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1. Summary. The concept of “functional sufficiency” or ““f-sufficiency” for a
class of density functions is introduced and conditions given under which it
corresponds to sufficiency as defined by Halmos and Savage [2]. A minimal
f-sufficient statistic is defined and shown to exist, and its construction is given.

The minimal f-sufficient statistic for a class of densities for which the region
of positive density varies with the parameter is shown to be equivalent to the
combination of a ‘“‘statistic of selection” and the minimal f-sufficient statistic
for a class of densities for which the region of positive density is fixed. The
construction of sufficient statistics in this latter case subject to certain condi-
tions of regularity has been treated by Koopman [1]. |

If the parameter is a parameter of selection from a fixed distribution, then
the statistic of selection is the minimal f-sufficient statistic. If in addition the
regions of positive density are monotone and indexed monotonely by a real
parameter, then the statistic of selection is sufficient according to the Halmos
and Savage definition. Three examples are given to illustrate the results.

2. Introduction. The following notation follows closely that introduced in [2]
by Halmos and Savage. Let X be a general space and S a Borel class over it;
then (X, 8) is called a measurable space. Since X will be considered the space
of a chance quantity, a statistic T is a function over X, that is, a transformation
from X into a measurable space (T, 8’). The transformation is measurable if
the inverse transformation of the Borel sets S’ are elements of S.

Let 9% = {u} be a class of probability measures over the space X. If u and »
are two measures on X, » is absolutely continuous with respect to u, in symbols
v K p, if v(B) = 0 for every E ¢ S for which u(E) = 0. A set of measures 91
on X will be called dominated if there exists a measure A on X such that for
each p € 9 we have u < A, in notation I <K A.

In this paper we consider only dominated sets of measures 91 << . The Radon-
WNikodym Theorem gives us the following statement: ‘

For any dominated set of measures M <K N, there exists a set of nonnegativereal-
valued functions over X, {f.(x)}, such that

WB) = [ 1@ @)

for every u € I and E € S. The functions f,(x) are unique except on a set of \-
measure zero. We shall refer to f.(x) as a density function relative to the fixed
measure A.
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For any such class of measures and a corresponding set of densities, this
paper presents theorems concerning sufficient statistics.

3. Definition of sufficient statistic. The concept of sufficient statistic was
given a rigorous formulation in [2].“In words the definition is as follows.

T is sufficient for O if there exists for almost all (uT~") values of T a conditional
probability function which is independent of u e 9.

Corollary 1 to Theorem 1 in [2] gives an equivalent condition for a sufficient
statistic:

The statistic T 1s sufficient for a dominated set of measures if and only if fu(x)
factors in the form f.(x) = g.(T)h(zx) (except on a set of u-measure zero), where
g.(T) is measurable, g and h are nonnegative, and h and gh are integrable with
respect to \. .

For the purposes of this paper we introduce the concept of functional suffi-
ciency with respect to a class of density functions {f,(z)} over a fixed measure .
For these density functions u can be considered as a parameter or index of the
family. A function T(z) is functionally sufficient (f-sufficient) for {fu(x)} if and
only if fu(x) = gu(T)h(z), where g.(T), h(z) are nonnegative. For the study of
f-sufficiency the normalization and integrability conditions on f,(z) are not im-
portant; however, the property that f,(z) = 0 will be assumed throughout. A
function T(x) is a minimal f-sufficient statistic' for {f.(x)} if no function of T (z)
(other than 1-1) s f-sufficient for {f.(x)}.

Lemma 1. For any {f.(x)} there exists a minimal f-sufficient statistic.

Proor. The minimal f-sufficient statistic will be given as a mapping of the
elements of X onto a class of disjoint subsets covering X. The mapping is from
the elements of a set to the set itself. Thus we need only define the disjoint
sets covering X. Define sets as follows:

E,
E, = {z | Th(z) such that f,(x) = h(x)f.(z")}.

{z | fu(x) is independent of u},

By this procedure the whole space X can be covered. Also a simple argument
shows that the sets are disjoint.

We must now show that these sets provide us with an f-sufficient statistic.
Let T index the sets and T'(xz) be the mapping from z to the set containing z.
Then we have either f,(z) = ho(z), or fu(x) = ho(z)fu(2’), where ' = z'(T).
But this implies f,(z) = g.(T)h(z), and hence T is f-sufficient.

For any function T'(T) other than 1-1 there would exist at least two sets
E', E” giving the same value to the function 7. Over E’, E” the representation
fu(®) = gu(T")h(x) is impossible, since it would imply that the sets were iden-
tical. Thus T is a minimal f-sufficient statistic.

1 The concept of a minimal f-sufficient statistic was obtained independently of [4]. The

partition of X induced by the minimal f-sufficient statistic is essentially the partition pro-
diiced by the operator ¢ introduced by Lehmann and Scheffé.
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LemMA 2. There is a unique minimal f-sufficient statistic and it is a function of
any other f-sufficient statistic.

