AN OPTIMUM SOLUTION TO THE k-SAMPLE SLIPPAGE PROBLEM
FOR THE NORMAL DISTRIBUTION!

By Ebwarp PauLsoN
University of Washington

0. Summary. A slippage problem for normal distributions is formulated as a
multiple decision problem, and a solution is obtained which has certain optimum
properties. The discussion is confined to the fixed sample case with the same
number of observations from each distribution, and the normal distributions
involved are assumed to have a common but unknown variance.

1. Introduction. This paper will consider the problem of how to compare %
categories, such as k varieties of wheat, k machines, k teaching methods, ete., so
as to decide on the basis of a random sample of n observations with each cate-
gory whether or not the categories are equal, and if not which is the ‘best’ one.
A problem of this type has been discussed by Mosteller [1] for the nonparametric
case. In previous papers [2], [3], we had considered some different types of
multiple-decision problems arising in the comparison of % categories, and the
emphasis had been on studying the distribution problems involved when the
statistical procedures used were suggested by intuitive considerations. In this
paper we will be primarily concerned with finding a statistical procedure which in
some reasonable sense is an ‘optimum’ one.

In this paper we will restrict our attention to the case where the n observa-
tions i, T2, +** , sy in the ith category II; are assumed to be normally and
independently distributed with mean m; and a common standard deviation
o, and the best category is (for convenience) defined to be the one associated
with the greatest mean value. Let D, denote the decision that the ¥ means are
all equal, and let D; (j = 1,2, - -, k) denote the decision that D, is incorrect
and m; = max (my, ma, - -+, my). Our problem is to find a statistical procedure
for choosing one of the k& + 1 decisions (Dy, Dy, - -- , Dy) which will be in some
sense an optimum one. At this point, instead of introducing a weight function
as required in the general theory as developed by Wald [4], we will follow a
simpler plan which is somewhat analogous to the classical Neyman-Pearson
theory of testing a hypothesis, and attempt to find a statistical procedure which,
subject to certain restrictions, will in certain instances maximize the probability
of making the correct decision.

In order to give a more precise formulation and the solution to the problem
let x;, denote the ath observation in the sample from II; (z =1, 2 , k;

=12 ---,n),let & = Zu=1 (Xsa/n), & = Zz_l (&/k), s = Zz=1 Za==1
(x.-,, — a':i)2/ [Ic(n — 1)], and let M be the subscript of the category with the
greatest sample mean, so that £, = max {Z;, %, -, &x}. We will say that the
category II; has slipped to the right by an amount A (A > 0) if my = m, =

1 Work done under the sponsorship of the Office of Naval Research.
610

I8 ()
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%}ﬁ
The Annals of Mathematical Statistics. IIEGIE ®

WWw.jstor.org



k-SAMPLE SLIPPAGE PROBLEM 611

© =My = Migq = --- = my and m; = my + A. The first formulation of the
problem is the following: to find a statistical procedure for selecting one of the
decisions (Dy, Dy, - -+ , Di) which will maximize the probability of making the

correct decision when some category has slipped to the right subject to the re-
striction (a) when all the means areé equal, D, should be selected with probability
1 — « (where « is some small positive number fixed in advance of the experi-
ment). In this formulation, the class of allowable decision procedures seems to
be too large to admit of an optimum solution and we will, therefore, limit the
class of allowable statistical procedures by the following additional restrictions.
(b) The decision procedure must be invariant if a constant is added to all the
observations, (¢) the decision procedure must be invariant when all the observa-
tions are multiplied by a positive constant, and (d) the decision procedure must
be symmetric in the sense that the probability of making the correct decision
when category II; has slipped to the right by an amount A must be the same for
1= 1,2, .-+, k These additional restrictions are rather weak and seem to be
reasonable requirements to impose in many practical problems. The problem is
now reformulated as follows: to find a statistical procedure for selecting one of
the set (Do, Dy, ---, D,) which, subject to restrictions (a), (b), (¢) and (d),
will maximize the probability of making the correct decision when one of the
categories has slipped to the right. The optimum solution will be shown to be the
following procedure:

if kn(?l — 5 > A, select Dy ;
55 e
M n(Zy — )
if Pa— = g, select Dy.
iZ=:1 aZ=l (Xia — 2

Here )\, is a constant whose precise value is determined by requirement (a), and
does not depend on A or ¢. Since for a given k and n the value of N\, depends
only on «, the optimum property of (1) holds uniformly in A and o.

