CONTRIBUTIONS TO THE STATISTICAL THEORY OF COUNTER
DATA!

By G. E. ALBERT AND LEWIs NELSON
Unaversity of Tennessee and Oak Ridge National Laboratory

Summary. A new mathematical model is proposed for the action of counters
such as the Geiger-Mueller or the scintillation counters. It is assumed that after
each registration the counter is inoperative for a time interval of random length.
The distribution of lengths of the inoperative periods is so defined that the Type
I and Type II models familiar in the literature on counters are special cases.
More important, it also allows an action that is a compromise between those
two types. Assuming that the sequence being counted is a Poisson process with
mean rate of occurrence mT, m > 0, in an arbitrary interval of length T, the
process generated by the counter is discussed and rules are established for ob-
taining confidence intervals for the parameter m from various types of count-
ing experiments.

1. The counter selection principle; formulation of the distribution problem.
A counter observes a segment of a sequence {f} of events f1, f2, f3, --- that
are randomly spaced on the positive time axis, ¢ > 0. Due to an inherent re-
solving time, the instrument may fail to record all of the events of {f} that
occur during the interval of observation. Thus the recorded events (registrations
by the counter) form a second sequence {g} of events ¢, , g2, g3, - -+ also ran-
domly spaced in time with a distribution law that depends upon that of {f}
and upon the mathematical model used for the action of the counter. Thus, a
precise rule for the selection by the counter of the sequence {g} from the sequence
{f} must be specified. Two such rules have received attention in the literature
on counters. Briefly, they are as follows.

In a Type I counter there is a fixed resolving time » > 0 such that an event
of {f} is selected for {g} if and only if no event of {g} has taken place during
the preceding time interval of length u. In a Type II counter the resolving time
is random and specified by the rule that an event of {f} is selected for {g} if
and only if no event of {f} has taken place during the preceding time interval
of length u.

In a Type II counter an event of {f} that occurs while the counter is locked
prolongs the locked period. In theory the counter can remain locked indefinitely.
This is not true of a Type I counter. It has been recognized by some authors on
this subject that actual counters select {g} from {f} in some manner that is a
compromise between the types I and II rules; (Feller [2]). Such a compromise will
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10 G. E. ALBERT AND LEWIS NELSON

be proposed and used in this paper. It includes the above rules as special cases.
Briefly, it will be assumed that the Type II rule holds with the exception that an
event of {f} that occurs while the counter is locked may or may not prolong the
locked period subject to chance. This will be made more precise in the following
abstraction.

General rule of selection. Specify a positive number « and a number 6 in the
range 0 < 6 < 1. A sequence {f} of events is assumed generated on the positive
time axis by some (physical) stochastic process. The successive events of {f}
will be denoted by f1, f2, f3, - -+ . A subsequence of these, fu, , fes » fos» *** »
will be selected to be the respective elements g1, g2, g3, - - - of {g} according
to the following:

(1) The event f; is selected as gy ; that is, ky = 1.

(i1) Following each selection of an event fi, as g., there is a time interval
7n , 10 be defined in (iii), during which no further selection for {g} may be made.
That event of {f} first following g, by time at least 7, is selected as gn.41 . That
is, k.41 1s the smallest integer such that the time interval between fi, and fi,.,
is of length 7, or more.

(iii) The time 7, is random in the range 7, = u > 0. It is selected as follows.
From the segment of the sequence {f}

(1 Jin s Frntts Jrgaz, =0

choose a subsequence {f™} whose elements are as follows. The first element
fi, of (1) is the first element fi” of {f*}; the succeeding events of (1) are con-
sidered in succession and independently as candidates for {f™}. Each is either
selected or rejected for {f™} with probabilities 6 and 1 — 6 respectively. Let

™ be the first element of {f™} such that the time interval between f{” and
f4 is w or more in length. The time r, is defined to be the sum of u and the
time from fi™ to f{™. (Observe that f{}] is not necessarily the element g,4; defined
in (if) above.)

Note that if 8 = 0, the sequence {f™} consists of the single element f;, . Thus,
7. = u and the general rule reduces to the Type I rule. If 8 = 1, {f™} is the
sequence (1) and the general rule becomes the Type II rule. Other values of 6 lead
to a compromise between those two rules.