Proor. Let T(x) be any f-sufficient statistic: then f,(x) = ¢.(T)h(zx). Con-
sider the sets E corresponding to the partition of X induced by the function
T(x). Within any one E of the sets

Ju(@) = gu(B)h(z).

Hence E is contained in a set of the partition induced by the minimal f-sufficient
statistic defined in Lemma 1 and therefore that minimal f-sufficient statistic is
a function of T'(x). This with the definition of minimal f-sufficient statistic
establishes uniqueness.

Lemma 3. Any sufficient statistic for a dominated set of measures M K N is an
f-sufficient statistic for an equivalent set of densities (relative to \).

Proor. Let T be any sufficient statistic for 9. By Corollary 1 to Theorem 1
in {2], there exists a set of densities {f.(x)} such that f.(x) = g.(T)h(x) except
on a set of u-measure zero. An equivalent set of densities is {g.(T)h(x)} and
these factor for all values of x. Hence T is f-sufficient for {f.(x)}.

LemMA 4. An f-sufficient statistic T for {f.(x)} is sufficient for {u} = M if and
only if fu(x) = gu.(T)h(x) where T'(x) s measurable, g,(T) is measurable, and h
and gh are integrable with respect to \.

Proor. Follows immediately from Corollary 1, Theorem 1 [2].

The structure of f-sufficiency, unlike sufficiency, is not invariant under changes
in {f,(x)} which do not alter the set 9. However for applications the conditions
in Lemma 4 will usually be fulfilled, and consequently any procedure for ob-
taining f-sufficient statistics will assist the study of sufficient statistics.

4. Selection. Consider a set of densities{f.(x)} over a space X. Considering
u as an index or parameter of the class, we define a parameter of selection.
u s a “parameter of selection’ for {f.(x)} if

fu@) = ¢s,(@)f(2)g(u) ,
where S, = {z | fu(x) > 0} and ¢s(x) = 0, 1, according as z ¢ S, € S.

If there is a class of measures 9 which are essentially truncations of, or
selections from a fixed measure, then there will exist an equivalent set of densi-
ties for which u is a ‘“parameter of selection.”

We now define a “statistic of selection’’ for any set of densities {f.(z)}. It is
a function mapping X into the space of subsets of X.

T(z), a statistic of selection, is defined by

T(x) = NS,,

where the intersection is over all u ¢ M*(x) = {u|x € S,} = {u|fu(x) > 0}.
We also define a characteristic function for sets A and B C X:

¥(4,B) = 0if 4 & B,
=1if4 CB.
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6. F-sufficiency and the statistic of selection. A set of measures 9N is said to
be homogeneous if » < u and u < v for every pair u, » € 9. Thus a dominated
set of measures with densities {f.(x)} is homogeneous if S, is independent of u.
In such a case the Halmos and Savage criterion of sufficiency is simplified, and
if working over the real space subject to certain continuity conditions on the
fu(x) the problem of sufficiency has'been treated by Koopman [1].

The theorem in this section reduces the problem of finding an f-sufficient (or
minimal f-sufficient) statistic for a set of densities corresponding to a dominated
set of measures to that of finding an f-sufficient (or minimal f-sufficient) statistic
for the special type of densities (mentioned above) corresponding to a homo-
geneous set of measures. Application of these results for sufficiency then rests
on Lemmas 3 and 4 and the fact that in applications sufficiency and f-sufficiency
will usually be the same."

TaEOREM 1. For a class of densities f.(x) relative to a fixed measure X on X, the
minamal f-sufficient statistic is the combination of the statistic of selection and the
minimal f-sufficient statistic for a class of densities for which S, is independent of

1 (the carrier independent of the parameter).
Proor. With no loss of generality we can assume US, = X, where the union

is over all u € 9.
We first show the equivalence of the two characteristic functions ¢g,(x) and

¥(T(z), S,), where T(z) is the statistic of selection.
¢s,(x) = 0,1
implies
z ¢8S,, zeS,,
which implies
T@) ¢ 8, T) <8,
which implies
¥, 8,) =0,1.
Hence
¢s,(z) = ¥(T (), Su).
The density function f,(x) can be written as follows:
fu(@) = ¢s,(2)fu(x)
(5.1) = Y(T, Su)fu(x)
= Y(T, Su)fu(x),
where
Ju@) = fu@) if z € 8y,
=gu(@)ifz ¢8,.
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gu(x) is chosen everywhere greater than zero and of a functional form intro-
duced later in the proof; it can as shown in the proof be chosen independent of
u, that is g,(z) = g(@).

The functions f,(x) are everywhere positive and hence the carrier S, is inde-
pendent of the parameter u. The' choice of function g,(zx) or g(x) still has a high
degree of arbitrariness, and will be made in application in such a way as to
facilitate the determination of a minimal f-sufficient statistic for {f.(z)}.

