GENERALIZED HIT PROBABILITIES WITH A GAUSSIAN TARGET, I

By D. A. S. FRASER
University of Toronto

1. Summary. In a recent paper [2] the author developed a discrete distribution
and several derived limiting distributions for the number of ‘“hits”’ on a k-
dimensional Gaussian target. The purpose of the present paper is to apply these
results to the two-dimensional problem considered by Cunningham and Hynd
[1]. A general expression and two limiting forms are obtained for the probability

“of at: least one hit. The numerical evaluation using the data in [1] is considered

for n = 5 rounds, and the probability of at least one hit is plotted in Fig. 1for
various combinations of aiming and dispersion error. For a given over-all time
interval the evaluation for large n is dlscussed in Section 5 and illustrated using
the data from [1].

2. Introduction. In 1946 Cunningham and Hynd considered a problem in
aerial gunnery: to find the probability of hitting a moving target at least once.
The various factors entermg into the problem may be described as follows.
The pomt at which the gun is aiming is found to wander back and forth across
the target; its successive positions when n rounds are fired can be represented by
a multivariate normal distribution with independence between the horizontal
and vertical coordinates. We let the coordinates of this point of aim for the ith
round be z;;, Z2; (the point of aim is called a prediction in [2]). The dispersion
error of the gun is also assumed to be normal; we let the trajectory coordinates
be y1:, Y .

In [1] the target was taken to be circular. Here we assume that it is Gaussian
diffuse; that is, the probability of a hit is given up to a constant factor by a
Gaussian p.d.f. of the coordinates of the trajectory. Because of the irregular
outline of a plane and the sharp “drop off” of the p.d.f. proceeding out from the
center, this is not an unreasonable assumption.

3. The k-dimensional problem. The k-dimensional problem treated in {2]
may be summarized as follows. A series of n predictions {X;;¢ = 1,---, n}
is considered; a prediction X; is a random vector in k-dimensional Euclidean
space R* and we let X; = {X,;;pu = 1, -, k}. The distribution of the n pre-
dictions is assumed to be Gaussian with independence between the n values of

any coordinate and the n values of’any other Letting {X,:; 7 = 1, n}
be Gaussian with mean {m,;; ¢ = 1, - n} and covariance matrix ll a“" I,
then {X,;;¢=1,---,n}and {X,;;7 = 1 , n} are assumed mdependent

for p # ». A prediction X; = X; = (3¢, -+, :c;,,-) becomes a successful predic-
_tion with probability given by s:(Z:), the success function. In [2] s:(%;) has the
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following Gaussian form:
(3.1) sdZ) = Ciexp — % 2 7 Tuiii,
By

where 0 < C; < 1, || 7 | is positive definite, and y, v range over the set {1,---,
k}. The general distribution obtained in [2] is the distribution of R, the number
of successful predictions.

In applying the results obtained in [2] to the Cunningham and Hynd problem,
it is found that the success function is not immediately available in terms of the
prediction Z; rather, it is given in terms of a vector § which has a Gaussian dis-
tribution about Z. The following lemma shows that, if the success function is
Gaussian of form (3.1) in terms of 7, then it is also Gaussian in terms of z.

Lemma. If (Y1, -+, Yi) has a'Gaussian distribution with mean (z., - - , &)
and covariance matriz || Gw | = || G* |7, and if the success function in terms of
(yr, -+, yr) 18 B exp — 15> T*YuYys , then the success function in terms of
(z1, -, xx) is also Gaussian diffuse and has the form C exp — ¥y, ™.,
where

C=B l Bur Z Gml' ™" I —9’
"

P =@ =+ T e
P

Proor. We calculate the probability of a “hit” as a function of the point
of aim (z1, -, Z).

s(Z) = E{Bexp —3 2, T"Y,Y,}

AL
=B |(2G )kL f €xp {—3 Z G‘"(yn —:l?,.) (y' - ) -3 Z ™ Y} II dy.
ur by s

gleel

B L] oxp (-3 T 077

: f exp {—} ; @ + T )yuy» + }; [:4; " zp] yu} I”I dy,

wv (4
-l exp _%[g Gz, — ,,g,—z, [16*” + T || *"*G "z,z,]

o T
= B8y + 2 Gu T [
-exp {—}% ,‘Z @ - ”Z e + 1 |7 66" "z}
This completes the proof.

4. The Cunningham and Hynd problem. Cunningham and Hynd were in-
"terested in the probability P of at least one hit in a series of n rounds. Using
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(3.2) in [2] we have the following expression for P:

(4.1) P=E —E+ -+ (-1)""E,,
where .
4.2) E, = Z Es,

B

for which the summation is taken over all sets 8, of r integers chosen from the first
n integers and Ej, is the probability that all the rounds designated by the ele-
ments of 8, will be hits. Qur problem is thus to calculate E, or Eg, and the above
formulas will give the desired probability P. Any other probabilities for the dis-
tribution of B will be obtained from formula (3.3) in [2]. '

We now consider the two-dimensional problem [1] and introduce the following
notation and formulation.

The target is given by the probability of a hit on the 7th round in terms of
the trajectory coordinates (with the center of the target as origin).

o+ ol
Pr{Hit| (g, 920)} = exP{_% _112—2}} !
) o)

where o(;) is a measure of the effective radius of the target. In the notation of
the lemma in Section 3, we have

B=1,
a?;‘; 0

1™ =
0 0'-(-12)

The dispersion error is given by the covariance matrix on the ¢th round (in-
dependence of coordinates being assumed as in [1]).
a® 0
0 0’;50)
where ¢, is the variance of the uth coordinate of the dispersion error.
The success function is given, using the lemma in Section 3, by the following:

0.2(1)
C BT
i = TaF) ()
R AR A

es 1l =

’

-2,
o1 (t+g) 0
—2(,

0 ool uto l

where 0,7 = ¢ 4 ¢,%, the addition of variances.