Some notations will be needed before proceeding. Probability functions and
cumulative distributions and their dependence upon parameters and conditions
will be denoted as in Cramér [1]. Let S;, Sz, -+, S., - - - denote the times of
occurrence of the successive events of {g}. From the standpoint of a counter,
each of the intervals S,;; — S, ,n = 1, is the sum of two parts, a time 7, during
which the counter is inoperative following the occurrence of g, and a time 7',
during which the counter is ready to make the next selection g,41 . Thus,

(2) Sn+1_Sn=Tn+Tn, n;l.

It is implicitly assumed in the rule of selection that the counter is unlocked at
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time zero. To complete the above notations, let Ty = 8, . Define the quantities
EnsMns$n by

n—1

&L= Z T;,
J=0

3 n-1
®) Mr =2, (mi—w), n=2 =0

=
?n = Sn - (n - l)u

Actually a counter generates only a segment of the sequence {g}; that is, a
counter observes {f} only during some finite time interval 0 < ¢ < T. Two types
of intervals of observation are used in practice. The number T' may be the random
time Sy where N is some preassigned integer or T may itself be preassigned. The
first case will be designated as a fized count experiment. The distribution function
of interest is

4) Hy(t) = PGn=¢), t>0.

The second case will be designated as a fized time experiment. Here the number
n(T) of events g1, g2, -+ , gnery Of {g} that occur in 0 < ¢ < T is a random
variable with a distribution function

(5) P[n(T)éN)TL N=0)1y27"')
which may be expressed in terms of (4). Let P, = P[n(T) = k; T}, k =
0,1,2,---.Clearly, P, = P(S; > T) =1 — H(T) and fork = 1, P, =
PSS £T,8u>T;T) = Hi[T — (k — Du] — Heu[T — ku]. It follows that
(6) P[n(T) = N; T] =1- HN+1(T - Nu)

Thus the determination of the function (4) solves the distribution problem for
either type of observation interval.

2. Calculation of the distributions for a Poisson case. Two general theories
have been given in the literature for the treatment of a distribution problem
such as that in hand; see Feller [2] and Malmquist [7]. Malmquist introduces
certain auxiliary distributions which the present authors feel are extraneous to
the counter problem. Feller presents a simple, elegant theory based upon opera-
tional calculus. His method will be followed here.

It will be assumed that the time from an‘arbitrary point A on the positive time
axis to the first event of {f} that follows A is a random variable with cumulative
distribution

) F(t;m) = 1 — exp(—mi), m > 0 constant,

and that any number of such intervals which are nonoverlappling in pairs, form
a set of independent variables. It follows that the 2N-1 terms on the right in
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8) §'N=§Tj+;:(‘rj—u)

form a set of independent random variables. The 7T'; in (8) all have the same dis-
tribution P(T'; < ¢; m) = F(t; m) and the 7; — u have a common distribution
P(r; — u = t; m, §) = G(t; m, ) which must be determined by application of
the general rule of selection.

The Laplace-Stieltjes transform is a convenient operational tool for the deriva-
tion of the distribution of the sum of independent nonnegative random variables.
Define the transforms

o(s) _{ ) lexp(—st)] dF (¢; m),

9 ¥(s)

fo i [exp(—st)] dG(t; m, 6),

xn(s) = fo i lexp(—st)] dHx(t; m, 6).

where the dependence of Hy defined in (4) upon the parameters m and 8 has been
put in evidence. By well known rules

(10) xv(s) = [ ("
By (7) the transform o(s) is (1 + s/m)" so that
(11) @I = 1 + s/m)™".

The inverse of (11) is known:
mN ¢ N
(12) Fultm) = o fo [exp(—ma)]e™" dx.

In order to find ¥(s), the following lemma concerning part (iii) of the general
rule of selection is needed.

LemMa. Let n and v be arbitrary integers and I an arbitrary time interval of
length t; . The probability of the occurrence of exactly v events of the sequence
{f} in the interval I is

(13) P(v) = exp(—mbt;)- (mbt;)’/v!.