Let T”, T” be minimal f-sufficient statistics for {f,(x)}, {f.(x)}, then

fu@) = gu(T")h(z),
Ju(@) = gu(T")h(=).
Substituting (5.2) in (5.1), we obtain
fu@) = W(T, 8)gu(T")h(2).
Thus (T, T”) is an f-sufficient statistic for {f.(x)}, and we need only establish
that it is minimal.
For the last section of the proof, we shall need to know that T'(x) is constant

valued for all 2 for which 7" has a fixed value. This is true since T is a function
of T':

(5.2)

T =N8S,

where the intersection is over all u e M*(x) = {u|fu(x) > 0} = {u]|g.(T") > 0}.

As in Lemma 1, we study the functions 7”(x) and (T'(z), T”(x)) by consider-
ing the partitions they induce on the space X. Any set of the partition is thus
the set of points for which the function takes a constant value. For the partition
induced by (7,.T”), we shall show that any set is also a set of the partition
corresponding to 7”(x). Thus 7" and (T, T”) can be put into 1-1 correspondence
and hence (T, T”) is minimal f-sufficient.

Let E be any set of the partition of X corresponding to (7', T”); then

E. = {z| T(x) = T@); h(z) > fu(x) = h(@)fu(z’) for all u}
T(zx) = T(x'); h(x) 5 fu(x) = h(x)f.(z") for all u for which
- {x S, D T(x), and g,(x) = h(x)g.(x’) for all u for which S, P T(x)}
T(x) = T(x'); Hh(z) 5 fu(x) = h(z)fu(z") for all u, and
gu(x) = h(x)gu(2") for all u for which S, D T'(z) }
- | #h(z) 5 fu(x) = h(x)fu(a') for all p, and gu(z) = h(z)gu(z’)
(64 = {x for all u for which 8, B T(z) }
(5.4) follows from (5.3) since it was shown above that T'(x) = T(z’) is a conse-
quence of T'(x) = T'(z').
| #R(Z) 5 fu(x) = h(@)fu(2') for all u, and g.(x) =
¥ H h(z)gu(&’) for all u for which S, D T(@) }
= (x| Hh(x) 3 fu(@) = h@)fu(&) for all u},

5.3) = {x
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if g(x), which so far is only restricted to positive values, is given the following
funectional form:

gu(x) = Cu(T)fV,‘(T)(x)

where »,(7T(z)) can be any element.of 9 for which S, D T'(x). Thus E is a set
of the partition corresponding to 7”. This completes the proof of Theorem 1.
As remarked in the proof, g,(z) can be chosen independent of 4, as for example

g9(@) = C(T)funr(2)

where »(T'(x)) can be any element of 9 for which S, D T'(x).

In a recent paper [3] R. C. Davis has investigated sufficient statistics for
density functions on R’ satisfying certain regularity conditions and having the
upper and lower extremities of the range of the distribution depend on the param-
eter. The proofs of necessity in Theorems 1 and 2 in [3] follow immediately from
Lemma 4 and the theorem in this section by noting that in each case the statistic
considered is equivalent to the statistic of selection.

6. Parameter of selection. In the special case in which u acts as a parameter
of selection for {f.(x)}, the following theorem gives explicitly an f-sufficient
statistic. i

TurorEM 2. If u acts as a parameter of selection for {f,(x)} then the ‘statistic of
selection’ 1s the minimal f-sufficient statistic for {f.(x)}.

Proor. Since u is a parameter of selection, f,(z) has the form

fu@) = ¢s,(2)f(2)g ()
= (T, S)f(@)g(u).
Hence T is f-sufficient. By Theorem 1, T is minimal f-sufficient for {f.(z)}.

7. Real-valued parameter. We now consider f-sufficiency when the parameter
is real-valued and is a parameter of selection.

TuEOREM 3. If u is a parameter of selection for {f.(x)}, {S.} are Borel sets and
ordered by C, and S, can be put in monotone 1-1 correspondence with a subset of
R, then there exists a real-valued statistic which is sufficient and minimal f-sufficient
Jor {fu(@)}.

Proor. By Theorem 2 the statistic of selection is minimal f-sufficient, hence
we want a real valued statistic 7% which can be put into 1-1 correspondence
with the statistic of selection. First we define a real valued parameter essentially
equivalent to u.

By hypothesis we can choose 6(u) € R' such that S, C S,» <> 0(u’) £ (")
and S, = S, 0(u') = 0(u”). Since u is a parameter of selection, an equiva-
lent parameter is S, and as is seen above 8 is equivalent to S, . Hence we usethe
parameter 6 to index the densities.