The aiming error is given by the variance of that error for uth coordinate on
the 7th round, o = a:?’), and the correlation between the values of the uth
coordinate for rounds ¢ and j, p{?. We are assuming that the mean is equal to
zero; that is, there is no bias in the aiming.

]

?
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Using Theorem 3 in [2] we obtain the following expression for Ejg, :
Bo, = 11 C, 11 1650 + o306 [

peBy
2(t)
= d (@) (@) () _~2(t+g) |-}
(4.3) = 1;[}' m H | 850 + 0w Oug PpqTun |
2(t) 2(t+g) |—%

_ o ®) Oup
= H @@ H Prg T Opg BETOR

peBr 015 02p H=L2 Oup

Considering now the application of the Type I limiting distribution, we have
the following result:

2(l) w 0_25:-(-)0) -3 _r
o l l u » l l

(4'4) E, = rl Tr f f @ @ P(tpte) t 0pq "2({,’)_ dtp .
=1 G’1(¢p) g2ty H Ou(ty) 1

The duration of the burst is T', and al(,p) , for example, is the variance of the aim-
ing error at time ¢, . From the conditions of Theorem 4 in [2], (4.4) will be a
vglid approximation for (4.2) with (4.3) if ¢ is of order 1/n with respect to
@ and n is large.

Similarly the Type II limiting distribution gives the following:

—3
I dt,.
=1

2(t)

@) E=to [ [Tt I

(#)
( ( p(‘p‘q)
r! Tr =1 o‘l(ip) a2ty F=1

The limiting conditions are that al(”"), a3i%? be of order 1/n,

2(1)
ag 2
—_—— o1, and o2 of order 1, and = large.
a§{+a) a,é{+a)
t 1

6. Evaluation for n = b. The evaluation of the probability P requires all
values of E, or a sufficient number to estimate P from a truncated portion of
the series (4.1). This direct evaluation can readily be carried out if » is small
as in the example (n = 5) in this section; we defer to Section 6 a consideration
of the evaluation for large n.

We use the data in [1] for a one-second burst of n = 5 rounds. As indicated
in [1] we take the correlation pf’}) to be the same for the horizontal and vertical
coordinates and to be dependent only on the time interval between the rounds.
Then from the experimental correlations tabulated in [1] we have p(0) = 1.00,
p(.25) = .80, p(.50) = .62, p(.75) = .48, p(1.00) = .33. From formulas (4.1),
(4.2), and (4.3) we have that

N S
(5.1) i ﬂa b i<ip o — p¥(iz — 1)
oo e (_ﬁ)r i<;<‘ l p(ip e iq)(l —_— 6pq) + aapq ‘—1,

where



292 D. A. S. FRASER

2(¢)
_ o
B = o’

. 2 2 2 .
and the variances ¢ °, ¢ ”, ¢ ® are assumed to remain constant for the dura-

tion of the burst. The function P was calculated for a series of values of « and 8
and plotted in Fig. 1 with ¢ = 1.
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6. Evaluation for large n. The direct computation of P for a series of large
values of » would be excessive. We now introduce a procedure for approxima-
tion. Assuming that the correlation depends only on the time interval between
the rounds, that the horizontal and vertical components have the same dis-
tribution, and that variances are constant over the time interval, then P has
the form (5.1).

Consider for a moment the case in which correlation is absent (p;; = 8;;),
and let

Fr=Er(P€j=51'i)
_<n 8Y
“\r/) |l
The expression for P also simplifies:
_ ol g2(n\1 T LY.
P-g-g(p) Lt - o (M) L+

This binomial expression has simple terms and it is natural to investigate the
“correction factor between terms in the correlated and uncorrelated series. We
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therefore define as follows: (
Er = Fr(l + cr), cr = 0, c = 0.

We now derive an expression for ¢, from which it easily follows that c, is non-
negative.

¢ = ar laapq + qu(]. - 6}11{) '—-1 -1

7<o iy n
»
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From Theorem 4 in [2] we know that ¢, approaches a limit as n — . This can
also be seen directly since @ > 1 (@ = 1 would imply there was no target!).
The limiting value is derived from Theorem 4, as

gﬂa-—f f +“t ) (1 — 5,0)

Since ¢, is stable for large n we now investigate the dependence on r. We note
that lim, ¢, is the excess over 1 of the average value of the reciprocal of a deter-

-1
aty +++ at, — 1.
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minant having 1’s down the diagonal, and that these 1’s are larger by (e — 1)/«
than elements which would be sufficient to make the matrix positive definite.

Thus assuming @ > 1 and expanding the determinant we find that the de-
terminant is 1 — > _,c.{p(t, — t;)/a}? - - , where p, ¢ range over (i1, - - - , %).
Formally taking the reciprocal, we find that the inverse of the determinant is
1 — > pca lp(t, — tg)/a}? --- . The excess over 1 of the average of such ex-

pressions will have a first term which is the sum of (;) squares of the form

[P(tp - tq)/alz-
This expression suggests replacing our correction factor ¢, by k., defined by
k, = azc,/(;) Thus we have E, = F,[1 + (;) k./d']. The correction con-

stant k, has the following properties:

(1) k, approaches a limit as n increases.

(2) k., is to the first approximation independent of r and « for « large.

Values of k, and k; were calculated for a series of n, using the time interval
T = 1 as in Section 5 and the correlation function p(¢) given in [1]. These are
plotted in Fig. 2. It is to be noted that the approach to a limiting value as n
increases seems very regular and k, and k; are quite similar except for the smaller
values of a. This stability of the functions {k,} would facilitate the calculations
if P were to be obtained for a series of large values of n.
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