The proof is well known since the distribution of the number of events of
{f™} in I is the compound distribution of the Poisson probability {exp(—mi,)!
(mt;)"/u! for the number u of events of the sequence (1) in I and the binomial
probability (3)8°(1 — 6)*"” for the number » of those u events selected for {f™};
(see Feller [3]). ’

Let A denote the random interval length between successive events of the
sequence {f™}. By (13) the probability that at least one event of {f*”} occurs
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in the interval (0, ¢) is 1 — exp(—mt#). Thus the conditional distribution of A
subject to the condition A < u is

, L—exp(=mdt) o o
(14) PQA=t|A'<u;m,0) = {1 — exp(—mbu)
1,{ = u

The transform of (14) is

(15) ml{l — exp[— (md + s)u]}/[1 — exp(—mbu)]-(mb + s).
In the sequence {f} suppose that exactly k successive events fl("?, ™o
™ occur separated successively by times less than u and that i succeeds fim

by time u or more. The probability of such an occurrence is
(16) 1- exp(—m()u)]kexp( —mbu)

and by the general rule of selection, the conditional distribution of r, — u subject
to the above occurrence is the k-fold convolution of (14). It follows that the
transform ¥ (s) is the sum over k = 0, 1, 2, - - - of the product of (16) by the kth
power of (15). This summation readily gives

17 ¥(s) = (mb + s5)-exp(—mbu)/{m0-exp[—(mb + s)u] + s}.

For more detail in the above argument, see Feller [2] where the case § = 1 is
treated. In deriving (17), it was assumed without mentioning that § > 0. The
result persists for § = 0 since in that case it reduces to ¥(s) = 1 which means
that P(r, = u) = 1 in agreement with the Type I rule of selection.

Inversion of the transform [¥(s)]" /s gives the cumulative distribution
Gr_1(t; m, 8) of ny_; defined in (3). The result is

Ganca m,0) =expl— (N — Dmau] 3 (—1)"(

ot & (V7

N-2+4n
n

(18)

where M is the largest integer such that Mu < .

It is interesting to note that Raff [8] has used a special case of (18) as a waiting
time distribution in a certain traffic problem.

By (10), the convolution

(19) Hy(t; m,0) = ft Fu(lt — z; m) dGy_y (x; m, )

using (12) and (18) gives the distribution function (4). The results of the con-
volution (19) are so complicated as to be almost useless. In performing the
integration, it must be noted that Gw_; is discontinuous at ¢ = 0 and that the
integral is in the Stieltjes sense. Taking these facts into account, it will be con-
venient for later purposes to write (19) in the form
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Hyx(t; m, 0) = exp[— (N — 1)mBu]Fx(t; m)
+ [1 — exp{—(N — 1)m6u}]Qx(t; m, 6)

where Qn(t; m, ) is the conditional distribution of ¢y subject to the condition
that nv_1 > 0. The acutal form of @y will not be used in the sequel. The interested
reader can easily calculate it.

In the case of a Type I counter, § = 0 and the right member of (20) reduces to
(12). If 6 > 0, but (N — 1)mu is small, (20) is approximated by (12) so that the
counter behaves nearly like a Type I. Whether or not the accuracy of the ap-
proximation is sufficient is a matter of judgement for the individual reader. The
remarks following Theorem 3 in Section 5 below give further aid in such judge-
ment. The asymptotic results derived in the next section apply to cases in which
N/mu is large.

(20)

3. Asymptotic percentage points of Hy(t; m, 8). Let p be an assigned number
in the range 0 < p < 1 and define the percentage point ¢, by means of

1) P = P~ = ty;m, 6) = Hy(ty; m, 6).

Exact calculation of ¢, appears feasible only in cases where Hy reduces to (12).
Define the parameters

(22) M = mu, A= N/M.

In a well designed counting experiment A will usually be quite large. Under this
condition approximate normalization of Hy is permissible for the calculation of
ty .

The distribution function of the random variable m{y/\ will be denoted by
Hy(t: m, 6). Its transform is given by

(23) xw(s) = xn(ms/\)

where (10) is to be used on the right. The cumulants of the distribution HY are
readily found from (23) on inserting (11) and (17) in (10). They are

=M+ M\ — 1)) (™ — 1 — M),
Kk = (r — 1! [M)\"' — (Mx — D)™

. {1 - Z r —-L)—' (— Mo~ e"'""}], r> 1.

p i B (R

(24)

Let x, and t* be defined by

p = (2" f pexp (=32 dx = Hy(k, + &3t5; m, 0).

Also, define the constants I, ,r = 1,2,3, -+, as

(25) L=0L=0 I =/ r

(1%
o
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An application of .the formula (6.75) in Kendall [5] gives
2
26) £ =1, + lg @ -1+ é—4 (@5 — 3a,) — ;—; (225 — 52,) + OO™").