2. Derivation of the optimum procedure. There is obviously no loss of generality
in only considering statistical procedures which depend on the set (%, &, - -,
&, §°) since these constitute a set of sufficient statistics for the unknown param-
eters (my, mg, -+, mi, o). Making use of this in connection with restrictions
(b) and (c) it is easy to see that any dllowable decision procedure will depend
only on the k—1 statistics (#; — #)/s, (8o — Zx)/s, -+, (Fr—y — Tx)/s. Let w, =
(Zo — Zx)/sand let a, = (M, — my)/o fora = 1,2, ---, k—1. The joint prob-
ability distribution of the set (wy, ws, - - - , wr—1) depends only on the parame-
ters (a1, @z, -+ , Gx—1). Let D, denote the decision tha a; = a3 = -+ = a3y =
0,and for 1 £ j < k — 1 let D; denote the decision that a; = az = -+- =

@j1 = Qjy1 = -+ = @1 = 0 and a; = A/s, while D, denotes the decision
that @y = a2 = -+ = @43 = — A/o. Since any allowable decision procedure for
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selecting one of the set (Do, D1, ---, Di) must be a function only of (w;, w:,
-+, W) it can be transformed in a natural manner into a decision procedure
for selecting one of the decisions (Dy, Dy, - -+, D) by making D; correspond
to D;fori = 0, 1, 2, ---, k; that is, whenever the original decision procedure
selects D; the transformed decision procedure is to select D; . Because of restric-
tion (a), the probability that any transformed allowable decision procedure will
select Do when a; = @ = -+- = ax_; = 0 will be equal to 1 — «; in addition
the probability that any allowable decision procedure will select D; when II;
has slipped to the right by an amount A is equal to the probability that the
transformed procedure select D; when D; is the correct decision, and this last
probability must be the same for each 7 because of restriction (d).

The proof that (1) is the optimum solution consists mainly in showing that

for any A and o there exist a set of nonzero a priori probabilities go, g1, - , g
which are functions of A and o so that when (1) is transformed in the manner
indicated above into a decision procedure for selecting one of (Do, Dy, - -, Dz),

it will maximize the probability of making the correct decision among the set
(Dy, Dy, -+, D) when g, is the a priori probability that D; is the correct de-
cision. Assuming this has been demonstrated, it follows easily that (1) must be
the optimum solution. For suppose there existed an allowable decision procedure
D*, which for some A and ¢ had a greater probability than (1) of making the cor-
rect decision when some category had slipped to the right by an amount A.
Then D*, which must be a function only of (wi, ws, -+, Wk—1) When trans-
formed in the indicated manner into a decision procedure for selecting one of
(Dy, D1, - -+, Dy) will have a greater probability than (1) of making the cor-
rect decision among (D, , D, , - -+, D;) with respect to any set of non-zero a
priori probabilities, which would be a contradiction.

To show that the required a priori distribution exists, first let 4o = (o — &)/c
(a=1,2, -+ ,k — 1) so that we = (uao/s). The random variables (u1, us, - - -,
ue—1) can easily be verified to have a (¢ — 1) dimensional multivariate normal
distribution with common variance = 2/n, common correlation = %, and mean

values (a;, as, - -+, ax_1). By an elementary calculation, the joint probability
density function of uy , us, - -+ , wz— isgiven by Crexp [—3{4 b (e — aa)? +
BY ats (e — Ga) (us — ag)}] where 4 = ((k — 1)n/k), B = —n/k, and C,

is a constant whose precise value is not needed. Using this result plus the known
facts that n’s’/o” has the x° distribution with n’ = k(n — 1) degrees of freedom
and is independent of the set u;, us, -+, ux—1, the joint probability density
function f(wy, we, -+, we1) Of wy, « -+, we is easily found to be given by

o k—1
floy, wyy - ey wie) = o fo Y exp [ {n’ ¥+ A4 2;1 (Way — aa)*
(2 =
+ B Zﬂ (Way — aa)(wsy — aﬁ)}] dy.

Let fi = f(wy, -+, wer | D;) denote the joint probability density function of
wy, -++, w_1 when D, is the correct decision. The decision procedure which
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will maximize the probability of making the correct decision among the set
(Do, Dy, -+, Di) when the a priori probability distribution is (po, p1, P2,
-++, D), that is, the Bayes solution with respect to (po, p1, - -, P&), is known
[4] to be given by the rule: for each j (j = 0, 1, - - -, k) select D; for all points
in the wy - :-wi_; space where p;f; = max {pofo, if1, - -+ , Pufi}. For the prob-
lem at hand, this is the unique Bayes solution except possibly for a set of measure
zero according to all f; . Using (2) it is easy to calculate for each j the region
where D; is selected for the special a priori distribution po = (1 — kp), ;1 =
p; -+ = pr = p. For example the region where D, is selected is given by the
points in the w space where f; > fo, f1 > f3, - -+, f1 > fi, and pfi > (1 — kp)fo.
For any j with 1 < j < k, the region where f; > f; is given by

k—1
n'+k— A?
-/o y +k—2 exp [—%-(n’ yz + Ayzzl wi + By2 %"ﬁ‘ waws + A =
k—1
—2B é Y Z wa)]
q a=1
-{exp [Aé ywy — Béywl] - éxp[A 8 s — Béywj]}dy > 0.
g g g - g
The integrand is positive for all y in the range 0 < y < o if wy > w;, and the
integrand is negative for all y in this range when w; < w;, (since A — B > 0)
so that fi > f;for 1 < 7 < k if and only if w; > w; . In a similar manner, it is

easy to show that f; > fi if and only if w, > 0. The region where pfi > (1 — kp)fo
is given by