We define T*(z) ¢ R* as follows:

T*(z) = inf 6 for all § having = ¢ Sp .
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Therefore
T*(xz) = inf 6 for all § having T, C S, .

Thus T* is a function of 7. If T* is also f-sufficient then it can be put into 1-1
correspondence with 7' and is minimal f-sufficient. Define ¢*(T*, 6) by

yH(T* 6) = 1 if T* < 6,
0 iT*> 0.
We now prove ¢*(T*(z), ) = ¢(T(z), Ss).

YH(T*(x), 0) = 1

is equivalent to

T*@x) = 0,
which is equivalent to

T(x) C 8y,
that is,
' (T (), Se) = 1.
Hence '

Y (T*(), 6) = $(T'(x), Se).
The densities f.(z) have the following form:
Ju(@) = ¢s4(x)-f(2)-g(6)

= Y(T'(x), Se)-f(x)-9(0)

= Y*(T*(x), 6)-f(x)-9(6).
Therefore T#(z) is f-sufficient and hence by previous argument is minimal f-
sufficient. A more direct proof of this statement could have been made by estab-
lishing the 1-1 correspondence, but the above functional form for f.(x) is de-
sirable for the remainder of the proof.

To prove that T*(z) is sufficient we need only verify that the conditions of
Lemma 4 are fulfilled for the set of densities {f,(z)}. Since the sets S, are Borel
sets, T*(z) is a measurable function. Also ¢*(T%*, 6) is a measurable function
of T*, and f.(x) is integrable. We now verify that f(z) or a modification of f(z)
is integrable over US,; . Take a monotone sequence {6;} such that Sy, — US;.
Let

[ i@a@=a.
01
Choose 7(6;) > 0 such that

(@) _1
~/;;92—S01 7'(01) d)\(x) =%
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and similarly

js f(x) d)\(x) — 6/26—1

0i=805_y T(0im1)
Define .
r(T% = 1 i T <6,
=r@) if 6<T*Z6,
= r(6;) if 0; < T* < 0ipa.

Then

f(x) 1)¢
[ ,, s @) = 200l — @)

Therefore

f@)
150 (T d\(z) = 2e¢.
Therefore the modification of f(z), that is, f(z)/r(T*), is integrable over US; .
The theorem follows by noting that the modification does not affect the factori-

zation needed for sufficiency:

fu(z) = ¢*(T*(2), 6)-g(6) -r(T*(2)) r({l’("iv()x)) .

8. Examples.

ExamprLe 1. Consider the class of all uniform distributions on R' having range
1. Let the parameter 6 be the midpoint of the range. For a sample of n from a
distribution of this family, we look for a sufficient statistic.

The parameter 6 is a parameter of selection. Hence the statistic of selection 7'
is f-sufficient. T is the nth power of the interval obtained from the intersection
of all the unit intervals which contain the n points. It is equivalent to the closed
interval [z , 4] where z;, and z¢ are respectively the least and greatest values
in the sample. Thus z; and z¢ are jointly f-sufficient for 6. It is easy to verify
that the conditions of Lemma 4 are fulfilled and hence z; and ¢ are jointly
sufficient for 6.

ExampLE 2. To a Poisson variable with fixed mean is added an ‘“‘error”” uni-
formly distributed between —u and +u where u < %. Let u be the unknown
parameter. For a sample of n from this distribution, we look for a sufficient
statistic. ‘

This class of distributions satisfies the hypothesis of Theorem 3. Therefore a
real valued sufficient statistic T exists. T is equal to the largest deviation for the
n sample values: the deviation for z; is defined to be the absolute value of the

distance from ; to the nearest integer.
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If we let (x;) be the integer nearest the sample element x;, then

T = _sup | 2 — (=) |.

ExamrLE 3. To a Poisson varlable with parameter m is added an “‘error”’ uni-
formly distributed between —pu and ~+u, where p < 1. Let (m, p) be the un-
known parameter. For a sample of n, we find the mlmmal f-sufficient statistic
and then check for sufficiency.

The statistic of selection 7T is as calculated in Example 2. (We only consider
points in R' for which the coordinates are all > — ). The carrier of the dis-
tribution S, can be defined by

Sy =[{z]|z = @) < u}I™

Therefore

n (”o)

fn,m (x) = ¢5u (x) n(ﬂ) I-.E( )' dm’
We wish to define f, (%) to facilitate the calculation of the minimal f-sufficient
statistic and yet consistent with the functional form prescribed in Theorem 1.
The obvious definition fulfills the necessary conditions:
me?

fl‘»m (x) o ( )| .
The minimal f-sufficient statistic for {f.m(z)} is 2. (z).
By Theorem 1 the minimal f-sufficient statistic for {f,,m(x)} is

[_ sup | & — (@) |, g(&):’-

i=1,cc0n

Since the conditions of Lemma 4 are easily seen to be fulfilled, the above statistic
is also sufficient.
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