Only a part of Kendall’s formula has been retained. The interested reader may
obtain the terms of orders O(A™**) and O(A™®) on recognizing that Kendall’s
symbols x and ¢ are respectively the ¢% and x, of (26). (The reader should be
warned that the reference formula contains several misprints in the third edition
of Kendall’s book.) The percentage point £, defined in (21) is given by (26) and

(27) mi,/N = Kk + k3 L.

4. Confidence intervals for m; Type I counter. The general methods to be em-
ployed in this section are described in Cramér [1] and Kendall [6].

The object of most counting experiments is the estimation of the mean rate m
of occurrence per unit time of the events of the sequence {f}. The fundamental
resolving time u of the counter is usually regarded as known; it will be small.
For radioactivity counters u is of the order of magnitude of 10~ to 10™® second
depending upon the refinement of the counter. It will be convenient to establish
confidence intervals for the parameter M defined in (22).

A precise argument can be given establishing confidence intervals for M for a
I counter. The argument is difficult to make precise for a general type of counter.

In a great many counting experiments the product (N — 1)mu will be small
enough that (20) may be regarded as essentially equal to (12); that is, that the
counter is of Type I. In this case the percentage point ¢, defined in (21) is given
by the exact equation

2mt.

2 p=ora ), lew(—30] - (" ae

It will be recognized that 2mt, is the percentage point of the chi square distribu-
tion with 2N degrees of freedom. In this case (26) and (27) give

(29) Mt, = Nu{l + z,/N* + (z% — 1)/3N + (&% — 7z,)/36N"*} + O\ 7).

Clearly, ¢, is a monotone decreasing function of M ; let this dependence be de-
noted by ¢,(M).

Suppose now that the counting experiment is of the fixed count type. Then N
is assigned and ¢ is the observed random variable. The equation

(30) tp(Lp) ={N

defines a new random variable L, such that, no matter what the true value of M
s,

31) P(L, < M;M,0) =1 — p.
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Let p: and ps, p1 < p:, be two values of p. By (28) ¢,, < t,, and by (29) and
(30) L, < Ly, . It follows by well known rules of probability theory that

P(LPI<M<LP2;M10)=p2—p1'

This proves

TueorEM 1. (Type I counter; fized count experiment.) Let N be an assigned
tnteger and p:, p: assigned probabilities with O < py < p. < 1. An interval of
100 (p; — p1) percent confidence for M = mu s given by

(32) ‘ L, <M< L,
in which the L, are defined by
Lty = Nu{l 4 2,/N* + (&} — 1)/3N + (2, — 7x,)/36N""*}

(33)
+ O()‘.—l)y P =D, P,

and where ¢y 18 defined by the last equation in (3).

Continuing with the Type I rule of selection (§ = 0), suppose that a fixed time
experiment is to be used in counting. Since the random variable n(T) of this
case is discrete valued, exact pereentage point functions analogous to the ¢,(M)
defined in (28) are not obtainable. The following procedure is based upon per-
centage points for n(T) in terms of M so chosen that the confidence intervals
derived from them have confidence levels greater than or equal to p; — p;,
the inequality on the probability being as close to an equality as is possible.

Assign pyand p2, 0 = p1 < p2 < 1, and let two functions N,; (M) ,7 = 1, 2,

be defined as follows. Let N,, (M) be the smallest integer such that
(34) P{n(T) 2 N,,(M); T, M} < p

and let N,, (M) be the largest integer such that

(35) P{n(T) 2 Np(M); T, M} Z p2.

These functions are the analogues of the percentage points t,, (M) used in the
previous case. It will be shown presently that (29) may again be used. By (6)
and the Type I assumption, for any integer N = 1,

P{n(T) 2 N; T, M} = Fy{T — (N — Du; m}
2m [T—(N—1)u]

36
(36) = m,—(lﬁ fo exp (— 32)(32)"™" dz,

and P{n(T) =z 0; T, M} = 1. Using the integral (36), define two sequences
MP, k=0,1,2, -+ ,7 = 1, 2, by the equations

M =0,i=1,2,

37 )
7 pi=Pln(D) 2 kT, M), =12 kzL
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It is clear from the integrals involved that for each pair (7, k), Mk 9 < MY and

forany k = 1, M’ < M. 2 It follows at once from the definition (34) that

(38) N,(M) = kif ME, < M £ MY, k=1,23, -
and similarly from the definition (35) that
(39) NpM) = kit MP = M < M&,, k=0,1,2 .

