i/ vs, xii = o/ i, pi = vini/C,

where 7; is a random variable with mean zero and standard deviation ¢/+/C,
and where the weights p} are subject to the restrictions (1. 2). This is precisely
the previous situation. One has only to enter the procedure with the modified
sources xT and to remember that the outcoming p}’s give the optimum allocation
of the costs, not of the observations themselves.
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