© 2 k—1
f y" 7% exp I:— v (n' +A4> wi+BY wawﬁ>]
0 2 a=1 aif

(oo (=48 oo {i1 -1 2 52E w) o] -1 i)} ar

a=1

Making a change of variable, this region is equivalent to
@ 2 2
f "2 exp (— ¢ p exp (— A—A—> exp [é R(wy, we, + -+, We—1) t]
o 2 20? g
-1 - kp)} dt > 0,

where

k—1
(4 = Bwi + B X w.

a=1

F—1 :
4/n’+AZwi+BZwawg

a=1 P

h(wy, we, -+, We—1) =

.The integrand on the left hand side is for all { a monotonically increasing function
of h(wy, -+, wk_1), 0 the region where pfi > (1 — kp)fo must be of the type
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h(wy, - -+, we—1) > L where L is a number which depends on A/¢ and p. The
other regions can be calculated explicitly in a similar manner, and the Bayes
solution is the following procedure: for 1 < j < k — 1 select D; if w; > 0 and

w; > max (Wi, -, W1, Witw, *** , Wr-1) and
k=1 Tl '
(A—B)w,-+Blea>L w4+ A2 w+ B wows;
a= a=1 a#fp

select Dy if w; < Oforj = 1,2,---,%k — 1 and

k—1
[—A =Bkt =21 X we >LVW + AD w:+ B, waws;
a=1

otherwise select D, . Define the function F(p) by the equation

F(p) = ‘[o "2 exp (—g){p exp <_i;§> exp <% Au‘.) - (1 - kp)}dt,

where A, is the constant used in (1). It is obvious that F(p) is a continuous func-
tion of p with F(0) < 0 and F(1/k) > 0. Hence there exists a value p* with
0 < p* < 1/k which is a function of A/ so that F(p*) = 0. Once the Bayes
solution relative to (1 — kp, p, p, -+ - , p) has been worked out, it is obvious
that to get the Bayes solution relative to (1 — kp*, p*, ---, p*) it is only neces-
sary to replace L by N\, . If we now substitute w; = (x; — xx)/s and replace 4
and B by their values, we find after some algebraic simplifications that the
Bayes solution relative to (1 — kp*, p*, - - -, p*) reduces to (1) when D; is made
to correspond to D; . Since (1) is an allowable procedure, this proves that it is an
optimum one.

3. The calculation of A,. The calculation of the exact value of A, required in
order to have P{n(Zxy — %) > XNaV/' D> % 3", (z;; — £)?} = « when all &
means are equal will be extremely difficult until tables are made available, and
therefore some approximation is required at present. For this purpose let A4;
denote the event [n(Z; — %) > NaV/Y %, > %, (x;; — %)) S0 that

Pin@u — 2) > NV 30 (@ — )7}

will be equal to the probability of the occurrence of at least one 4; (2 = 1,2, -- -,
k). The approximation to be suggested is of a familiar type, and consists in
determining \, so that P(4,) = «/k. For this purpose, it is clearly legitimate to
takemy = mg -+ = m = 0Oand ¢ = 1. Next, lety; =& (G = 1,2, -+, k)
so that {y,} constitute a set of independent and standardized normal variables,
and let § = (D%~ y:/k). Then

PUd = P{n=7> 0 4/ 5 oy - 0 + 3 - )

1=1 j=1
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Now we introduce an orthogonal transformation given by

k

2 U

i=1
t1_1

T VE

k
2y — (k—r+ Dy
f = —= . r=23.,k
Vk—r+ 1)k —r+2)

The new variables ¢, -- -, & also constitute an independent set of normally
distributed random variables with zero means and unit variances and are ob-
viously independent of D_5—y D 71 (z:;; — %:)°. We now have

Pl 0> Gy E R e w + )

- {(’“ Dg s -—(flc.: 3 @y - &) + if)}

=1 j=1

E—1 :
= P{(T k)i >,
2

where n”’ = k(n — 1) + &k — 2 and x2 = Doy Do (xy — &)+ Z,=3 t:
has the chi-square distribution with n’’ degrees of freedom and is independent
of & . If F, is used for the value of the F distribution with n; = 1 and ns = n”
degrees of freedom which is exceeded with probability 2a/k, it is a simple matter
to verify that the desired approximation is given by

. = 1/ n(k — 1)F,
=V ERF R

If A, is determined by the above formula so that P(4,) = «a/k, it follows at
once from Bonferoni’s inequality [5] that the probability of not selecting D,
when all the means are equal will be less than « by an amount which cannot
exceed 1k(k — 1)P(A14.). This quantity is still difficult to evaluate, but in the
limit as n — o, 1k(k — 1)P(A4,4,) can be obtained from tables of the normal
bivariate distribution, and is easily shown to be less than 14 for n large enough.
Even for small n it seems plausible on an intuitive basis that this bound will be
small for values of & ordinarily of interest (say a < .05), although further inves-
tigation on this point would obviously be desirable. In any event, if the approxi-
mation Ao = V/n(k — 1)Fo/[k(n” + Fo)] is used, it can be asserted that for any
n the probablft‘jr f not selecting Dy, when all the means are equal is less than
a, and f20r large n the difference between the true probability and « will be less
than i«

P(Ay)
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