These two functions are monotone nondecreasing in M ; the first is continuous on
the left and the second continuous on the right. They are the stairstep percentage
point functions familiar in the theory of confidence intervals for the parameter of
a discontinuous distribution.

Define two new random variables as functions of n(T) as follows: if n(T) = k,
k=012,
L3,[n(TY = M{°

L3.n(T) = M.
Let = be an arbitrary number in the range M®, < 2 £ M®. The inequality
L3, < = is equivalent to n(T) < k — 1. Thus, by (38), P{L}, < z; T,M} =
P{n(T) £k —1;T,M} =1 — P{n(T) = N, (x); T, M} for z in the above
range. For an appropriate integer k, one may choose x = M whatever M may be.
Then by (34)

(40)

P{L}, < M;T,M} 21— p

whatever M may be. Now let x be arbiti‘arily chosen in the range M P <<
M2, . By asimilar argument P{L}, < z; T,M} = 1 —P{n(T) Z N,,(z); T, M}.

Again, using * = M with an appropriate choice of k, (35) shows that
P{LL < M; T, M} <1 -p

regardless of what M may be. It follows that
P{LY, < M<L3,;T,M} Zp.—p1.
This proves
TuroreM 2. (Type I counter; fixed time experiment.) Let an interval of observa-

tion0 < t < T beassigned and let 0 < py < p2 < 1. A confidence interval for the
parameter M = mu for confidence level at least 100 (p: — p1) percent is given by

(41) LY <M< L},

where the limits are the random variables defined by (40) and (37). (Results similar
to this are given for the Poisson distribution by Garwood [4] and for the binomial
distribution by Kendall [6]. It seems to have gone unnoticed that strict in-
equalities are obtainable.)

Practical calculations of the confidence limits (41) are effected as follows. Com-
parison of the integrals (28) and (36) indicates that an asymptotic formula for
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M3 is obtained by equating the quantity M{’-[T — (N — 1)u] to the right
member of (29) with p replaced by p; . Thus the limits (41) may be obtained from
(33) with the following changes. First replace ¢~ in (33) by ' — (N — 1) » and
then replace N throughout the resulting equation by n(T) to obtain L}, and by
n(T) + 1 to obtain L}, . Example 2 of Section 6 illustrates this computation.

Central intervals (p; = 1 — p,) obtained from Theorem 1 are optimal in the
sense described by Kendall, [6] sections 19.10 through 19.12. Whether or not this
is true for Theorem 2 is not clear to the authors. In Theorem 1 the random vari-
able ¢y defined in (8) reduces to the sum of N independent quantities T';, j =
0,1, ---, N-1, whose common probability density is the derivative m-exp(—mt)
of (7) on t > 0. The likelihood L = m"exp(—2,}= T;) of the T; satisfies the
conditions of the above reference. It follows from Kendall’s discussion that the
central confidence intervals (N/¢x)(1 =% z,,/N?*) for m are asymptotically (rela-
tive to N) shortest on the average in a general class of intervals obtained by use
of the central limit theorem. These optimal intervals agree asymptotically with
the results of Theorem 1.

6. Confidence intervals for m; general counter type. Precise proofs of theorems
analogous to Theorems 1 and 2 for the case of the general counter model would
be very difficult. The distribution (19) being regarded as unusable, the entire
argument must be based upon the asymptotic formulas (26), (27) for the per-
centage points ¢, of (19). The vague nature of the error estimate in those formulas
prohibits precise arguments and results. Further formal manipulations for which
no general error estimate seems possible will be introduced presently.

Consider the general counter type. The formula (29) used in connection with
the Type I counter will be replaced by

(42) Mt, = Ml + &5 £3)

in which ¢} is given by (26) with the full forms of the cumulants (24) used. In
this case, since 6 > 0, the ratios (25) depend upon M in a complicated manner.
Indeed, the dependence of the right member of (42) upon M is so formidable as
to make the formula almost useless for any general considerations. A simplifica-
tion of (42) will be given below for small values of M. In most well designed
counting experiments M will be quite small; the experimenter has some latitude
in the choice of values of u to effect this. The restriction M < 0.1 will not exclude
many experiments; for example, in radioactivity counting with the best available
counter, v = 10~° second and the restriction amounts to the requirement that
the source emit no more than 10" particles per second in the direction of the
counter. Fairly extensive numerical calculations of ¢,(M) performed by the
authors indicate that an expansion of the right member of (42) as a series of
powers of M retaining powers through M* gives a simple formula for ¢,(M) that
should be accurate to within one tenth of one percent in most cases provided that
M = 0.1; the error decreases rapidly as M tends to zero. The case M > 0.1 will
be mentioned briefly later.
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The cumulants (24) are readily expressed as power series in M :

=M@ — DN+ (M= 1)) f) AL (M),

n=r4-1

AL = (rl/n)) Z_f (—1)* /"> -B™, r=123,---.
k=0 \k
By formal ma,nipulations of these series one reduces (42) to
(44) = (@ + oM’ + &M’ + aM' + -+ } 4+ 07
where the coefficients a; are given by
@ = Nu{l + z,/N"* + (&} — 1)/3N + (a} — 7z,)/36N""},

43)

= (N — 1)ud/2,
=N L W — DUy oy g/NY — 203 — 1)0/3N
(45)
+ (1323, — 192,)6/36N*?},
(N — Du

(63/4 + z,6°/N'* + (3 — 80)0(z, — 1)/12N

as =

6
+ [(130 — 12)z — (199 — 30)x,]6/36N**}.

To within the accuracy of the terms retained in (44) and (45), the derivative of
t,(M) will be negative over the entire range 0 < M =< 0.1 provided that a; and a3
are positive and

(46) a1 + 0.2a; + 0.03a; < 100a, .

If this is satisfied, {,(M) will be a monotone decreasing function of M in the
indicated range. For instance, it is easy to show that (46) is satisfied for all values
of 6in 0 < 0 £ 1if z, and N satisfy 1 £ 2%, < N/4. The investigation required
by a given case is easily made.

Writing (44) in the form

—ay = LM + oM’ + M’ + aM* + -

standard inversion formulas for power series may be applied to calculate M in
terms of ¢, and the a; . The result of inverting the equation ¢,(L,) = ¢» appears
in (47) below.

An extension of Theorem 1 to the general counter is now immediate. Extension
of Theorem 2 is then accomplished by the substitutions described immediately
below the statement of Theorem 2. Thus

THEOREM 3. (General counter.) Let p, and p: be assigned, 0 < p1 < p2 = 1.
If 0 < M = 0.1 and (46) is satisfied, an approximate conﬁdence interval for the
parameter M = mu for confidence level 100(p. — p1) percent is given by:

(i) for a fixed count experiment with count N, the interval (32) with the L, ob-
tained from
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L, - ;_:{1 + ao_zal aﬁ;z2+2a§af ;I- a3a3+5a¢3,¢:1a2
1) n n ¢n v
Sagaix, -1
+ 2 + o+ ONT), P =p1,
N

(ii) for a fixed time experiment in the interval 0 < ¢t < T, the interval (41) with
the L}, obtained from (47) as follows. First replace {x by T — (N — 1)u and L, by
L} . Then, for L, replace N by the count n(T) and for L%, replace N by n(T) + 1.

If M is small and N is large, one expects each of the quantities a,/¢y in (47)
to be near the value M. In such cases the approximation

o[y 4 Bl a M}
(48) L,,=a{1+ {fv}zf;{l—l_ T

for (47) will suffice for practical purposes. This will likely be the situation in the
great majority of counting experiments where confidence intervals are desired
for the parameter m. Indeed, the term aoa;/¢% in the bracket in (48) will usually
be quite small compared with unity. These remarks indicate the extent to which
the Typel counter assumption is justified ; the examples in the next section should
clarify these remarks.

The power series manipulations used in obtaining (44) and its inverse are
valid for values of M greater than 0.1 and the monotoneity condition is easily
extended. The authors cannot recommend the results for accuracy. The reader
who may be interested in counting experiments for which M > 0.1 should graph
t,(M) using the closed forms (24) of the cumulants «, in (26), (27) and (42) for
values of the various parameters that are of interest. The range of monotoneity
of t,(M) will then be evident and inversion of t,(L,) = {x is easily performed
from such graphs. It does not seem feasible to provide a sufficient number of
such graphs in this paper to cover the multiplicity of conditions that might arise
in counting experiments.

The complexity of the distribution (19) bars any discussion of minimum
average length confidence intervals.

6. Examples. The threé examples given below illustrate the use of Theorems
1, 2 and 3. In the first example the rate of m = 2 particles per second is typical
of radio-isotope tracer experiments. The extremely low rate of four particles in
eight hours of Example 2 might be found in a cosmic ray count while the very
high rate of m = 2500 particles per second in Example 3 might be found in a
nuclear physics laboratory.

In designing a counting experiment it is important to make use of Theorem 1
whenever possible in order to utilize its statistical and practical efficiehcy. This
is brought out in the examples. In both of Examples 1 and 2 it turns out that
confidence intervals for m are essentially independent of the counter type. Ex-
ample 2 illustrates the construction used in the proof of Theorem 2 and compares
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precise results with asymptotic results. Example 3 shows the effects of variations
in the resolving time u and the sample size N.

ExampLe 1. (Fixed count.) Suppose that the counting rate is expected to be
about m = 2 particles per second. It is desired to obtain a 95.46 per cent (z,, =
—2p, = 2) central confidence interval for m using a counter for which v = 10™*
second and a five minute observation interval. Fix N = 600 and suppose that
¢~ = 290 seconds is observed. Since (N — 1)M is approximately 0.12, it appears
from (20) that Theorem 3 should be used. By (45), keeping five decimal places of
accuracy in the computation of the a;/ufy, one finds ao/¢tx = 2.06897
(1.00167 =+ 0.08163)u, ai/¢x = 1.03276u-06, and a/¢x = 0.34425(6°~0.00334 -0
=+ 0 08176-6), the upper signs being used for L,, and the lower for L,, . Since u =
107, it is clear at once that the bracket in (47) is essentially unity. Thus the
confidence interval is 1.90354 < m < 2.24132. Note that the result is the same
as would have been obtained from Theorem 1; this is true only to within the ac-
curacy of the compuatation.

ExampLE 2. (Fixed time.) Suppose thatm is expected to be about 1/120 particle
per minute and that w = 107 minute. Fix 7 = 500 minutes and suppose n(T) =
4 observed. Here, (20) indicates that the counter may be assumed to be of type I
so Theorem 2 may be used. By (41), the limitsare L}, = M{ and L}, = M{® on
M = mu and by (36) and (37), 2M:” -[(T/u) — (k — 1)]is that value below which
100p: per cent of the chi square distribution of 2k degrees of freedom lies. For a
central 90 per cent interval 2M{"-(5-10° — 3) = 2.733 and 2M{”-(5-10° — 4)
= 18.307. From these values, 0.00273 < m < 0.01831. The asymptotic result
obtained from (29) using z,, = —x,, = 1.645 is 0.00275 < m < 0.01832 which
agrees very well with the precise result.

ExampLE 3. (Fixed count, high rate.) Suppose that m is expected to be about
2500 particles per second. Three cases are considered:

(i) u = 4-10""second, N = 75,000 and ¢» = 30.1 seconds,

(ii) u = 4-10~° second, N = 300,000 and {» = 120.4 seconds, and

(i) u = 4-107°, N = 75,000 and {» = 30.1 seconds. Examination of (20)
indicates that Theorem 3 must be used in all cases. As in Example 1, 95.46 per
cent, central confidence intervals are given. Keeping the same order of accuracy
as in Example 1, one finds for cases (i) and (iii) that ao/¢¥ = 2491.7 (1.00001 +
0.00730)u, a1/¢x = 1245.8u-0, and ay/¢x = 415.3(6° &+ 0.01460-6)u. For case
(ii), replace the quantltles enclosed in parentheses in ao/¢x and a,/¢~ above by
(1 = 0.00365) and (6° =+ 0.0073-6) respectively. Applying these in (47) and
dropping terms in the bracket there that vanish to five decimal places, the
results are:

()  2473.5 4 12.20 4 0.56° < m < 2509.9 + 12.60 + 0.56°
(i) 24826 + 1240 + 0.56° < m < 2500.8 + 12.50 + 0.56°
(i)  2473.5 < m < 2509.9.

The value of § will certainly be unknown in most counting experiments. Indeed
6 may be a purely fictitious parameter that should only be used to tie together
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the extreme cases of the Type I and Type II selection rules. Cases (i) and (ii)
show a dependence of the limits on 6 that is substantial relative to the length of
the confidence intervals. Increasing N shortens the interval but has only a very
slight effect upon the 8 dependence.
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